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arapaima (Osteoglossiformes, Osteoglossidae) 
population reveal differences between the 
Amazon and the Tocantins-Araguaia basins
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Abstract: Arapaima is a widely-distributed fi sh of enormous economic importance in 
the Amazon region. In the present study, a total of 232 specimens were sampled, 121 
from fi ve sites in the Amazon basin and 111 from fi ve sites in the Tocantins-Araguaia 
basin. The analyses investigated fragments of the Cytochrome b, Control Region, 
Cytochrome Oxidase I, NADH dehydrogenase subunit 2 and seven loci microsatellites. 
The analyses revealed the existence of two mitochondrial lineages within the general 
area, with no haplotypes shared between basins, and genetic variability signifi cantly 
higher in the Amazon than in the Tocantins-Araguaia basin. Two divergent, but sympatric 
mitochondrial lineages were found in the Amazon basin, but only a single lineage in the 
Tocantins-Araguaia basin. The existence of these two mitochondrial lineages indicates 
that past events, probably occurring during the Pleistocene, resulted in the separation 
of the populations of this species and molded its evolutionary history, which is refl ected 
directly in its mitochondrial DNA. The analysis of the arapaima population structure 
identifi ed distinct levels of diversity within the distribution of the species, indicating 
specifi c geographic regions that will require special attention for the development of 
conservation and management strategies. 

Key words: Amazon Basin, Tocantins-Araguaia Basin, Lineages, structure population, 
conservation.

INTRODUCTION 

The arapaima, Arapaima gigas Schinz, 1822, is 
one of the largest freshwater fi sh in the world, 
reaching up to 3 m in total length and weighing 
over 200 kg (Nelson et al. 2016). This species 
prefers lentic habitats, such as fl oodplains and 
lakes (Castello 2008). This important fishery 
resource has a long history of exploitation, 
as shown by records of fishery landings at 
the main ports of the Amazon region. For this 
reason, the arapaima was included in Appendix 
II of the Convention on International Trade in 

Endangered Species of Wild Fauna and Flora 
(CITES), a list of threatened species that may 
become extinct unless trade is strictly controlled 
(CITES 2017). However, the International Union 
for Conservation of Nature (IUCN) considers 
the species to be data defi cient for the reliable 
assessment of extinction risk (IUCN 2017). 

Population and phylogeographic studies of 
the arapaima have identifi ed different levels of 
structuring in the populations within the Amazon 
and Tocantins-Araguaia basins, although the 
samples analyzed in these studies were not 
adequate for conclusive comparisons of the 
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genetic structure of the two basins (Hrbek et al. 
2005, 2007, Araripe et al. 2013). This comparison 
is hampered by the small sample size, especially 
from the Tocantins-Araguaia basin (Hrbek et al. 
2005, 2007, Araripe et al. 2013), or the restriction 
of the samples to only one basin (Vitorino et 
al. 2015, 2017, Fazzi-Gomes et al. 2017a). While 
the arapaima is classified as a sedentary fish 
(Castello 2008), phylogeographic studies 
based on mitochondrial DNA markers have 
demonstrated high levels of gene flow, indicating 
that they form a continuous population 
(Hrbek et al. 2005). However, studies using 
codominant markers with high mutation rates 
(i.e. microsatellites) contradict this continuity, 
and indicate the existence of different levels of 
structuring at different spatial scales (Araripe et 
al. 2013, Fazzi-Gomes et al. 2017a, Vitorino et al. 
2017).

Genetic studies in different areas of the 
Amazon region have provided important insights 
into the variation among populations within 
the geographic range of the species, which is 
fundamental to the management of this fishery 
resource (Escobar et al. 2015, Fazzi-Gomes et al. 
2017b). The genetic differentiation of arapaima 
populations observed at some points in the 
distribution of the species (Vitorino et al. 2015, 
2017, Watson et al. 2016, Fazzi-Gomes et al. 2017a) 
may be related to the distinct characteristics of 
the floodplains and drainage systems of each 
basin, which may have a direct influence on 
the migration patterns of the species (Castello 
2008). The Amazon basin is a complex system 
composed of large tracts of tropical forest 
interspersed with rivers, lakes and channels 
(Ayres 2006). By contrast, the Tocantins-Araguaia 
basin encompasses a mosaic of habitats, 
including the Cerrado savannas of the central 
Brazilian plateau, lowland Amazon rainforest, 
and transitional environments between these 
two biomes (Mérona et al. 2010). The rivers of 

this basin have transparent water and relatively 
narrow floodplains (Latrubesse & Stevaux 2002, 
Junk et al. 2011) characterized by an extremely 
rapid annual flood pulse, which connects the 
floodplain lakes for only a short period each 
year (Aquino & Latrubesse 2008). This contrasts 
considerably with the prolonged flood and ebb 
periods observed in the Amazon basin (Castello 
2008, Ramalho et al. 2009). 

