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A B S T R A C T

Thirty each Nellore (NEL) and crossbred Angus × Nellore (AxN) were used to evaluate the effect of feeding
soybean oil (SBO) and breed on meat sensory acceptability and its relation to muscle metabolite profiles. Cattle
were fed for 133 d on two different diets: 1) basal feedlot diet (CON) and 2) CON diet with 3.5% added SBO. No
interactions between diet and genetic group were detected for any traits measured. Meat from animals fed SBO
diet had lower overall liking, flavor, tenderness and juiciness scores compared to meat from animals fed CON
diet. The four most important compounds differing between animals fed CON and SBO diets were betaine,
glycerol, fumarate, and carnosine, suggesting that metabolic pathways such as glycerolipid metabolism; glycine,
serine and threonine metabolism; glutamine and glutamate metabolism; valine, leucine and isoleucine bio-
synthesis; and alanine, aspartate and glutamate metabolism were affected by diets. Nellore beef had a higher
overall liking and meat flavor scores than AxN beef. The four most important compounds differing between
breeds were glycine, glucose, alanine, and carnosine, which may indicate that metabolic pathways such as
glutathione metabolism; primary bile acid biosynthesis; alanine, aspartate and glutamate metabolism; and va-
line, leucine and isoleucine biosynthesis were affected by genetic groups. Meat carnosine, inosine monopho-
sphate, glutamate, betaine, glycerol and creatinine levels were correlated with sensory acceptability scores. Meat
metabolite profiles and sensory acceptability were differentially impacted by diet and breed.

1. Introduction

Beef is a primary source of protein in human diets. Meat is also
highly coveted by consumers for its impact on higher satiety centers
and its gratifying sensory attributes, which include flavor, tenderness,
and juiciness (Toldrá, 2017). Sensory and meat quality attributes are
subject to several pre and post-slaughter factors, such as breed, age,
feeding, sex, pre-slaughter management, the amount and composition
of intramuscular fat (Arshad et al., 2018; Muchenje et al., 2009), and
maturation (aging) time (Graham et al., 2010; Muroya, Oe, Nakajima,
Ojima, & Chikuni, 2014).

Animal feeding regimes affect meat composition as well as sensory
attributes (Oliveira et al., 2012; Partida, Olleta, Sañudo, Albertí, &
Campo, 2007; Vatansever et al., 2000). Adding fat to cattle diets

increases the energy density of the diet and also changes the fatty acid
profile of meat (Silva et al., 2018; Wood et al., 2008). In Brazil, soy-
beans are one of the most popular means of adding energy to ruminant
diets, mostly because the feedstuff is readily available, inexpensive and
energy rich (Barletta et al., 2012), especially regarding oleic, linoleic
and linolenic fatty acids (Silva et al., 2018). In general, meat from cattle
fed vegetable oils has a lower n-6:n-3 polyunsaturated fatty acids ratio
(Castro et al., 2016; Gonzalez, Moreno, Bispo, Dugan, & Franco, 2014;
Wood et al., 2008), which can also negatively impact consumer ac-
ceptability (Okumura et al., 2007; Vatansever et al., 2000).

Breed also impacts sensory and meat quality attributes primarily
due to differences in the amount and composition of intramuscular fat
deposited in the meat (Muchenje et al., 2009; Nassu et al., 2017),
tenderness (Wheeler, Shackelford, & Koohmaraie, 1997) and flavor
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compounds (Koutsidis et al., 2008a, 2008b). Development of the
characteristic species-specific flavors and aromas are mostly located in
the lipid fraction of meat, while the water-soluble fraction contains
components that contribute to the development of ‘meaty’ flavor.

A number of attempts have been made to understand the role of
muscle metabolite profiles on beef quality. Kim, Kemp, and Samuelsson
(2016) reported that sensory differences in flavor and overall accept-
ability of dry-aged and wet-aged beef were due to differing amounts of
specific amino acids. In addition, (King et al., 2019) used a metabo-
lomic approach to identify candidate metabolic biomarkers of beef
tenderness whereas Ma et al. (2017) used metabolomic profiling to
explore the effect of postmortem aging on color and lipid oxidative
stabilities across different bovine muscles. However, most of the
aforementioned studies were performed using European beef breeds,
which are normally slaughtered at higher levels of carcass fatness and
therefore complicated by added lipid content in the muscle. Little is
known, however, about how metabolites contribute to sensory prop-
erties in meat from extremely lean cattle, such as Nellore cattle, which
form the basis for meat production in Brazil. In addition, few studies
have explored breed effects on metabolic pathways that may affect the
sensory attributes and acceptability of beef. Understanding the basis for
how these metabolites affect meat quality in different breeds may help
facilitate the creation of novel management schemes for mitigating
limitation in beef quality.

