
©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 19 (1): gmr18503 

 

 

Establishment of Capsicum frutescens core 
collections based on morphological and 
molecular descriptors and on virus incidence  

S.I.C. Carvalho1,2, C.F. Ragassi2, F.G. Faleiro1,3, G.S.C. Buso4,                   
L.B. Bianchetti4, M.F. Lima2, F.J.B. Reifschneider5 and C.S.C. Ribeiro2 

 
1 Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, 
Brasilia, DF, Brasil 
2 Embrapa Hortaliças, Brasilia, DF, Brasil 
3 Embrapa Cerrados, Brasilia, DF, Brasil 
4 Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brasil 
5 Embrapa Secretaria de Inteligência e Relações Estratégicas, Brasilia, DF, Brasil 
 
Corresponding author: S.I.C. Carvalho 
E-mail: sabrina.carvalho@embrapa.br 
 
Genet. Mol. Res. 19 (1): gmr18503 
Received October 16, 2019 
Accepted March 11, 2020 
Published March 31, 2020 
DOI http://dx.doi.org/10.4238/gmr18503 
 
ABSTRACT. Malagueta (Capsicum frutescens) is one of the most 
widely consumed and cultivated Brazilian hot peppers. It is an important 
crop for smallholder farmers throughout the country. Currently, the 
demand for new hot pepper cultivars is increasing. A germplasm 
collection of C. frutescens is maintained at Embrapa Vegetables, 
Brasilia, Brazil, the branch for vegetable crops of the Brazilian 
Agricultural Research Corporation (EMBRAPA). This is considered to 
be the main collection representing the variability of this species in the 
country. Four core collections of 13 accessions each were established 
through 1) random selection, 2) selection based on morphological and 3) 
SSR similarity groups and 4) selection based on SSR similarity groups 
associated with virus incidence. Characterizing the original germplasm 
collection (103 accessions) through 57 morphological characters, 239 
alleles of 24 microsatellite (SSR) loci and incidence of six virus species 
provided the information used for selecting the accessions. 
Discriminating C. chinense and C. frutescens species proved to be 
inaccurate when relying only on morphological characterization for 5% 
of the accessions, whereas molecular characterization was decisive 
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for the species identification of all accessions. The SSR allelic 
variability within each core collection was compared with the full C. 
frutescens collection. Selection based on SSR grouping associated with 
data on viruses incidence provided the highest allelic representativeness 
among the four strategies (77% of the allelic variability present in the 
full collection), in addition to satisfactorily representing the Brazilian 
geographic diversity. The core collection based on morphological 
characters was also highly representative of the allelic variability (73%) 
in the original full collection. 
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INTRODUCTION 
 
Brazil is an important diversity center of the genus Capsicum, including species 

with all levels of domestication (domesticated, semi domesticated and wild). There are 
five domesticated species of Capsicum: C. annuum L. var. annuum; C. baccatum L. var. 
pendulum (Willd.) Eshbaugh; C. chinense Jacq.; C. frutescens L. and C. pubescens Ruiz 
& Pavon. Only C. pubescens does not occur in Brazil (Reifschneider et al., 2015); the 
primary diversity center of this species is Bolivia (Eshbaugh, 1979). C. frutescens is 
found from the lowlands of Southeastern Brazil to Central America, including the 
Antilles, in the Caribbean. In addition to the Americas, C. frutescens is also cultivated in 
Africa, India, China, Japan, and Thailand (Mongkolporn and Taylor, 2011). 

The most common morphological types of C. frutescens are Malagueta in Brazil 
and Tabasco in the United States and Central America. In addition to the well-known 
morphological types, spontaneous forms of Malagueta occur with relative frequency in 
South America, especially in the Northern Brazil (Bianchetti and Carvalho, 2005). 
Recently, the occurrence of a new morphological type was reported in Brazil and 
named ‘Malaguetinha’ (small Malagueta pepper) (Carvalho et al., 2017). 

Little information is available on the morphology and variability of C. 
frutescens, as well as other traits that may be valuable in the development of new 
Malagueta cultivars. Wild C. frutescens trace have been found at archaeological sites in 
Central and South America, but ethnobotanists believe that domestication of the 
Tabasco pepper occurred in Panama, subsequently being spread to Mexico and the 
Caribbean (DeWitt and Bosland, 1997). Most Tabasco varieties grown in the United 
States resulted from human selection within the existing varieties; though the scientific 
literature poorly covers the variability of agronomic characteristics within the C. 
frutescens genetic pool (Jarret et al., 2007).  

Germplasm Banks (GB) of Capsicum spp. maintained by various institutions 
have the functions of preserving genetic diversity and promoting their use in breeding 
programs. The largest collections are in the United States, South America, Asia and 
Europe. The United States Department of Agriculture (USDA) collection maintains 
about 5,000 accessions of Capsicum spp., and about 590 accessions are C. frutescens, 
62 of which were originated from Brazil (GRIN-USDA, 2019). Approximately 8,000 
accessions of Capsicum spp. are preserved in the Asian Vegetable Research and 
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Development Center (AVRDC) collection in Taiwan, of which 726 accessions are C. 
frutescens and 18 are from Brazil (AVGRIS, 2019). 