In this study, we present the results of 
the first genetic analysis of the arapaima that 
encompasses comprehensive samples from both 
the Amazon and Tocantins-Araguaia basins, with 
the primary aim of characterizing the genetic 
variation between these basins. These analyses 
contribute to the understanding of the current 
population structure and genetic diversity of 
arapaima, as well as historical patterns. 

MATERIALS AND METHODS 
Sampling 
To analyze the population structure of the 
arapaima, a total of 232 specimens were collected, 
121 from five sites in the Amazon basin (AM) and 
111 from five sites in the Tocantins-Araguaia 
basin (TA) (Figure 1 and Table I). The sampling 
sites were distributed throughout the two study 
basins, and the most distant sampling points 
(Iquitos and Quatro Bocas) were approximately 
5000 km apart, following the main course of 
the rivers. Muscle tissue, fin and scale samples 
were fixed in 96% ethanol, catalogued, and 
deposited in the tissue collection of the Genetic 
and Conservation Laboratory on the Bragança 
campus of the Federal University of Pará, in 
northern Brazil. 

All the specimens were obtained from dead 
individuals obtained directly from local artisanal 
fisheries, which precludes the need for approval by 
the Animal Ethics Committee. The transportation 
of the tissue samples was authorized by the 
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Brazilian Environment Ministry (process number 
02001.007554/2005-76 IBAMA/MMA). 

Laboratory procedures 

The genomic material was extracted with 
proteinase K and washed with phenol/ chloroform 
and isopropanol for precipitation (Sambrook 
and Russell 2001), or by using a DNA isolation kit 
(Wizard Genomic DNA Purification Kit - Madison, 
WI, USA). Four regions of the mitochondrial 
genome were amplified by PCR: Cytochrome b 
(Cytb), the Control Region, Cytochrome Oxidase 
I (COI) and NADH dehydrogenase subunit 2 
(ND2). The Cytb was sequenced using primers 
adapted from Bossuyt and Milinkovitch (2000), 
and AgiProf (5’-TTTTAACTCCCACCCTTAACTCC-3’) 

and AgiPher (5’GGTCCGTCTTAACATCTTCAGTG-3’) 
(Lima I., unpublished data) were used to 
sequence the Control Region. The primers 
LIICOIF3 (Brito et al. 2015) and FishR1 (Ward et al. 
2005) were used to sequence COI, while Obi198L 
(5’-TACATTCGCCAGCTCCCAC-3’) and ObiAsn1H 
(5’GGAAGCTCGTTGGTTGGAGC-3’) were used 
for ND2. The PCR protocol consisted of initial 
denaturation at 95°C for 3 minutes, followed by 
35 cycles at 94°C for 30 seconds, annealing for 
30 seconds, and extension at 72°C for 1 minute, 
with a final extension at 72°C for 7 minutes. The 
annealing temperature was 56°C for the ND2, 
57°C for Cytb, and 58°C for COI. The annealing 
temperature for the Control Region was 62°C, 
with a decrease of 0.3°C after each cycle. 

Figure 1. Map of the approximate natural distribution of Arapaima (dashed line) showing the localities sampled 
for this study. 1-Iquitos, 2-Letícia, 3-Mamirauá , 4-Jurutí, 5-Santarém, 6-Tucuruí, 7-Caseara, 8-Lagoa da Confusão, 
9-Novo Santo Antônio and 10-Quatro Bocas. Graphical representation of the Amazon Only (black) and Amazon/
Araguaia-Tocantins (gray) lineages. The numbers inside the circles represent the percentage of the members of 
each lineage.



FABRÍCIA NOGUEIRA et al. GENETIC DIVERSITY AND STRUCTURE IN THE ARAPAIMA

An Acad Bras Cienc (2020) 92(1) e20180496 4 | 16 

The amplification reaction consisted of 
12.75 µl of H2O, 4 µl of dNTPs (1.25 mM), 5 µl of 
buffer (5X buffer+MgCl2), 1 µl of each primer 
(50 ng/µl), 0.25 µl of Taq DNA polymerase (5 U/
µl) and 1 µl of genomic DNA (100 ng/µl). The 
amplification products were purified using 20% 
PEG 8000 according to a protocol modified from 
Paithankar and Prasad (1991). The samples were 
then sequenced using the Big Dye Terminator 
kit (ABI Prism Dye Terminator Cycle Sequencing 
Reading Reaction-PE, Applied Biosystems, 
Carlsbad, CA, USA). The reaction products were 
precipitated with 70% ethanol, resuspended 
in formamide and injected into an ABI 3500XL 
automated sequencer (Applied Biosystems). 