One-dimensional (1D) proton nuclear magnetic resonance (1H
NMR) spectroscopy has been widely used to characterize and quantify
low molecular weight metabolites in small samples (Emwas et al.,
2019). 1H NMR has been successfully used to obtain metabolic profiles
in many meat products such as dry-cured hams and marinated meats
(Zhang et al., 2018; Zhang, Yi, et al., 2019), which have been related to
the effects of aging (Kim et al., 2016), breeds (Straadt, Aaslyng, &
Bertram, 2014) and diets (Osorio, Moloney, Brennan, & Monahan,
2012; Zawadzki et al., 2017) on the sensory properties of meat.
Therefore, the objective of this study was to evaluate the effects of
soybean oil feeding on the metabolite profile and sensory properties of
meat from Nellore (NEL) and Angus × Nellore (AxN) crossbreed cattle.

2. Material and methods

All procedures used in this study were conducted in accordance with
the Institutional Animal Care and Use Committee Guidelines (protocol
7294130616) and Institutional Committee Guidelines in Research with
Human Subjects (protocol 58704616.7.0000.5422). Both procedures
were approved by the committees of the Faculdade de Zootecnia e
Engenharia de Alimentos – Universidade de São Paulo.

2.1. Feedlot trial

Sixty 24-month-old non-castrated male cattle, 30 each NEL and
AxN, with an average initial body weight (BW) of 363 ± 28 kg, were
fed two different diets: (1) a normal feedlot diet containing no soybean
oil (CON) and (2) a normal diet containing 3.5% soybean oil (SBO), in a
randomized complete block (initial BW) design with a 2 × 2 factorial
arrangement.

Animals were housed in individual (6 × 3 m) concrete pens with ad
libitum access to water. Cattle were submitted to a 10-d adaptation
period, during which time concentrate levels were gradually increased.
At the end of the adaptation period, animals were fed twice a day, at 8
am and 4 pm, over a 133-d period. Every two days, refusals were col-
lected and weighed, and feed offerings were adjusted to ensure 5% to
10% refusal. Experimental diets were formulated using RLM (Esalq/
USP, Piracicaba, São Paulo, Brazil) software, and nutritional demands
were estimated by the CNCPS system (Fox, Sniffen, O’Connor, Russell,
& Van Soest, 1992) to meet animal nutrient requirements of intact
crossbred AxN animals with the aim of maximum weight gain (Table 1).

2.2. Meat sampling

After 133 d on feed, animals were transported to a Federal inspected
commercial slaughterhouse (Frigorifico Dom Glutao, Ibitinga, SP,
Brazil) located 184 km from the experimental site. Upon arrival, ani-
mals were lariaged for 10 h with free access to water and then
slaughtered according to Humanitarian slaughter procedures as re-
quired by Brazilian law. Briefly, animals were restrained in a stunning
box and stunned using a penetrative captive bolt, followed by bleeding
through the jugular vein and carotid artery.

After a 48 h chilling (0 to 2 °C), the left side of each carcass was cut
between the 12th and 13th rib, and a 5 cm cross-section of the long-
issimus thoracis (LT) muscle was sampled, vacuum packaged and aged (0
to 4 °C) for 7 d (9 d post-slaughter). After aging, two 2.5-cm thick LT
samples were collected for sensory and metabolomic analyses.

2.3. Consumer acceptance sensory analysis

Steaks were roasted in an oven at 170 °C (Model F130/L – Electric
Furnaces Golden Arrow Industry and Commerce Ltda., São Paulo, SP,
Brazil). Internal temperature of each steak was monitored using in-
dividual thermometers until an internal temperature of 40 °C was at-
tained, at which point steaks were flipped and cooked to an internal
temperature of 71 °C, as recommended by the American Meat Science
Association (AMSA, 2015).