The Capsicum GB maintained by Embrapa Vegetables, Brasilia, Federal 
District, Brazil, which is the branch for vegetable crops of the Brazilian Agricultural 
Research Corporation (Embrapa), under the aegis of the Brazilian Ministry of 
Agriculture, Livestock, and Food Supply, was initiated almost four decades ago and 
nowadays has about 2,000 accessions, representing five domesticated Capsicum species 
and dozens of semi-domesticated and wild species, from many countries and from 
various regions of Brazil. This Capsicum GB has served as a genetic basis for a broad 
breeding program of Embrapa and also partners in Brazil and abroad. Over 30 thousand 
lines and populations of domesticated and semi domesticated species and dozens of 
cultivars of several types of spicy and low pungency peppers have been made available 
to different market segments (Reifschneider et al., 2015, 2016). 

An important focus for the development of new pepper cultivars has been 
resistance to diseases, especially to viruses. Viruses are among the most important and 
complex diseases that affect Capsicum species in the world, and especially for 
Malagueta pepper in Brazil, causing significant losses in production. Several viruses 
infect species in the genus Capsicum, the most important being the tospoviruses 
(Tomato spotted wilt virus - TSWV, Groundnut ringspot virus - GRSV), the 
potyviruses (Potato virus Y - PVY, Pepper yellow mosaic virus - PepYMV), a 
tobamovirus (Pepper mild mottle virus - PMMoV) and a cucumovirus (Cucumber 
mosaic virus – CMV). Capsicum frutescens hybrids and lines from the breeding 
program and genotypes from the Capsicum GB of Embrapa are potential sources of 
virus resistance (Lima et al. 2017). 

The Capsicum GB of Embrapa Vegetables has about 112 accessions registered 
as C. frutescens, collected under different ecological conditions in the North, Northeast, 
Southeast, Center-West and South of Brazil. To contribute for characterizing the 
genetic variability within C. frutescens and, consequently, enable its use by breeding 
programs, the establishment of core collections is mandatory. 

The establishment of core collections, as suggested by Frankel (1984), consists 
of organizing collections that represent the genetic diversity of a crop species and its 
relatives with a minimum of repetitiveness. Efficient employment of the genetic 
diversity of the GB in breeding programs, as well as obtaining information on the 
representativeness of a collection in relation to the genetic diversity of a crop species 
are advantages of establishing core collections (Ferreira et al., 2007). A sampling of 
10% of the accessions present in the original collection is a reference size for a core 
collection (Brown, 1989). 

Core collections have been developed in GB in Brazil and other countries 
around the world for many plant species and different purposes, for representing 
genetic, cultural, ecological or geographical diversity, as well as the diversity of 
characters of agronomic importance, such as resistance to pests and diseases. Core 
collections of Capsicum have already been established using phenotypic data (Zewdie 
et al., 2004), genotypic data (Mongkolporn et al., 2015) and phenotypic and genotypic 
data compilations (Nicolaï et al., 2013; Lee et al., 2016). 
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This study aimed at establishing and comparing core collections of C. frutescens 
obtained from the Capsicum GB of Embrapa Vegetables, which is comprised of 112 
accessions registered as C. frutescens, by using different selection strategies based on 
morphological (57 descriptors) and molecular (24 single sequence repeat - SSR loci) 
information, as well as incidence of six virus species, aiming to potentiate the use of C. 
frutescens germplasm in the development of new Malagueta pepper cultivars by 
breeding programs. 

MATERIAL AND METHODS 

Morphological and molecular characterization 
 
One hundred and twelve accessions registered as C. frutescens (original 

collection) originated from the North, Northeast, Center-West, Southeast and South of 
Brazil preserved at the Embrapa Vegetables Capsicum GB were cultivated as described 
by Carvalho et al. (2017) in a greenhouse. Verification of the taxonomic classification 
was made through a key for identification of domesticated and semi domesticated 
Capsicum species and varieties occurring in Brazil (Bianchetti and Carvalho, 2005). 
Morphological characterization was carried out using 53 descriptors recommended for 
Capsicum (International Plant Genetic Resources Institute - IPGRI, 1995) and still four 
additional descriptors were added for this study: fruit position, pungency, aroma and 
segregation, totalizing 57 morphological descriptors. The set of descriptors included: 17 
passport/vegetative part descriptors (origin, species, plant height, plant width, leaf 
color, leaf shape, leaf density, stem shape, stem color, stem length, stem diameter, 
branching habit, nodal anthocyanin, growth habit, tillering, leaf pubescence, stem 
pubescence), 16 inflorescence/seed descriptors (male sterility, calyx margin, number of 
flowers/axil, calyx pigmentation, flower position, stigma exsertion, calyx annular 
constriction, corolla spot color, anther color, filament color, corolla color, days to 
flowering, corolla shape, seed color, number of seeds/fruit, seed surface) and 24 fruit 
descriptors (fruit persistence, number of locules, fruit wall thickness, fruit pedicel 
length, fruit weight, fruit width, pungency, fruit shape, days to fruiting, fruit color at 
immature stage, fruit color at mature stage, placenta length, aroma, fruit length, fruit 
blossom end appendage, varietal mixture condition, segregation, fruit shape at pedicel 
attachment, fruit position, anthocyanin spot, neck at base of fruit, fruit shape at blossom 
end, cross-sectional corrugation and fruit surface). These data are presented in Carvalho 
et al. (2017). 