Data analysis 
The sequences obtained through these 
procedures were inspected visually, edited 
and aligned using BIOEDIT 7.2.5 (Hall 1999). The 
Cytb and Control Region fragments were used 

to identify patterns of diversity and genetic 
structure. As new Arapaima species have been 
proposed recently (Stewart 2013a, b), the ND2 
and COI genes were sequenced to ensure that 
all the samples analyzed were derived from 
the same taxon. The ND2 fragments allowed 
for the verification of the genetic divergence 
levels proposed to differentiate the species of 
the family Osteoglossidae (Mu et al. 2012), while 
the COI sequences allowed for the evaluation 
of genetic divergence using the parameters 
applied in DNA barcoding (Hebert et al. 2003). 
Genetic diversity was analyzed by calculating 
the number of variable sites (S) and haplotypes 
(H), and the haplotype (h) and nucleotide (π) 
diversity, in DnaSP 5.1 (Librado and Rozas 2009). 
The number of exclusive haplotypes (EH) and 
the percentage of specimens with exclusive 
haplotypes per site (SEH %) were also analyzed. 
Differences between the two basins in nucleotide 
and haplotype diversity and in the number of 

Table I. Genetic diversity indices for Arapaima based on an analysis of the concatenated (Cytb and Control Region) 
dataset. 

Sites Localities Geographical coordinates N S H EH SEH 
(%) h π 

1 Iquitos 3°43’31.35” S  73°12’18.59” W 16 15 7 3 31 0.833 0.00413

2 Letícia 4°12’56.25” S  69°59’14.74” W 18 14 6 3 28 0.758 0.00378

3 Mamirauá 2°49’35.06” S  65°9’26.35” W 38 20 11 7 24 0.853 0.00478

4 Jurutí 2º0’50.12” S  56º9’36.23” W 22 20 11 7 73 0.857 0.00579

5 Santarém 2°8’15.28” S  54°44’33.445” W 27 22 12 8 63 0.920 0.00470

AM Amazon basin - 121 41 35 35 100 0.937 0.00552

6 Tucuruí 3°48’29.91” S  49°38’37.20” W 35 2 3 2 26 0.417 0.00035

7 Caseara 9º54’34.20” S  49º8’53.19” W 9 3 4 3 33 0.583 0.00067

8 Lagoa da Confusão 10º47’46.38” S  49º37’23.72”W 11 0 1 0 0 0.000 0.00000

9 Novo Santo Antônio 12°18’56.11” S  50°58’24.78” W 25 3 4 3 52 0.597 0.00055

10 Quatro Bocas 15º23’57.52” S  51º42’57.54” W 31 0 1 1 100 0.000 0.00000

TA Tocantins-Araguaia basin - 111 9 10 10 100 0.668 0.00092

Total - 232 48 45 - - 0.907 0.00448
N (number of specimens analyzed), S (number of variable sites), H (number of haplotypes), EH (number of exclusive haplotypes), 
SEH% (percentage of specimens with exclusive haplotypes), h (haplotype diversity), π (nucleotide diversity), AM (Amazon basin) 
and TA (Tocantins-Araguaia basin).
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haplotypes were compared with t tests run in 
the R 3.4.2 software (R Development Core Team 
2017). 
To evaluate the relationships among the 
haplotypes a haplotype network was 
constructed using the concatenated Cytb and 
Control Region data in the HAPLOVIEWER 4.2 
software (Salzburger et al. 2011) based on the 
maximum-likelihood method available in PHYML 
3.0 (Guindon et al. 2010) and employing the 
HKY+I substitution model, which was selected 
in JMODELTEST 2.1.1 (Darriba et al. 2012) by the 
Akaike Information Criterion, AIC (Akaike 1974). 
The genetic differentiation among populations 
from the two study basins was evaluated by 
estimating pairwise Fst indices. The correlation 
between genetic distances (measured as 
pairwise Fst values) and geographical distances 
(km along the course of the main river) 
was evaluated using the Mantel test run in 
ARLEQUIN 3.5.1.2 (Excoffier & Lischer 2010) with 
10,000 permutations at p < 0.05. The degree 
of genetic differentiation between the basins 
was evaluated by the Analysis of Molecular 
Variance based on the Φ-statistic (AMOVA) run 
in ARLEQUIN 3.5.1.2 (Excoffier & Lischer 2010) 
with 10,000 permutations at p < 0.05. 
Seven microsatellite loci in 39 specimens from 
the two basins were obtained from the study 
of Araripe et al. (2013). Observed and expected 
heterozygosis were obtained from Arlequin 3.11 
(Excoffier & Lischer 2010), while the a posteriori 
probability of the number of stocks was estimated 
using a Bayesian approach, run in Structure 2.3.4 
(Pritchard et al. 2000), which does not require 
the prior definition of a structure to be tested. 
The analyses had a burn-in of 100,000, followed 
by one million replicates of the Monte Carlo 
Markov Chain (MCMC), the ancestral model with 
population admixture, and the correlated allele 
frequency (CAF) model. The number of stocks 
was defined based on the approach proposed 