Cooked samples were cut into 1.27 × 1.27 × 2.54 cm pieces,
avoiding fat and any visible connective tissues, and wrapped in alu-
minum foil and placed in a water bath (70 °C) prior to serving them to
the panelists. Samples were placed in a plastic cup with a three digit

Table 1
Dietary ingredients and chemical composition (DM basis) of finishing diets.

Item Diet

Control Soybean oil

Ingredients (%)
Sugarcane bagasse 5.0 5.0
Corn silage 10.0 10.0
Ground corn grain 58.0 54.5
Ground citrus pulp 16.0 16.0
Soybean oil 0.0 3.5
Soybean meal 9.0 9.0
Urea 1.2 1.2
Mineral mixture1 0.8 0.8

Chemical composition2 (%)
Dry matter (% as fed) 73.1 73.3
Neutral detergent fiber 21.1 20.6
Crude protein 15.1 14.7
Ether extract 3.11 6.45
Total digestible nutrients 78.9 82.3
Calcium 0.48 0.48
Phosphorus 0.37 0.36

Fatty acid composition (% of total fatty acid)
14:0 0.09 0.08
16:0 13.89 12.28
18:0 2.68 3.28
9c-18:1 34.39 28.82
18:2 n-6 43.77 47.56
18:2 n-3 1.62 3.30

1 The trace mineral mixture contained (per kg) the following: calcium (min/
max), 200–250 g; phosphorus, 20 g; magnesium, 15 g; sulphur, 32 g; sodium,
80 g; zinc, 2000 mg; copper, 450 mg; manganese, 800 mg; iodine, 45 mg; co-
balt. 27 mg; selenium, 18 mg; monensin sodium, 1500 mg; vitamin A, 60,000
UI; vitamin D3, 45,000 UI; vitamin E, 400 UI.

2 The diets were formulated to meet or exceed all nutrient requirements of
finishing non-castrated crossbred Angus × Nellore males according to nutri-
tional demands estimated by the CNCPS system (Fox et al., 1992) by using the
RLM (Esalq/USP, Piracicaba, São Paulo, Brazil) software.
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random number for each treatment and served in random order to the
panelists with filtered water and unsalted crackers to cleanse the palate
between samples. Sensory analyses were performed in individual
booths under controlled conditions of red light and temperature
(22 ± 2 °C).

A total of 12 sensory sessions (nine panelists per session; a total of
108 consumer panelists) were performed to evaluate the four treat-
ments (one sample per treatment) for overall liking, juiciness, tender-
ness, and flavor using a nine-point hedonic scale (extremely dislike – 1;
extremely like – 9) (AMSA, 2015). In addition, overall liking data of
each panelist were used to build clusters so that consumer groups were
identified and a percentage acceptance of each treatment was estab-
lished.

2.4. Extraction of polar metabolites from meat

A total of 0.5 g of meat sample (n = 15/treatment) aged for 7 d
was macerated and homogenized using a ultra-turrax®. Metabolites
were extracted with 3.5 mL of a cold methanol/water solution (4:3 v/v)
while vortexing for 1 min, as previously described by Beckonert et al.
(2007). Samples were stored on ice for 15 min and then centrifuged for
15 min at 10,000g and 4 °C to remove the protein precipitate and
connective tissue. Supernatants were transferred to 1.5 mL Eppendorf
tubes and freeze-dried. Remaining residues were reconstituted in
600 μL of 100 mM phosphate buffer (containing 10% D2O and 90%
H2O, pH 7.0) and 60 μL internal standard solution (containing 5 mM 3-
(trimethylsilyl)-1-propanesulfonic acid sodiumsalt (DSS)) as a quanti-
tation standard and chemical shift reference and 100 mM imidazole as a
pH indicator). Samples were centrifuged at 10,000g for 3 min at 4 °C to
remove any precipitate. Supernatants (600 μL) were transferred to
standard 5 × 178 mm thin-walled NMR tubes (VWR International).