Molecular characterization was carried out using the 24 SSR primer sets from 
Carvalho et al. (2017). Besides accessions identified as C. frutescens, 11 accessions 
belonging to other Capsicum species were included in the molecular characterization, 
eight C. chinense (CNPH 4315, CNPH 4316, CNPH 4325, CNPH 4327, CNPH 4328, 
CNPH 4332 A, CNPH 4360 and CNPH 4361), one C. praetermissum (CHPH 3825) 
and two C. annuum var. annuum (CNPH 30062 and CNPH 40013), totalizing 123 
accessions. Based on morphological characterization data, genetic distance between 
accessions was estimated by simple correspondence analysis. The genetic distances 
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obtained through microsatellite (SSR) loci were calculated with the Genes software, 
following the methodology described by Carvalho et al. (2017). 

Genetic dissimilarity matrices obtained through morphological descriptors or 
SSR loci were used to perform cluster analysis using the unweighted pair group mean 
averaging (UPGMA) method. Graphical dispersion analyses according to 
multidimensional scales were also performed via main coordinates, with SAS and 
Statistica softwares. The correlation between the genetic distances and its significance 
(t-test) were estimated according to SSR loci and distances calculated based on 
morphological descriptors by Pearson’s correlation coefficient, with the statistical 
software Genes. 

Assessment of virus incidence  
 
The incidence of viruses was evaluated on plants growing under open field 

conditions with natural infection, without artificial inoculation of viruses. Field trials 
were performed at Embrapa Vegetables, Brasilia, DF, Brazil. Pepper seedlings were 
produced in the greenhouse in Styrofoam trays and transplanted to the field 40 days 
after sowing.  

Infection of seedlings in the field trial was favored by presence of older pepper 
plants naturally infected with viruses and showing characteristic disease symptoms. The 
presence of viruses in those pepper plants was checked by serology using polyclonal 
antibodies against the coat protein of each virus species (produced at Embrapa 
Vegetables), by DAS-ELISA (double-antibody sandwich-Enzyme-linked 
immunosorbent assay; Clark and Adams, 1977). These infected plants served as virus 
inoculum to infect pepper seedlings of different accessions in the field.  

Assessment of virus incidence on plants of the 112 accessions was performed 
on leaf samples collected from each individual plant just before the flowering stage and 
analyzed by DAS-ELISA test. Young leaves were collected from at least three different 
branches of the same plant to increase the chances of virus detection. Plants were 
evaluated for the presence of tospoviruses (Tomato spotted wilt virus – TSWV and 
Groundnut ringspot virus – GRSV), potyviruses (Potato virus Y – PVY and Pepper 
yellow mosaic virus – PepYMV), a tobamovirus (Pepper mild mottle virus– PMMoV) 
and a cucumovirus (Cucumber mosaic virus – CMV), following the methodology 
described by Lima et al. (2017). Leaf extracts were prepared in extraction buffer (1.4 M 
NaCl; 0.02 M KH2PO4; 0.08 M Na2HPO4.12H2O; 0.02 M KCl; pH 7.4), at proportion of 
1g/10 mL. Antibodies and conjugates were used at concentration 1mg/mL. Infected 
indicator plants (Nicotiana tabacum cv. TNN infected with PVY; Datura stramonium - 
TSWV, GRSV; C. annuum cv. Ikeda – CMV, PepYMV, PMMoV) and healthy plants 
were the positive and the negative controls for each virus species, respectively. 
Absorbance readings at 405 nm were measured in ELISA reader (Titertek Multiskan). 
Samples were considered as positive when their absorbance values were at least three 
times higher than the absorbance values of the negative control. 
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Composition of core collections 
 
The method dependent on genetic variability was used for selecting accessions 

to compose the nuclear collections. Genetic variability data was used to cluster 
accessions into groups of genetic similarity; then, at least one accession was selected to 
represent each group, so that the selected accessions represented more than 70% of the 
allelic variability of the original collection (Faleiro et al., 2007). 

Different selection strategies based on morphological characters, SSR loci and 
virus incidence were used for composition of four core collections: 1) random selection 
(CoreColl-1); 2) selection based on the representativeness of morphological similarity 
groups (CoreColl-2); 3) selection based on representativeness of similarity groups 
defined by SSR loci (CoreColl-3) and 4) selection based on the representativeness of 
similarity groups defined by SSR loci associated with virus incidence data (CoreColl-
4). 

The choice of accessions from the similarity groups established through 
morphological data, SSR loci and SSR loci associated with virus incidence data was 
based on the representation of all groups established by 1 up to 4 accessions for each 
group. Each core collection comprised a total of 13 accessions.  

The percentage of the alleles of the full C. frutescens collection present in each 
core collection was used to calculate the core collection allelic representativeness. For 
comparison purposes, an additional core collection was established contemplating 
100% of the allelic variability present in the full C. frutescens collection. 

RESULTS  
 
The 112 accessions registered in the Embrapa Vegetable’s GB as belonging to 

the species C. frutescens were reclassified using a classification key on morphological 
characteristics according to Bianchetti and Carvalho (2005). After reclassification, only 
96 accessions were confirmed as being C. frutescens. Among the remaining accessions, 
14 were reclassified as C. chinense, one as C. baccatum var. pendulum and one as C. 
annuum var. glabriusculum. Based on molecular characterization data, accessions also 
clustered into four groups; however, different from morphological analysis, 103 were C. 
frutescens, seven C. chinense, one C. baccatum var. pendulum and one C. annuum var. 
glabriusculum (Table 1). The 103 accessions identified molecularly as C. frutescens 
were then considered as the full C. frutescens collection for all the subsequent analyses. 

