

Polyhalite use in pasture 🕚

Maize and grass integrated system fertilized with polyhalite and KCI

Alberto C. C.Bernardi¹, Gilberto B. Souza¹; Fabio Valle²

(1) Embrapa Pecuária Sudeste, São Carlos, SP Brazil, alberto.bernardi@embrapa.br; (2) ICL Fertilizers, São Paulo, SP, Brazil

Introduction

- ✓ Crop-livestock integrated systems (CLIS) have been used as a strategy of sustainable agricultural intensification which integrates annual crops and livestock activities on the same area and in the same season
- Providing an adequate supply of nutrients is important for high yields and is essential to maintain high quality and profitable yields in integrated systems. \checkmark Potassium chloride potash (58 to 62% of K₂O) = the most potash fertilizer used in Brazil accounting for over 95% of the market.
- However, there are other minerals composed of sulfates = langbeinite, kainite, and polyhalite.
- Polyhalite (K₂MgCa₂(SO₄)4.2H₂O) is a mineral of natural occurrence with large existing deposits and has potential to be a multi-nutrient (ratio of 11.7%-K, 19%-S, 3.6%-Mg, and 12.1%-Ca) fertilizer for forage crop production.
- ✓ Little information is available for the response of maize and grass to polyhalite. ✓ Polyhalite may provide a slow-release fertilizer source of K, Ca, Mg, and S.

Goal

The objective of this research was to evaluate the effect of K sources fertilizer on maize Piatã grass yield and nutritional status in the ICLS.

Material & methods

- Embrapa Pecuária Sudeste in São Carlos, Brazil (21 ° 57'S, 47 ° 50'W, 860 m)
- Growing season of 2016/2017 and 2017/18.
- · ICLS: sown with maize (Zea mays cv. AG 8690-Pro3) together with Piata grass (Urochloa brizantha).
- Red-vellow Latosol, i.e. Haplorthox
- Soil testing samples (0-0.2 m):
- - □ pHCaCl₂ = 5.6, organic matter = 46 g/dm³, P_{resine} = 11 mg/dm³, K = 1.5 mmol_c/dm³, Ca = 36 mmol_c/dm³, Mg = 14 mmol_c/dm³, CEC = 72 mmol_c/dm³. V= 73%; S-SO₄ = 5 mg/dm³. 580 g/kg of sand, 46 g/kg of silt and 374 g/kg of clay.

· Lime was not necessary,

Sowing fertilization: N, 40 kg/ha, P2O5, 140 kg/ha; K2O, 80 kg/ha

 Topdressing fertilizations: N, 100 kg/ha, P2O5, 20 kg/ha; K2O, 100 kg/ha • Treatments comprised two K sources; polyhalite and KCI (60% K₂O), five ratios (polyhalite:KCI)

- K₂O levels (0, 50, 10 e 200 kg/ ha) with 4 replications:
 - ✓ i) Control (no K, S, Mg or Ca);
 - ✓ ii) KCI 100%;
 - ✓ iii) KCI 87,5% + Polyhalite 12,5%;
 - iv) KCI 50% + Polyhalite 50%;
 - ✓ v) KCI 12,5% + Polyhalite 87,5%;

Tratamentos	к				Ca				Mg				s			
	0.		20.		mmol _c /dm ³			20.			mg/dm ³					
	20cm		40cm		0-20cm		20-40cm		0-20cm		40cm		0-20cm		20-40cr	
DLH 100%	1,2 5	A	1,0	в	31,0		27,0		11,8	A	7,5	в	9,0	Ва	24,5	1
1 12,5% + POLH 87,5%	1,0 8	A	0,9	в	37,5		41,3		10,3	A	7,3	в	9,0	Ba	31,0	1
1 50% + POLH 50%	1,1 5	A	0,7	в	27,8		31,3		8,8	A	6,0	в	8,0	Ba b	25,0	1 2 1
187,5% + POLH 12,5%	1,1 8	A	0,88	в	40,0		29,0		11,0	A	7,0	в	5,3	Bb	19,0	1
1 100%	1,5 0	A	0,93	в	26,3		28,5		10,8	A	7,5	в	6,3	Ba b	16,3	1
ntrole	0,9 8	A	0,95	A	31,3		27,0		10,8	A	7,8	в	7,0	Ba b	18,5	í

Conclusion

- Maize and grass yield obtained with the polyhalite and KCI mixture was significantly higher (p <0.05) than the control.
- ✓ The best results of dry matter yield of maize and Piatã grass were obtained with the treatments with the highest ratios of polyhalite.

g/kg

1,79 B

1,69 B

1,56

1,68 1,50

1,50

1,49

1,67

13,4 A

11,9 AB

10,4 BC

8.9 C

18,3 AB 10,7 BC

10,9 B

2,60 B

2,64 B 2,44 B 1,72 B 1,57 B

2,51 B 1,66 B

3,37 A 2,31 A

kg/ha

19,4 A

16,5 ABC

15,5 ABC

14,8 BC

13.9 C

2,59 B

12,2

11,7

11,7

9,0

9.2

12,3 -

16,58

16,89 16,47

16,62

16,74

15,54

125,0 A

110,2 AB

104,2 AB

94,4 BC

93.8 BC

74,0 C

- ✓ These values were 20% to 36% higher than the best yield obtained in control (without fertilization).
- ✓ Treatments were also efficient in increasing S in soil and exportation of K, Mg, and by maize.
- This study demonstrated that polyhalite is an alternative source of K, Ca, Mg, and S and can meet the nutritional requirements of annual crops and pastures in a CLIS for healthy growth and production.