2.5. NMR spectroscopy

One dimensional proton nuclear magnetic resonance (1D 1H NMR)
spectroscopy was used for metabolite profiling (EMBRAPA
Instrumentation, São Carlos, SP, Brazil). The 1H NMR spectra were
acquired at 300 K on a Bruker Avance 14.1 T spectrometer (Bruker
Corporation, Karlsruhe, Baden-Württemberg, Germany) at 600.13 MHz
for 1H, using a 5 mm Broadband Observer (BBO) probe. Deuterium
oxide was used as a lock solvent and DSS (4,4-dimethyl-4-silapentane-
1-sulfonic acid) was used as the chemical shift reference for 1H.
Standard one-dimensional (1D) proton NMR spectra were acquired
using a single 90° pulse experiment. Water suppression was performed
using the BRUKER “zgesgp” pulse sequence (excitation sculpting with
gradients) and the following acquisition parameters were used:
13.05 µs for the 90 degree pulse, 0.5 s relaxation delay, 64 K data
points, 64 scans, 3.89 s acquisition time, and 14.03 ppm spectral width.

2.6. Spectral processing and metabolite quantitation

The 1D 1H NMR spectra were processed using Chenomx NMR Suite
Professional 7.7 software (Chenomx Inc., Edmonton, Canada). Phasing
and baseline correction were performed and the pH was calibrated
using the resonances from imidazole. The spectra were referenced to
the DSS methyl peak at 0.00 ppm. The same peak was also used as a
chemical shape indicator, to serve as an internal standard for quanti-
fication.

Thirty-one metabolites were quantified in the 1D 1H NMR spectra of
meat extracts using the Profiler module on the Chenomx NMR Suite
Professional software with an in-built 1D spectral library. Quantitation
was based on comparing the area of selected metabolite peaks with the
area under the DSS methyl peak, which corresponds to a known con-
centration of 0.5 mM in each sample. The resulting metabolite con-
centration table (31 metabolites × 15 samples each treatment) was
exported to Excel where sample identifiers were added.

2.7. Statistical analysis

Data were evaluated as a randomized complete block design in a
2 × 2 factorial arrangement (genetic group and diet) using 15 re-
plications per treatment (animal was the experimental unit).
Metabolomic data were analyzed considering the fixed effects of diet,
genetic group and the diet*genetic group interaction and block (initial
BW) was used as random effect. For sensory traits, the previous model
was used and the panelist was included as a random effect. Analyzes
were carried out using the Mixed procedure of SAS 9.4 software (SAS
Institute Inc., Cary, NC, USA). The least squares means (LSMEANS)
statement was used to calculate the adjusted means for treatment and
the means were compared by Student's t test. Differences were con-
sidered statistically significant when P ≤ 0.05.

Metabolomic data also were processed statistically using
MetaboAnalyst 4.0 (Chong et al., 2018). The metabolite concentration
table was uploaded to MetaboAnalyst, and data were log-transformed
and Pareto-scaled prior to analysis. Partial least square discriminant
analysis (PLS-DA) was performed using a 10-fold cross validation
method, and the values for R2 (cumulative interpretation ability of
model) and Q2 (predictive ability of model) were employed as initial
indicators for evaluating the goodness of fit. In the PLS-DA model, a
variable importance in the projection (VIP) plot was used to rank the
metabolites based on their importance in discriminating groups. Cor-
relation analysis were performed between sensory properties and me-
tabolites and a heatmap was generated to denote the enrichment of the
corresponding correlation. The PatternHunter method was used, and
Pearson correlation was applied as distance measure. In addition,
pathway analysis was performed with metabolite quantification data
sets according to group using the Bos taurus library.

3. Results

3.1. Consumer sensory acceptability

No interactions were detected between diet and genetic group for
any of the traits evaluated.

Meat from animals fed CON diets received greater overall liking
(P < 0.001), tenderness (P < 0.001) and juiciness (P < 0.001)
scores and tended to have higher flavor (P = 0.053) scores when
compared to meat from animals fed the SBO diet (Table 2). In addition,
meat from NEL cattle had greater overall liking (P = 0.044) and flavor
(P = 0.044) scores than AxN beef. No differences were observed be-
tween genetic group for tenderness and juiciness.

3.2. Meat metabolites and their pathways

Based on 1D 1H NMR analyses, 31 compounds were identified in

Table 2
Effect of diet (DT) and genetic group (GG) on the consumer acceptability of
Longissimus thoracis.