Cluster analysis based on the matrix of distances obtained from morphological 
descriptors divided the 96 C. frutescens accessions into six groups of genetic similarity 
(Figure 1). The group of 103 accessions established by the molecular analysis according 
to SSR loci comprised the 96 accessions morphologicaly classified as C. frutescens and 
seven accessions classified as C. chinense according to morphological traits (Figure 2). 
The seven accessions classified as C. chinense according to morphological traits were, 
then, assumed to be C. frutescens considering molecular data. The group of 103 C. 
frutescens accessions was also divided into six similarity clusters. Further details on 
these groups are in Carvalho et al. (2017). 

 
 

http://www.funpecrp.com.br


Genetics and Molecular Research 19 (1): gmr18503 ©FUNPEC-RP www.funpecrp.com.br 

 
 
 
 
 
 

 

Capsicum frutescens core collections                                                         7 

 
 

 

Table 1. Identification of the accessions of the Capsicum Germplasm Bank (GB) of Embrapa Vegetables, 
evaluated in this research based on morphological characteristics and molecular traits. 
 

 Identification No 
CNPH/1 Origin (Brazilian Regions) Morphologically identified species Molecularly identified species 

1 63 Southeast C. frutescens C. frutescens 
2 287 Center-West C. frutescens C. frutescens 
3 595 Southeast C. frutescens C. frutescens 
4 597 Center-West C. frutescens C. frutescens 
5 1386 Northeast C. frutescens C. frutescens 
6 2631 Southeast C. frutescens C. frutescens 
7 2744 North C. frutescens C. frutescens 
8 2841 North C. frutescens C. frutescens 
9 2866 A North C. frutescens C. frutescens 
10 2866 B North C. chinense C. chinense 
11 2869 North C. frutescens C. frutescens 
12 2870 North C. frutescens C. frutescens 
13 2871 North C. chinense C. chinense 
14 3241 Center-West C. frutescens C. frutescens 
15 3257 Northeast C. frutescens C. frutescens 
16 3286 North C. frutescens C. frutescens 
17 3349 Southeast C. frutescens C. frutescens 
18 3374 Center-West C. frutescens C. frutescens 
19 3399 North C. frutescens C. frutescens 
20 3410 Center-West C. frutescens C. frutescens 
21 3414 Southeast C. frutescens C. frutescens 
22 3440 Southeast C. frutescens C. frutescens 
23 3446 Southeast C. frutescens C. frutescens 
24 3448 North C. frutescens C. frutescens 
25 3453 North C. chinense C. chinense 
26 3462 North C. frutescens C. frutescens 
27 3470 North C. frutescens C. frutescens 
28 3484 North C. frutescens C. frutescens 
29 3499 North C. frutescens C. frutescens 
30 3535 A North C. frutescens C. frutescens 
31 3535 B North C. chinense C. chinense 
32 3539 North C. frutescens C. frutescens 
33 3546 North C. frutescens C. frutescens 
34 3550 North C. frutescens C. frutescens 
35 3606 A North C. frutescens C. frutescens 
36 3606 B North C. frutescens C. chinense 
37 3612 North C. frutescens C. frutescens 
38 3621 Southeast C. frutescens C. frutescens 
39 3630 - C. frutescens C. frutescens 
40 3645 Northeast C. frutescens C. frutescens 
41 3646 Northeast C. frutescens C. frutescens 
42 3647 Northeast C. frutescens C. frutescens 
43 3648 Northeast C. frutescens C. frutescens 
44 3649 Northeast C. frutescens C. frutescens 
45 3667 Southeast C. frutescens C. frutescens 
46 3696 Center-West C. frutescens C. frutescens 
47 3697 Southeast C. frutescens C. frutescens 
48 3698 Center-West C. frutescens C. frutescens 
49 3715 North C. frutescens C. frutescens 
50 3716 North C. chinense C. frutescens 
51 3746 South C. frutescens C. frutescens 
52 3804 Center-West C. chinense C. frutescens  
53 3805 Center-West C. chinense C. frutescens  
54 3806 Center-West C. chinense C. frutescens  
55 3813 Center-West C. chinense C. frutescens  
56 3815 Center-West C. chinense C. frutescens  
57 3816  Center-West C. frutescens C. frutescens 
58 3818 Center-West C. chinense C. frutescens  
59 3819 Southeast C. frutescens C. frutescens 
60 3820 Northeast C. frutescens C. frutescens 
61 3821 Northeast C. frutescens C. frutescens 
62 3835 Southeast C. frutescens C. frutescens 
63 3847 Southeast C. frutescens C. frutescens 
64 3861 Northeast C. frutescens C. frutescens 
65 3880 North C. frutescens C. frutescens 
66 3885 North C. frutescens C. frutescens 
67 3891 North C. frutescens C. frutescens 
68 3894 North C. frutescens C. frutescens 
69 3906 Center-West C. frutescens C. frutescens 
70 3932 North C. frutescens C. frutescens 
71 3944 Northeast C. frutescens C. frutescens 
72 3984 South C. frutescens C. frutescens 
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that compose the CoreColl-4 tested negative for at least one virus group (tospovirus; 
potyvirus) and presented low virus incidence for the other groups (Table 2). Then, 
CNPH 597, CNPH 3698, CNPH 3885, CNPH 3894 and CNPH 3944 were positive for 
tospoviruses (e. g. GRSV) but not for potyviruses (PepYMV; PVY). On the other hand 
in CNPH-3715, just the presence of potyviruses (PepYMV; PVY) was detected, and no 
tospoviruses. At least five accessions tested positive for species of both group of viruses 
(CNPH 3470: GRSV and PVY; CNPH 3820: GRSV and PepYMV; CNPH 3821: 
GRSV and PepYMV; CNPH 3861: GRSV and PVY; CNPH 3891: GRSV and 
PepYMV). Similar behavior of CNPH 597 and CNPH 3820 to virus resistance in the 
field was observed by Lima et al. (2017). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2. Evaluation of natural infection caused by tospoviruses (Tomato spotted wilt virus - TSWV; 
Groundnut ringspot virus - GRSV), potyviruses (Pepper yellow mosaic virus - PepYMV; Potato virus Y - 
PVY) and a tobamovirus (Pepper mild mottle virus- PMMoV) in plants of 112 accessions of Malagueta hot 
pepper (Capsicum frutescens) grown under open field conditions, using polyclonal antibodies, in DAS-
ELISA. Brasilia, DF - Embrapa Vegetables. 
 