by Evanno et al. (2005), run in Structure Harvest 
(Earl & vonHoldt 2012), with the results of the 
concatenated interactions being obtained in 
CLUMPP (Jakobsson & Rosenberg 2007) and 
plotted in DISTRUCT (Rosenberg 2004).
The timing of the split among the clades of the 
A. gigas was estimated using only the Cytb data. 
The GTR+G substitution model was selected 
for this analysis by JMODELTEST 2.1.1 (Darriba 
et al. 2012). A mutation rate of 1.5% per million 
years was considered (Zardoya & Doadri 1999), 
and the data were modeled using a relaxed 
molecular clock. The probability of each node 
was computed by Bayesian Inference in BEAST 1.7 
(Drummond et al. 2012), with runs of 200 million 
generations, and one tree being sampled every 
10,000 generations, with 10% of the generations 
being discarded as burn-in. The nodes were 
considered to be well-resolved when the a 
posteriori probability was higher than 0.9. The 
species Heterotis niloticus (AB035240, NC015081, 
FJ890318) and Osteoglossum bicirrhosum 
(AB043025, NC003095, AB035238) were employed 
as outgroups. 
The analysis of the distribution of pairwise 
genetic differences (the mismatch distribution) 
was run according to the sudden expansion 
model  (Rogers  & Harpending 1992) . 
Subsequently, BEAST 1.7 (Drummond et al. 
2012) was used to produce a Bayesian Skyline 
Plot (BSP) to test for historical fluctuations in 
population size, considering the evolutionary 
models selected for this analysis by JMODELTEST 
2.1.1 (Darriba et al. 2012), which were the JC (first 
partition), HKY+I (second partition), and HKY 
(third partition) models for Cytb, and HKY+I for 
the Control Region. These analyses were run 
for 1x108 generations with genealogies being 
sampled every 10,000 generations, in a strict 
molecular clock model, with the first 10% of the 
generations being discarded as burn-in. The 
strict molecular clock was calibrated based on 
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an intraspecific mutation rate of 1.5% per million 
years estimated for Cytb (Zardoya & Doadri 1999).
To confirm that the study samples belong to the 
same taxon, indices of divergence were calculated 
from 1000 bootstrap pseudoreplicates and the 
Kimura 2-parameter model (K2P), run in MEGA 
6 (Tamura et al. 2013). The indices of genetic 
divergence recorded in the arapaima were 
compared with those described previously for 
congeneric species of Osteoglossidae (Mu et al. 
2012), while the divergence of the COI sequences 
was analyzed based on the criteria of the DNA 
barcoding approach. The sequences with the 
following accession numbers were used for 
comparisons of the divergence indices: for ND2: 
O. bicirrhosum JQ337773 to JQ337780, O. ferreirai 
JQ337781 to JQ337785, Scleropages formosus 
JQ337787 to JQ337806 and S. leichardti JQ337810 
and JQ337811; for COI: S. leichardti HM006989, S. 
jardinii KY123527 and KY123529 and S. formosus 
KY123492 and KY123493. 

RESULTS

A total of 1,241 base pairs (567 bps for Cytb 
and 674 bps for the Control Region) of the 
mitochondrial genome were obtained from 
the 121 arapaima specimens collected from the 
Amazon basin and the 111 specimens from the 
Tocantins-Araguaia basin. GenBank accession 
numbers range from MH830284 to MH830294 
for Cytb, MH830244 to MH830283 for Control 
Region segment haplotypes. The two fragments 
were concatenated for population inferences, 
producing a database of 232 sequences with 45 
haplotypes defined by 48 variable sites. None of 
the haplotypes were shared between the river 
basins, and the data presented a high level of 
haplotype diversity (0.907) and a moderate level 
(0.00448) of nucleotide diversity (Table I). 

Comparisons between sampling sites 
revealed high levels of genetic variability in 
the Amazon basin, with haplotype diversity 
varying between 0.758 and 0.920 and nucleotide 
diversity between 0.00378 (Letícia) and 0.00579 
(Jurutí). Sites in the Tocantins-Araguaia basin 
exhibited moderate to low levels of genetic 
variability, with haplotype diversity ranging 
from zero to 0.597 and nucleotide diversity from 
zero (Lagoa da Confusão and Quatro Bocas) to 
0.00067 (Caseara) (Table I). The levels of genetic 
variability were significantly higher in the 
Amazon basin (mean h = 0.847 and π = 0.463%) 
than in the Tocantins-Araguaia basin (mean h = 
0.319, t = 3.862, df = 4.316, p < 0.05 and π = 0.031%, 
t = 11.706, df = 8, p < 0.05) (Table I). 

Overall, 35 of the 45 haplotypes identified 
were exclusive to the Amazon basin, and 10 
were exclusive to the Tocantins-Araguaia basin 
(Supplementary Material - Table SI). Three of the 
haplotypes from the Amazon basin (H1, H20 and 
H22) were the most frequent in this area, and 
were present at different sites. The most frequent 
haplotype (H36) in the Tocantins-Araguaia basin 
was recorded at all sites except Quatro Bocas, 
which had a unique and exclusive haplotype 
(Supplementary Material - Table SI). The number 
of haplotypes per site was significantly higher 
in the Amazon basin (mean H = 9.4) than in the 
Tocantins-Araguaia basin (mean H = 2.6, t = 4.907, 
df = 8, p < 0.05; Table I).