Traits1 DT2 GG3 SEM P value

CON SBO NEL AxN DT GG DT*GG

Overall liking 6.9 6.3 6.7 6.4 0.12 <0.001 0.044 0.634
Flavor 6.7 6.5 6.7 6.5 0.12 0.053 0.044 0.843
Tenderness 6.8 5.8 6.4 6.2 0.16 <0.001 0.298 0.379
Juiciness 6.7 6.2 6.6 6.3 0.13 <0.001 0.114 0.843

1 For the consumer acceptance test a structured hedonic scale of nine points
was used, ranging from “dislike extremely” (note 1) to “like extremely” (note
9).

2 CON = basal diet without soybean oil inclusion; SBO = basal diet con-
taining 3.5% soybean oil inclusion in replacing of ground corn grain.

3 NEL = Nellore; AxN = crossbred Angus × Nellore.
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meat (Supplementary file 1). Based on PLS-DA score sample clustering
patterns, compounds segregated according to diet (Fig. 1A) and breed
(Fig. 1B), which suggests differences in metabolite concentrations be-
tween treatments.

Based on diets and VIP analysis, the most important compounds
differing between animals fed CON and SBO diets included (in order of
importance) betaine, glycerol, fumarate, carnosine, creatinine, gluta-
mate, inosine monophosphate (IMP), isoleucine, valine, alanine, me-
thionine, anserine, threonine, carninitine, and glutamine (Fig. 2A).
Betaine (P < 0.001) and glycerol (P < 0.001) were higher in meat
from animals fed SBO diets, whereas carnosine (P = 0.005) was higher
in meat from animals fed CON diets (Table 3). The main metabolic

Fig. 1. Partial least square discriminant analysis (PLS-DA) scores plot of metabolome distribution according to the diet (A; CON= control diet; SBO= diet with 3.5%
soybean oil; R2 = 0.68 and Q2 = 0.41) and breed (B; NEL = Nellore; AxN = crossbred Angus × Nellore; R2 = 0.77 and Q2 = 0.55).

Fig. 2. Variable importance in projection (VIP) plot according to the diet (A; CON = control; SBO = diet with 3.5% soybean oil) and breed (B; NEL = Nellore;
AxN = crossbred Angus × Nellore). *IMP = inosine monophosphate; ATP = adenosine triphosphate; AC = acetyl carnitine.

Table 3
Metabolites that differ significantly (P < 0.05) in the beef samples according
to the diets.

Metabolite, μmol/g meat Diets1 SEM Fold change P value

CON SBO

Betaine 0.73 1.28 0.086 1.75 <0.001
Carnosine 12.01 3.24 0.962 3.71 0.005
Glycerol 1.65 2.81 0.229 1.70 <0.001

1 CON = basal diet; SBO = basal diet containing 3.5% soybean oil.
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pathways affected by dietary treatments were glycerolipid metabolism;
glycine, serine and threonine metabolism; glutamine and glutamate
metabolism; valine, leucine and isoleucine biosynthesis; and alanine,
aspartate and glutamate metabolism (Fig. 3A).

In regards to breed and VIP analysis, the most important compounds
differing between breeds were (in order of importance) glycine, glu-
cose, alanine, carnosine, acetate, IMP, creatinine, glutamate, isoleucine,

ATP, succinate, methionine, anserine, glycerate, and acetyl carnitine
(Fig. 2B). Concentrations of acetate (P = 0.002), carnosine
(P < 0.001), glucose (P < 0.001), glutamate (P = 0.002), inosine
monophosphate (P = 0.005) and succinate (P = 0.030) were greater in
NEL beef, whereas alanine (P < 0.001), creatinine (P = 0.005), gly-
cine (P < 0.001) and methionine (P = 0.012) were higher in AxN
group (Table 4). The main metabolic pathways affected by breed were

Fig. 3. Pathway analysis using metabolites according to the diet (A; CON = control; SBO = diet with 3.5% soybean oil) and breed (B; NEL = Nellore;
AxN = crossbred Angus × Nellore).
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glutathione metabolism; primary bile acid biosynthesis; alanine, as-
partate and glutamate metabolism; and valine, leucine and isoleucine
biosynthesis (Fig. 3B).