Acessions 
Identification (CNPH #) Sample (#) Infected plants (%)/1 

TSWV GRSV PepYMV PVY PMMoV 
 0063 12 58.3 8.3 33.3 8.3 58.3 
 0595 12 0 25 16.7 0 41.7 
 287 3 0 0 33.3 0 3.33 
 597 9 33.3 0 0 0 0 
 1386 13 30.8 15.4 15.4 30.8 53.8 
 2631 12 25 33.3 58.3 8.3 8.3 
 2744 13 46.2 0 7.7 23.1 61.5 
 2841 9 11.1 77.8 33.3 44.4 77.8 
 2866 A 3 0 0 0 0 100 
 2866 B nt/2 nt nt nt nt nt 
 2869 11 0 18.2 18.2 36.4 27.3 
 2870 12 50 16.7 58.3 50 58.3 
 2871 8 0 50 0 37.5 100 
 3241 13 0 0 0 0 15.4 
 3257 13 0 23.1 7.7 0 53.8 
 3349 3 0 0 0 0 100 
 3374 12 33.3 25 0 8.3 50 
 3286 18 0 5.6 16.7 0 44.4 
 3399 2 0 0 0 0 100 
 3410 3 0 0 0 0 100 
 3414 3 0 0 0 0 100 
 3440 4 0 0 25 0 100 
 3446 2 0 0 0 0 50.0 
 3453 11 0 9.1 0 27.3 18.2 
 3448 13 53.8 23.1 15.4 0 38.5 
 3462 12 8.3 25 41.7 0 8.3 
 3499 12 8.3 0 0 0 0 
 3470 11 0 18.8 0 18.2 45.5.0 
3484 nt nt nt nt nt nt 
 3546 12 0 40 0 41.6 50 
 3535 A 3 0 0 0 0 0 
 3535 B nt nt nt nt nt nt 
 3539 3 0 0 33.3 0 33.3 
 3550 3 0 0 66.7 0 66.7 
 3606 A 5 0 20 0 0 20 
 3606 B nt nt nt nt nt nt 
 3612 8 37.5 0 12.5 0 50 
 3621 3 0 33.3 0 0 66.7 
 3630 12 0 16.7 0 8.3 25 
 3649 5 0 0 20.0 0 0 
 3645 3 0 0 33.3 0 100 
 3646 3 0 0 0 0 33.3 
 3647 3 0 0 0 0 100 
 3648 3 66.7 0 0 0 66.7 
 3696 3 0 0 33.3 0 0 
 3667 15 0 13.3 0 6.7 6.7 
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1/(Number of infected plants/total number of plants tested in DAS-Elisa)X100. Samples were considered as positive when absorbance 
values were at least three times higher compared to absorbance values of healthy control.2/nt=not tested. 

 
The core collections (CoreColl-1; CoreColl-2; CoreColl-3; CoreColl-4) of C. 

frutescens each consisted of 13 accessions, 12.6% from the original collection (103 
accessions). These 13 accessions selected by using each approach, as well as the allelic 
representativeness of each core collection regarding to the original collection, are 
presented in Table 3. 

 
 