The haplotype network revealed the 
presence of two haplotype groups differentiated 
by nine mutational events (Figure 2), recovered 
by the phylogenetic inferences. The reciprocally 
monophyletic groups were classified as 
mitochondrial lineages (Figure 3). The two 
lineages were referred to as the Amazon Only 
Lineage and the Amazon/Tocantins-Araguaia 
Lineage. The two mitochondrial lineages were 
found in sympatry in the Amazon basin, although 
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only one lineage was present in the Tocantins-
Araguaia basin (Figure 1).

The mismatch distribution forms multimodal 
curve over the geographic range of the study 
species (data not shown). A similar pattern was 
observed when the analysis included only the 
Amazon populations, confirming the presence 
of the two lineages in the Amazon basin. By 
contrast, a unimodal curve was obtained for 
the data from the Tocantins-Araguaia basin, 
which is consistent with the presence of a single 
lineage in this area. The mean estimate of the 
time of the split between the mitochondrial A. 
gigas lineages was approximately 564 (692–335) 
thousand years ago (Kyr), which corresponds to 
the middle Pleistocene (Figure 3). The diversity 
observed in the Amazon Only and the Amazon/
Tocantins-Araguaia lineages indicates that 
they coalesced at approximately 383 (476–175) 
Kyr and 454 (519-259) Kyr ago, respectively. The 
evaluation of historic changes in arapaima 
population size revealed a scenario of relative 
stability over time, which was upheld when the 
two lineages were analyzed (Supplementary 
Material - Figure S1).

The analysis of the genetic differentiation 
between the sites of the two study basins, 
based on the Fst values, found significant values 
for all the pairs, with genetic differentiation 
varying between 0.223 and 0.748 (Table II). 
Significant values for this index were recorded 
between some population pairs within both 
the Amazon and Tocantins-Araguaia basins. The 
result of the Mantel test was not significant (p 
> 0.05), indicating that the observed genetic 
differentiation (Fst) cannot be accounted for by 
the geographic distances among samples. The 
genetic differentiation between the two basins 
was also confirmed by the value obtained from 
the AMOVA with 37.42% of the variation being 
found between basins (ΦCT = 0.374, p < 0.05), 
16.46% of the variation occurring among the 

populations within a given basin (ΦSC = 0.263, 
p > 0.05), and 46.11% of the variation occurring 
within populations (ΦST = 0.538, p < 0.05). 

The genetic divergence between the two 
lineages was 0.9%, whereas the divergence within 
each lineage was 0.2% for the concatenated Cytb 
and Control Region markers. To verify whether 
this level of differentiation is compatible with the 
intraspecific variation found in the two lineages, 
600 bp of the COI gene (GenBank accession 
numbers: MH830240- to MH830243) and 764 bp 
of the ND2 gene (GenBank accession numbers: 
MH830294 to MH830297) were sequenced in 
22 arapaima specimens representing the two 
lineages. In this analysis, the mean divergence 
found between the lineages was 0.3% for ND2 
and 0.4% for COI. Within the Amazon Only 
lineage, divergence was 0.1% for ND2 and zero 
for COI, whereas no variation whatsoever was 
found within the Amazon/Tocantins-Araguaia 
lineage in either marker. 

The alleles identified by Araripe et al. (2013) 
from seven specimens of the Amazon Only 
Lineage (from the Mamirauá and Santarém) 
and 32 specimens of the Amazon/Tocantins-
Araguaia Lineage (from the Mamirauá, Santarém, 
and Tucuruí) found no significant difference 
between observed and expected heterozygosity. 
The Bayesian analysis of these loci revealed the 
presence of two distinct genetic groups (K = 2; 
mean Ln Prob = -550.140), although they were 
present in each of the two mitochondrial lineages 
identified (Supplementary Material – Figure S2). 
The methodological limitations of Evanno’s 
estimate of the number of population units 
mean that the possibility of the existence of a 
single stock (K = 1) cannot be excluded, although 
the profile of the contribution of the genetic 
clusters to each individual in our database does 
not support this conclusion (K=1; mean Ln Prob 
= -588.430).
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Table II. Genetic differentiation matrix (pairwise Fst) based on the concatenated mitochondrial (Cytb and Control 
Region) data set (below the diagonal) and the geographical distances (km) between Arapaima populations. 

Fst / 
Geographical 

Distances
IQ LT MM JR ST TC CS LC NS QB

IQ - 476 1342 2584 2775 3828 4886 4880 5055 5481

LT 0.037 - 866 2108 2299 3352 4410 4404 4579 5055

MM 0.027 0.059 - 1242 1433 2486 3544 3538 3713 4139

JR 0.143* 0.132* 0.039 - 191 1244 2302 2296 2471 2897

ST 0.382* 0.402* 0.247* 0.142* - 1053 2111 2105 2280 2706

TC 0.399* 0.535* 0.407* 0.543* 0.691* - 1058 1052 1227 1643

CS 0.223* 0.362* 0.289* 0.378* 0.563* 0.136* - 245 414 826

LC 0.254* 0.399* 0.304* 0.406* 0.587* 0.063 0.09 - 261 673

NS 0.366* 0.495* 0.385* 0.501* 0.652* 0.324* 0.261* 0.296* - 412

QB 0.652* 0.707* 0.563* 0.652* 0.748* 0.897* 0.922* 1.000* 0.807* -

Iquitos (IQ), Letícia (LT), Mamirauá (MM), Jurutí (JR), Santarém (ST), Tucuruí (TC), Caseara (CS), Lagoa da Confusão 
(LC), Novo Santo Antônio (NS) and Quatro Bocas (QB). *p<0.05. 