3.3. Consumer sensory acceptability × meat metabolites correlations

As expected, overall liking, tenderness, flavor, and juiciness scores
were highly correlated (Fig. 4). Similarly, acetyl carnitine, choline,
adenine, succinate, anserine, valine, glutamate, IMP, fumarate, NADH,
carnitine, lactate and beta-alanine, which have several common path-
ways were moderately to highly correlated with each other. Most of
metabolites were lowly correlated with consumer sensory acceptability
scores. However, some moderate correlations (r > 0.3 or r < -0.3)
were observed for overall liking with carnosine, betaine, glycerol,
creatinine, IMP, and glutamate (Fig. 5A); flavor with carnosine, alanine,
glycine, IMP, glutamate, and creatinine (Fig. 5B); tenderness with be-
taine, glycerol, carnosine, creatinine, glutamate, and fumarate
(Fig. 5C); and juiciness with carnosine, betaine, glutamate, glycerol,
IMP, and creatinine (Fig. 5D).

4. Discussion

Kim et al. (2016) reported some meat metabolites are related to
meat taste and flavor, either directly or indirectly since some substrates
in chemical reactions form flavor compounds during cooking (Zhang,
Pan, et al., 2019). Similarily, Straadt et al. (2014) showed some me-
tabolites are associated with changes in tenderness. Therefore, varia-
tions in meat metabolite concentration may impact sensory accept-
ability of meat (Kim et al., 2016; Kodani, Miyakawa, Komatsu, &
Tanokura, 2017; Nishimura, Rhue, Okitani, & Kato, 1988).

In the present study, flavor, tenderness and overall liking scores
were greater for meat from CON cattle when compared to their SBO
counterparts. In addition, diet altered important pathways, such as
glutamate and glutamine metabolism and valine, leucine and isoleucine
biosynthesis, and beef with higher overall liking scores had smaller
concentrations of betaine, carnitine and glycerol.

According to Mottram (1998), the flavor of cooked meat is derived
from the Maillard reaction, due to the interaction between reducing
sugars and amino acids, and the thermal degradation of lipids, which
produce desirable flavor characteristics in the meat. Further, carnosine
positively impact sensory sensations because it is associated with the
umami flavor (Lana et al., 2015; Nishimura et al., 1988). Carnosine
facilitates the generation of several important nitrogen-containing vo-
latiles, which are known to elicit roasted and nutty flavor sensations
(Chen & Ho, 2002). Carnosine is also an antioxidant that scavenges
radicals and binds metals (Wu, Shiau, Chen, & Chiou, 2003), which
contributes to greater overall oxidative stability in beef and may

positively affect the sensory perception of flavor.
In the present study, betaine was the most important metabolite that

differed with diet, as indicated by the highest correlation with sensory
scores. Betaine was negatively correlated with overall liking, tenderness
and juiciness scores. In addition, carnosine was the fourth most im-
portant metabolite differing with diet and was moderate-highly corre-
lated with overall liking, flavor, tenderness and juiciness scores. Straadt
et al. (2014) reported that betaine concentration was negatively asso-
ciated with beef tenderness, while carnosine concentration was posi-
tively associated with meat tenderness. Betaine has been reported to
protect cells against hypertonic stress (Alfieri et al., 2006), preventing
muscle cells from apoptosis and, thus, increasing their survival.
Therefore, it is possible that during the postmortem period, a decrease
in muscle cell apoptosis may inhibit activation of caspases-3, which
may then lead to decreased myofilament degradation and consequently
an impact on meat tenderization (Picard & Gagaoua, 2017). Even
though postmortem tenderization is due to proteolysis of larger protein
structures within the meat (Kemp, Sensky, Bardsley, Buttery, & Parr,
2010), the amount of amino acids in the meat are likely indicative of
proteolysis (Graham et al., 2010, 2012) and can be used to evaluate
how meat metabolites reflect postmortem tenderization. Regardless,
these data suggest that meat metabolite profiles may prove useful in
predicting diet-mediated changes in sensory attributes for consumers.