 3697 2 0 50.0 0 0 0 
 3698 9 0 11.1 0 0 11.1 
 3715 8 0 0 62.5 25.0 25.0 
 3716 3 0 100 33.33 0 0 
 3746 10 10 0 20 0 50 
 3819 13 7.7 0 0 0 30.8 
 3820 12 0 8.3 53.8 0 0 
 3835 13 0 38.5 0 7.7 15.4 
 3804 3 0 33.3 66.7 0 33.3 
 3805 3 0 33.3 53.8 0 0 
 3806 3 33.3 0 100 0 33.3 
 3813 3 0 66.7 33.3 0 0 
 3815 3 0 33.3 0 0 0 
 3816  3 66.7 0 0 0 0 
 3818 3 100 0 66.7 0 33.3 
 3821 4 0 50.0 50.0 0 0 
 3847 2 0 100 50.0 0 0 
 3861 16 0 25 0 56.3 12.5 
 3880 3 0 33.3 33.3 0 0 
 3885 4 0 100 0 0 25 
 3891 3 0 100 33.3 0 0 
 3894 3 0 66.7 0 0 0 
 3906 3 0 100 0 0 0 
 3932 3 0 66.7 0 0 33.3 
 3944 3 33.3 0 0 0 0 
 3984 3 0 66.7 0 0 0 
 4005 3 0 66.7 0 0 33.3 
 4011 3 0 66.7 33.3 0 0 
 4020 3 0 33.3 66.7 0 33.3 
 4037 3 0 66.7 0 0 0 
 4052 3 0 100 0 0 0 
 4069 3 0 33.3 0 0 0 
 4082 3 0 66.7 0 0 03 
 4083 3 100 66.7 0 0 0 
 4084 A 3 0 33.3 100 0 0 
 4084 B 3 0 33.3 100 0 0 
 4085 3 0 100 100 0 0 
 4095 3 66.7 0 100 0 0 
 4105 3 66.7 0 100 0 0 
 4138 3 0 66.7 100 0 0 
 4154 A 3 0 33.3 66.7 0 0 
 4154 B 3 33.3 0 33.3 0 0 
 4161 3 0 100 100 0 0 
 4184 3 66.7 0 66.7 0 0 
 4191 3 66.7 0 66.7 0 0 
 4195 3 0 0 100 0 0 
 4212 3 0 66.7 66.7 0 0 
 4224 3 33.3 0 33.3 0 0 
 4231 3 0 50.0 0 0 0 
 4237 3 0 33.3 33.3 0 0 
 4263 nt nt nt nt nt nt 
 4264 nt nt nt nt nt nt 
 4265 nt nt nt nt nt nt 
 4266 nt nt nt nt nt nt 
 4267 nt nt nt nt nt nt 
 4268 nt nt nt nt nt nt 
 4269 nt nt nt nt nt nt 
 4270 nt nt nt nt nt nt 
 4271 nt nt nt nt nt nt 
 4272 nt nt nt nt nt nt 
 4273 nt nt nt nt nt nt 
 4274 nt nt nt nt nt nt 
 4283 nt nt nt nt nt nt 
 4304 nt nt nt nt nt nt 
 4353 nt nt nt nt nt nt 
 4364 nt nt nt nt nt nt 
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Table 3. Lists of accessions in the core collections established according to four selection approaches and a 
collection representing 100% of the allelic variability of the full Capsicum frutescens collection composed 
of 103 accessions. 
 

Selection    Random Morphological SSR SSR + SSR + 
(CoreColl-1) descriptors  (CoreColl-3) Viruses Viruses***   

  
(CoreColl-2) (CoreColl-4) 

Accessions  CNPH 287  CNPH 63 CNPH 63 CNPH 597 CNPH 597 
selection CNPH 2744 CNPH 287 CNPH 287 CNPH 3470  CNPH 3470 

 
CNPH 3286 CNPH 575  CNPH 1386  CNPH 3484  CNPH 3484 

 
CNPH 3399 CNPH 3446 CNPH 2841  CNPH 3698  CNPH 3698 

 
CNPH 3440 CNPH 3550 CNPH 3286  CNPH 3715  CNPH 3715 

 
CNPH 3462 CNPH 3630 CNPH 3399  CNPH 3820 CNPH 3820 

 
CNPH 3470 CNPH 3645 CNPH 3630  CNPH 3821 CNPH 3821 

 
CNPH 3539 CNPH 3649 CNPH 3716  CNPH 3861  CNPH 3861 

 
CNPH 3697 CNPH 3821 CNPH 3835  CNPH 3885  CNPH 3885 

 
CNPH  3932 CNPH 3944  CNPH 3894  CNPH 3891 CNPH 3891 

 
CNPH 4020 CNPH 4020  CNPH 4037  CNPH 3894  CNPH 3894 

 
CNPH 4283 CNPH 4263  CNPH 4161  CNPH 3944  CNPH 3944 

 
CNPH 4364 CNPH 4304 CNPH 4264 CNPH 4304 CNPH 4304 

 
- - - - CNPH 3374* 
- - - - CNPH 3606* 
- - - - CNPH 3646* 
- - - - CNPH 4005* 
- - - - CNPH 4084* 
- - - - CNPH 3716** 
- - - - CNPH 3805** 
- - - - CNPH 3813** 

Allelic Representativeness (%) 29.3 73 75.8 77 100 
* Segregating accessions. ** Accessions identified through morphological characterization as C. chinense and molecular characterization 
as C. frutescens. ***Minimal collection with the smallest number of accessions that represent 100% allelic representativeness of the full 
collection. 

 
The allelic representativeness of the core collections ranged from 29.3% 

(random selection) to 77% (selection based on molecular markers and viruses). The 
representativeness of the CoreColl-2 established according to morphological descriptors 
(73%) was very close to that based on SSR loci (75.8%). The positive correlation value 
of 0.66 among genetic distances calculated according to morphological descriptors and 
distances based on SSR explains these results. The satisfactory representativeness of the 
genetic variability of the core collections established in our study can also be seen in the 
scatterplots (Figure 3). 