Figure 2. Genetic relationships among the Arapaima haplotypes. Haplotype network produced by the Maximum 
Likelihood method, based on the concatenated Cytb and Control Region data set. The Amazon populations are 
represented by red circles, and the Tocantins-Araguaia populations, by blue circles. The Amazon Only Lineage is 
outlined in black, and the Amazon/Tocantins-Araguaia Lineage, in gray.
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DISCUSSION 

The genetic analyses of the natural arapaima 
populations of the Amazon and Tocantins-
Araguaia basins revealed a clear pattern of 
differentiation between the basins, which 
did not share haplotypes. Two mitochondrial 
lineages were identified within the studied 
area, which diverged during the Pleistocene. 
This population structure is likely the result 
of a historical process of divergence, which is 
reflected in the occurrence of sympatry between 
the two lineages within the Amazon basin in the 
present day.

The genetic analysis of arapaima based on 
hypervariable mitochondrial markers allowed 
for the identification of different levels of genetic 
diversity within its geographic range. Significantly 
higher levels of genetic variability were observed 

in the Amazon basin in comparison with the 
Tocantins-Araguaia basin. The coexistence of 
the two mitochondrial lineages in the Amazon 
basin, in addition to factors such as the much 
larger populations size found in this basin, and 
its greater environmental heterogeneity, may 
be related to the much greater diversity of this 
aquatic system. Population surveys in areas of 
managed fishery in the Amazon basin indicated 
the existence of areas with high densities of 
arapaima, such as Mamirauá, where at least 
50,000 individuals may be found within an area 
of approximately 1000 km2 (Arantes et al. 2006), 
whereas in the Tocantins-Araguaia basin, the 
data on fishery catches indicate the existence 
of very much smaller populations (Mérona et 
al. 2010). 

Figure 3. Topology showing the evolutionary relationships among Osteoglossidae taxa, based on the analysis of 
the Cytb gene, by Bayesian Inference. The values above the nodes show the statistical support, while those below 
the nodes indicate the mean coalescence time (Kyr). Illustrative picture of the Boulenger (1907) and MUSA (2017).
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The Tocantins-Araguaia basin returned the 
lowest indices of diversity found within the study 
area and is characterized by much different 
morphodynamic features in comparison with 
the Amazon, including shorter periods of 
flooding (Latrubesse & Stevaux 2002, Ramalho 
et al. 2009). These features are likely to underpin 
fundamental differences in the ecology of 
arapaima, including the dispersal patterns of the 
offspring and adults. As the dispersal of juvenile 
and adult arapaima in floodplain environments 
is closely related to the annual flooding cycle 
(Castello 2008), changes in the hydrological 
dynamics of the river may impact migration 
patterns in this fish. The potential occurrence of 
population bottlenecks associated with genetic 
drift may also be responsible for the reduced 
genetic variability and the small number of 
haplotypes found in the Tocantins-Araguaia 
basin. 

The genetic profile observed in the 
Tocantins-Araguaia basin reinforces the need for 
the adoption of effective management strategies 
in this region, where, in addition to the presence 
of exclusive haplotypes, there is a significant 
reduction in genetic variability. Vitorino et 
al. (2017) also recorded low levels of genetic 
heterozygosity in the arapaima populations 
of the Tocantins-Araguaia basin. While the 
results of the present demographic analysis 
indicated that the size of the population has 
remained relatively stable over time, this may 
reflect the type of marker analyzed, given that 
mitochondrial markers are appropriate for the 
recovery of historical events, with little potential 
resolution for the detection of recent processes, 
such as overfishing. Overall, these low indices 
may reflect a reduction in effective population 
size, followed by endogamous mating, which 
may erode the evolutionary potential of the 
species (Frankham et al. 2010).

The hypothesis that the genetic divergence 
between arapaimas is derived primarily from 
the geographic isolation of populations has 
been refuted progressively (Araripe et al. 2013, 
Fazzi-Gomes et al. 2017a, Vitorino et al. 2017). 
The factors most frequently associated with this 
structuring are historical reductions in stocks 
(Araripe et al. 2013, Vitorino et al. 2015, 2017), the 
sedentary behavior of the species (Araripe et al. 
2013, Vitorino et al. 2015, 2017, Fazzi-Gomes et al. 
2017a), the impact of fisheries on stocks (Hrbek 
et al. 2005, Vitorino et al. 2015, 2017), and the 
characteristics of each basin and its floodplain 
dynamics (Vitorino et al. 2015, 2017, Watson et al. 
2016). It does seem likely that these processes 
may have influenced the structuring of the 
arapaima populations over time, molding their 
connectivity and restricting gene flow between 
the different hydrographic basins. The evidence 
of an historic process of differentiation, found 
in the present study, may have resulted in the 
current sympatry of the distinct mitochondrial 
lineages within the Amazon basin. 