Similar to dietary effects, genetic group also differed in sensory
acceptability and meat metabolite profile. Consumers rated NEL beef as
more flavorful and more acceptable than AxN. Indeed, this result may
be also associated to the meat metabolites, mainly reducing sugars and
amino acids, which are involved in Maillard reactions and the mod-
ification of flavor profiles (Koutsidis et al., 2008a, 2008b). This is in
good agreement with the observation that the most important meta-
bolites differentiating genetic groups were reducing sugars, such as
glycine and glucose. According to the metabolic pathway analyses,
amino acid metabolism, such as glutamate and glutamine metabolism,
alanine, aspartate and glutamate metabolism, and valine, leucine and
isoleucine biosynthesis were most affected by breed.

Glutamate and IMP were also associated with the umami flavor
(Chaudhari, Pereira, & Roper, 2009; Chaudhari & Roper, 2010). Fur-
ther, these metabolites were also correlated with greater flavor ac-
ceptability in NEL group. IMP was the sixth most important metabolite
to differ with genetics and was moderate-highly positively correlated
with overall liking and flavor scores. Dang, Gao, Ma, and Wu (2015)
reported that umami is a Japanese concept meaning savory or delicious
and is elicited by two types of chemical compounds, such as mono-
sodium glutamate and aspartate, and purine nucleotides, such as in-
osine monophosphate (IMP) and guanosine monophosphate. Glutamate
(glutamine derivative) is the most abundant free amino acid in the
brain and is the major excitatory neurotransmitter of the vertebrate
central nervous systemic, which likely stimulates the brain and provides
more desirable flavour sensations (Chaudhari et al., 2009; Chaudhari &
Roper, 2010; Tapiero, Mathé, Couvreur, & Tew, 2002). This concept is
consistent with the results of Lana et al. (2015) and Kim et al. (2016),
who also reported that a higher glutamate concentration was associated
with a greater flavor acceptability of beef.

Other non-volatile flavor precursor compounds including sugar,
creatinine and carnosine also influence the flavor, tenderness and jui-
ciness of meat (Meinert, Schäfer, Bjergegaard, Aaslyng, & Bredie, 2009;
Ritota, Casciani, Failla, & Valentini, 2012). In this study, creatinine was
the seventh most important metabolite to differ across genetic groups
and was moderate-highly negatively correlated with overall liking,
flavor, tenderness and juiciness scores. In this regard, lower amounts of
this metabolite in NEL may be due to its conversion to a brothy taste
modifier, N-(4-methyl-5-oxo-1-imidazolin-2-yl) sarcosine, through an
aminocarbonyl reaction with methylglyoxal during heat treatment
(Nissen & Young, 2006). Given creatinine plays a key role in normal
muscle metabolism and function by being phosphorylated to phos-
phocreatine by the creatine kinase enzyme and creating a readily

Table 4
Metabolites that differ significantly (P < 0.05) in the beef samples according
to the genetic groups.

Metabolite, μmol/g meat Genetic group1 SEM Fold change P value

NEL AxN

Acetate 0.18 0.10 0.017 1.80 0.002
Alanine 1.09 1.94 0.193 1.78 < 0.001
Carnosine 12.97 8.37 0.962 1.55 < 0.001
Creatinine 0.50 0.72 0.052 1.44 0.005
Glucose 4.36 2.54 0.353 1.72 < 0.001
Glutamate 0.44 0.29 0.071 1.52 0.002
Glycine 0.76 1.23 0.071 1.62 < 0.001
IMP2 0.94 0.56 0.093 1.68 0.005
Methionine 0.80 1.14 0.092 1.43 0.012
Succinate 0.06 0.04 0.008 1.50 0.030

1 NEL = Nellore breed; AxN = crossbred Angus × Nellore.
2 IMP = inosine monophosphate.
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available energy source (Demant & Rhodes, 1999; Wyss & Kaddurah-
Daouk, 2000), it is possible that larger amounts of this metabolite may
delay post-mortem lactate formation via glycolysis and retard the pH
decline, which could improve the water-holding capacity (Nissen &
Young, 2006) and impact meat tenderness and juiciness.

5. Conclusions

Sensory attributes and some beef muscle metabolites are affected by
diet and breed. Concentrations of various metabolites are also asso-
ciated with sensory properties of beef. Therefore, the relative abun-
dance of these metabolites may be useful to estimate changes in con-
sumer acceptability of beef. Futher studies are needed to better
understand the exact mechanisms by which various metabolites direct
or indirectly drive beef quality.
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