The CoreColl-4 based on molecular markers data and virus incidence 
information gave the highest representativeness (77%) of the allelic variability of the 
original collection. The 13 accessions represented three Brazilian geographic regions: 
North (n = 7), Northeast (n = 4) and Center-West (n = 2). In addition, accessions 
showed uniform distribution in the scatter plot figure (Figure 3b), representing part of 
the genetic variability of the full C. frutescens collection. 

The minimal collection with 100% allelic representativeness was achieved by 
including additional eight accessions (Table 3) to the initial group of 13 accessions 
selected according to molecular markers and incidence of viruses. To reach the 
maximum allelic variability five of these accessions were segregating and resulted from 
interspecific crossings, and three accessions that were identified by morphological 
characterization as C. chinense, which presented characteristics that discriminate this 
species from others, such as a calyx annular constriction (Carvalho et al., 2014). 
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DISCUSSION 
 
Organizing a germplasm collection from a core collection is an approach aimed 

primarily at improving conservation, accessibility and encourages the employment of 
genetic resources by breeding programs. Using genetic variability will provide, through 
genetic combinations, the emergence of new, better adapted, productive and disease 
resistant genotypes, among other characteristics of interest (Martinez et al., 2017). 

Core collections of C. annuum, C. baccatum and C. chinense species were 
established based on morphological descriptors for GB maintained by the Southern 
Plant Genetic Resource Conservation Unit, Griffin, GA, USA (Zewdie et al., 2004). 
Species stratification before implementing the clustering process was strategically 
important because the genes or alleles found in different Capsicum species may differ. 
In addition, interspecific hybridization is difficult and laborious to transfer 
characteristics among Capsicum species (Zewdie et al., 2004). 

Due to high genetic proximity existing between C. frutescens and C. chinense, 
some accessions can be easily confused, when relying on morphological traits. In 
general, both C. frutescens and C. chinense have a set of morphological characteristics 
that enable discriminating from each other (position of the flower, presence or absence 
of calyx annular constriction and fruit shape). However, there are intermediate 
accessions, which present characteristics of both species, leading to a misidentification 
when only morphological descriptors are employed. In our study, some accessions 
presented intermediate phenotypes, hampering their identification when the 
classification relied exclusively on morphological data. 

In the morphological characterization analysis, the accessions CNPH 3804, 
CNPH 3805, CNPH 3806, CNPH 3813, CNPH 3815, CNPH 3816 and CNPH 3818 
were initially classified as C. chinense. However, when molecular characterization was 
performed, these accessions grouped in Group 2 (Figure 2) of C. frutescens, 
representing the most divergent accessions within this group. In fact, passport data of 
these seven accessions suggested that they came possibly from cross-fertilization, 
resulting from proximity between plantings of these two species. 

Similar results were verified in studies reported by Baral and Bosland (2004); 
they morphologically characterized 301 genotypes of C. frutescens and C. chinense and 
found that 8% of the accessions had an intermediate phenotype, hampering species 
classification. When performing molecular analysis through RAPD markers, Baral and 
Bosland (2004) detected no integration between accessions of C. frutescens and C. 
chinense, because probably no interspecific hybrids were included in the research. 
According to these authors, accessions showing intermediate phenotypes can be 
explained by introgressive hybridization; genes from one species move to another 
through interspecific hybridization process followed by successive backcrossing to one 
of the parents. 

An excellent example of introgression is the cultivar Greenleaf Tabasco 
developed by interspecific hybridization between C. frutescens and C. chinense and 
then repeated backcrossing with C. frutescens. Greenleaf Tabasco resembles C. 
frutescens, but also has some morphological characteristics of C. chinense and results of 
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molecular analysis revealed that it actually has C. chinense alleles (Baral and Bosland, 
2004). Thus, the identification of Capsicum accessions in the present study with 
intermediate phenotype (morphological characteristics between C. chinense and C. 
frutescens) may be a result of introgressive natural hybridization and no intraspecific 
variation. 

The analysis of genetic variability among C. frutescens accessions herein was 
performed with genotypes originated from different ecological conditions of North, 
Northeast, Center-West, Southeast and South Regions of Brazil, relevant to breeding 
programs of that hot pepper species. The 13 accessions of CoreColl-4 (12.6% in size of 
the full C. frutescens collection with 103 accessions) selected based on SSR and virus 
incidence (Figure 3a), have a high allelic representativeness (77%) and occupied almost 
all the scatter graphic, representing a large part of the genetic variability of the full 
collection prevenient mainly from three Brazilian regions (53.8% North, 30.8% 
Northeast and 15.4% Center-West). The highest percentage of accessions was from the 
North region, considered rich in genetic diversity of Malagueta pepper and indeed, 
spontaneous populations of C. frutescens are found (Bianchetti and Carvalho, 2005). In 
addition, the present study represent an important contribution for the knowledge of the 
genetic diversity of C. frutescens, especially for the most popular types found in Brazil, 
such as ‘Malagueta’ and ‘Malaguetinha’ pepper. 

In the development of a core collection Brown (1989) suggests a 10% sampling 
in order to retain at least 70% of alleles present in the original collection, to represent 
total genetic diversity. Samples of the core and the whole collection can be compared to 
determine whether they have broadly similar molecular marker alleles (van Hintum et 
al., 2000). 