The current sympatric distribution of 
arapaima lineages and the analyses of nuclear 
markers (microsatellites) indicates that they 
have been subject to gene flow ever since the 
separation process. Given this, the varying 
patterns observed in the different studies are 
probably related primarily to the different 
markers analyzed (Toews & Brelsford 2012), 
given that the split which gave rise to the 
differentiation of the mitochondrial lineages 
was not long enough ago to ensure complete 
isolation and impede mixing events. One 
possible explanation for the pattern of genetic 
structure observed in arapaima is related to 
the evolution of the landscape of the Amazon 
region (Hoorn et al. 2010a, b, Shephard et 
al. 2010), given that a contact zone may have 
arisen between lineages, in particular on the 
lower Amazon. The analyses indicated that the 
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arapaima lineages separated approximately 
564 Kyr ago, during the Pleistocene. Hrbek et 
al. (2005) point to a possible separation event 
in the region of Macapá, coinciding with this 
period, and the shifts in sea level that led to the 
eastward expansion of the Amazon River. 

The divergence observed between the 
sympatric lineages from the Amazon basin may 
reflect the partial isolation of different parts of 
this basin during the Pleistocene (Harris & Mix 
1999), followed by secondary contact. During 
the Pleistocene, different bodies of water may 
have been isolated by topographic formations, 
such as the Purus Arch, which may have isolated 
the westernmost populations from the rest of 
the Amazon basin. This same model has been 
used to account for the population structuring 
found in other groups of Neotropical fish, such 
as the Cichlidae (Farias & Hrbek 2008) and the 
Characidae (de Queiroz et al. 2017). Given the 
current frequencies of the different lineages 
within the basins, it seems likely that the lineage 
with the most ample current distribution was the 
first to colonize the two basins. The formation 
of geographic barriers during the glaciations of 
the Pleistocene (Harris & Mix 1999) may have 
contributed to the isolation of bodies of water in 
the middle and lower Amazon basin, leading to 
the differentiation of the Amazon Only lineage. 
The subsequent rise in sea level would have led 
to secondary contact and dispersal between the 
two lineages.

In turn, the differentiation of the 
mitochondrial lineage that is exclusive to 
the Amazon basin may have been influenced 
by a series of processes that occurred during 
the formation of the Amazon River, which are 
also relevant to the evolution of many of the 
region’s plants and animals (Aleixo et al. 2007, 
Hoorn et al. 2010a, b, Hovikoski et al. 2010). 
The physical, geomorphological and chemical 
characteristics of the local aquatic environments 

vary considerably within the Amazon basin, and 
these conditions probably varied considerably 
over time, throughout the formation of the basin 
(Figueiredo et al. 2009, Junk et al. 2011). Arapaima 
appears to be capable of adapting to these 
varying environments, and was already widely 
distributed within this basin. At the present 
time, the arapaima is found at higher densities 
in floodplains and is less abundant in rivers 
and other environments with relatively high 
temperatures and low pH (Castello 2008). Further 
research, that include an in-depth analysis of 
the factors that determine the phylogeographic 
profile of arapaima is needed. Within the Amazon 
basin, the frequency of occurrence of the 
representatives of each mitochondrial lineage 
indicated a predominance of specimens from 
the Amazon Only Lineage in the lower (eastern) 
Amazon basin, while specimens belonging to the 
Amazon/Tocantins-Araguaia Lineage are more 
common in the upper (western) Amazon basin.

The structuring observed in the Tocantins-
Araguaia basin, which has only a single lineage, 
and the high Fst values recorded in the extremes 
of this basin are consistent with previous studies 
in this region, which indicate low levels of gene 
flow and structuring in the resident populations 
(Vitorino et al. 2015, 2017). Historical population 
bottlenecks, followed by genetic drift may 
have further reinforced this structuring. These 
bottlenecks may have been a consequence 
of the reduced flood pulse of the Tocantins-
Araguaia river system, which results in limited 
connectivity between isolated environments 
(floodplain lakes) within the basin (Latrubesse 
& Stevaux 2002, Hatanaka et al. 2006, Aquino 
& Latrubesse 2008). The accentuated genetic 
structuring observed in the specimens from 
Quatro Bocas, in the southern extreme of the 
species’ range, is related to the geographic 
isolation of this population, and possibly also a 
reduction in the local population.
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The level of divergence observed between 
the lineages in the COI and ND2 genes reinforces 
the conclusion that the specimens analyzed 
represent only a single species. In pairs of 
congeneric osteoglossid fish species, Mu et 
al. (2012) recorded a divergence of 8.6% in the 
ND2 sequences between O. bicirrhosum and 
O. ferreirai, for example, and 23.7% between S. 
formosus and S. leichardti, values dozens of 
times higher than the 0.3% difference recorded 
here in the arapaima. 

Similarly, the divergence of 0.4% estimated 
between the arapaima lineages in the COI 
region is well below the 2% threshold for valid 
species applied in the DNA barcoding approach 
(Herbert et al. 2003). In fact, the divergence in 
the COI region found between other congeneric 
osteoglossids ranges from 16% between S. 
formosus and S. leichardti (40 times higher 
than that recorded between the arapaima 
lineages) and 25% between S. formosus and S. 
jardinii (more than 60 times higher than that 
found in the arapaima). In a recent study of 
Triportheus albus, de Queiroz et al. (2017) used 
these same criteria to confirm that different 
genetic lineages belonged to the same taxon. In 
this case, the intraspecific divergence in the COI 
region of T. albus ranged from 0.3% to 0.7%, in 
comparison with a divergence of 17.5% between 
T. brachipomus and T. guentheri. While new 
Arapaima species have been proposed in recent 
years, such as A. agassizii Valenciennes, 1847 
and A. leptossoma Stewart, 2013 (Stewart 2013a, 
b), these forms are described as being very rare, 
with no recent records from the Amazon region. 
However, the holotype of A. agassizii is known 
only from illustrations, while the holotype of A. 
leptossoma is an immature specimen (SL = 77.6 
cm) deposited in the ichthyological collection 
of the National Amazonian Research Institute 
(INPA) in Manaus (INPA-16847).

The microsatellite markers analyzed in 
the present study also confirmed that the 
specimens represent a single taxon, given that 
these highly variable markers did not indicate 
any structuring between the lineages, but rather 
between the stocks that contribute differentially 
to the genetic composition of the arapaima in 
the two basins (Supplementary Material – Figure 
S2). Escobar et al. (2015) also used mitochondrial 
sequences and microsatellites to confirm the 
existence of a single species of Piaractus 
brachypomus in the Amazon and Orinoco basins, 
but with distinct Evolutionarily Significant Units 
(ESUs).

Based on the results of the present 
study, together with those of previous studies 
that have demonstrated the effectiveness of 
managed fisheries for the recovery of arapaima 
populations (Amaral & Almeida 2013, Araripe 
2013, Arantes & Castello 2013), we would 
recommend the more widespread adoption of 
more effective measures for the conservation of 
this resource, not only in the Amazon region, but 
also in the Tocantins-Araguaia basin, adapted 
to the scenario found in each region. Up to now, 
commercial arapaima fisheries in Brazil have 
been regulated through normative instructions 
at both the national (federal) and state levels. 
The initial federal norm established a minimum 
body length of 150 cm for the harvesting of the 
species, and was followed by the definition of 
closed seasons, which were different for the 
Amazon and Tocantins-Araguaia basins, due to 
their distinct flood pulses, which determine the 
reproductive cycle. Subsequently, a minimum size 
was established for the marketing of processed 
sides of arapaima, which must be at least 120 
cm long when fresh or 110 cm, when salted. 
Unfortunately, however, the vast area inhabited 
by the species has limited the effectiveness 
of these measures, and illegal harvesting is a 
major threat to arapaima stocks, especially in 
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areas with reduced genetic diversity, such as the 
Tocantins-Araguaia basin.

Incentives for the implementation of 
these measures will be fundamental to the 
conservation of the arapaima, especially 
considering the genetic diversity found within 
the distribution of the species, and its varying 
ecological and behavioral characteristics in 
different environments. Further ecological and 
genetic studies are also needed, especially 
in key areas, such as the Amazon estuary, the 
Negro, Purus, and Madeira rivers, in Brazil, and 
the Essequibo River in Guyana. The assessment 
of the genetic diversity of other areas of fishery 
management will also be important to ensure 
the development and implementation of 
effective conservation strategies, adapted to the 
local characteristics of the target populations. 
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SUPPLEMENTARY MATERIAL

Table SI. Distribution of haplotypes based on the 
analysis of the concatenated data set (Cytb and 
Control Region). GenBank accession numbers for the 
Ctyb/Control Region. The Amazon Only Lineage is 
outlined in black, and the Amazon/Tocantins-Araguaia 
Lineage, in gray. The Amazon basin is delimited in red, 
and the Tocantins-Araguaia basin, in blue. IQ-Iquitos, 
LT-Letícia, MM-Mamirauá, JR-Jurutí, ST-Santarém, TC-
Tucuruí, CS-Caseara, LC-Lagoa da Confusão, NS-Novo 
Santo Antônio and QB-Quatro Bocas.

Figure S1. Bayesian Skyline Plot (Cytb and Control 
Region) showing the estimated effective size of the 
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Arapaima population over time. The solid dark blue 
line represents the mean values and the blue shaded 
area represents the 95% confidence interval of the 
historic effective population size. The graphs show: A) 
Amazon Only Lineage, B) Amazon/Tocantins-Araguaia 
Lineage – populations of the Amazon basin and C) 
Amazon/Tocantins-Araguaia Lineage – populations of 
the Tocantins-Araguaia basin. 

Figure S2. Population structure in Arapaima based on a 
Bayesian analysis, without an a priori definition of the 
stocks. MM-Mamirauá, ST-Santarém and TC-Tucuruí. 
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