The core collection based on molecular markers and virus incidence (CoreColl-
4) proposed in the present study retained the highest representativeness of the genetic 
variability (77%) among the four strategies studied. It maximizes genetic possibilities 
and increase the chances of success in developing cultivars adapted to distinct regions 
and ecosystems. The inclusion of eight accessions - five intermediate between C. 
frutescens and C. chinense and three identified as C. chinense in the morphological 
characterization - to the CoreColl-4 made it possible to reach 100% of the allelic 
representativeness of the full C. frutescens collection (Table 3). 

Core collections established for Stylosanthes species based on SSR variability 
reached the total allelic representativeness of the S. macrocephala and S. capitata 
individual collections (Santo-Garcia et al., 2012). The S. macrocephala core collection 
consisting of 23 accessions (17% of the original collection with 134 accessions) 
represented 100% of the allelic variability of the original collection; however, for S. 
capitata it was composed only by 13 accessions (7% of the original collection with 192 
accessions). These results show the excellent potential of using SSR molecular markers 
to establish core collections and thus improve the management and utilization of the 
germplasm. 

The number of clusters obtained using morphological descriptors and molecular 
markers was similar in the present research; however, comparing the two 
methodologies revealed differences in accession subdivisions, indicating the importance 

http://www.funpecrp.com.br


©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 19 (1): gmr18503 

 
 
 
 
 
 
 
 

S.I.C. Carvalho et al.                                                                   16 

 

and complementarity of using different analyses to estimate genetic diversity and 
composition of core collections. 

There is much discussion on which descriptors data are suitable in developing a 
core collection - morphological, genetic, molecular, ecogeographic, etc. A total of 96 
accessions morphologically identified as C. frutescens evaluated in this work presented 
high variability for several morphological traits such as fruit size, fruit weight, fruit 
persistence and incidence of viruses. Likely, much of that diversity was captured in the 
accessions selected for the CoreColl-2 based on morphological descriptors that can be 
effectively used by breeding programs. It is noteworthy that the morphological 
characterization data were relevant for identifying the genetic variability in C. 
frutescens, since the CoreColl-2 retained 73% of the original allelic variability (Table 
3). In addition, the correlation between molecular and morpho-agronomic analyses 
performed in the present study was about 66% and statistically significant. 

Martins et al. (2015) established and compared in terms of representativeness, 
core collections obtained from 67 tomato accessions of the Vegetable Germplasm Bank 
of Viçosa Federal University (BGH-UFV), using 19 quantitative morphological 
characters, 30 multi-categorical characters, 52 ISSR loci, reaction to three pathogens 
and also one core collection that contemplated all this information simultaneously. They 
concluded that when data of different natures are available, priority should be given to 
the establishment of core collections based on integration of the whole data, as these 
were more representative. 

According to Nicolaï et al. (2013), compilation of the Capsicum phenotypic 
data (6 primary traits: flowering date, stem length, number of leaves, fruit length, fruit 
width, fruit wall thickness) and genotypic data (genotyping with 28 SSR loci) for 
genetic association studies, allowed the establishment of a core collection of C. annuum 
with 332 accessions, having 97% of the genetic and phenotypic diversity of the 
complete collection (908 accessions). In addition, several core collections were 
established using SSR alleles, ranging in size from 8 to 128 accessions and representing 
37 to 90% of the allelic variability of C. annuum and its wild relatives (var. 
glabriusculum). 

Sampling strategies with different clustering methods were employed by Lee et 
al. (2016) in the development of a Capsicum core collection. The authors performed a 
population structure analysis in a large Capsicum germplasm collection consisting of 
3,821 accessions by applying 48 genome-wide SNPs, and selected a core set using the 
SNP data together with data for 32 morphological traits. Use of either genotypic or 
phenotypic information, only, for selection of core collection entries were not efficient 
for capturing genetic diversity of the entire germplasm collection. When only genotypic 
data were used, they demonstrated insufficient coverage of the phenotypic variation of 
the entire collection. Nevertheless, when phenotypic data for 32 traits were included for 
selection of the core sets, the representativeness of the phenotypic variation slightly 
increased. The selection of the core set using genotypic and phenotypic data together 
after clustering analysis showed to be the best methodology. Different from Lee et al. 
(2016), Gu et al. (2019) stated that a core collection based on genotype is more 
representative than that based on phenotypic data. In the present research, the most 
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promising core collection considering allelic representativeness – CoreColl-4 – was 
based on SSR and incidence of viruses. 

Viruses are among the most important and complex disease for species in the 
genus Capsicum and may result in significant yield losses (Lima et al., 2017). 
Serological test results of accessions of CoreColl-4, revealed that plants of CNPH 597, 
CNPH 3698, CNPH 3885, CNPH 3894 and CNPH 3944 were infected only with 
tospoviruses (e.g. GRSV), while for CNPH 3715, solely potyviruses (PepYMV; PVY) 
were identified. The natural occurrence of PMMoV was verified in 25% of the samples, 
suggesting that virus dissemination is expressive in C. frutescens. PMMoV 
transmission in the field is mainly due to planting of contaminated seeds and spreading 
from plant to plant occurs during handling of plants.  

According to Bhattacharjee et al.  (2007), the millet core collection can most 
effectively be used as a starting point for breeding programs, involving research into 
screening the germplasm collection for sources of desirable characteristics, as well as 
photoperiod sensitivity, disease resistance, drought tolerance and adaptation to saline or 
alkaline environments due to conservation of genetic variability in these accessions for 
most traits. It also provides a guideline for the curator when purchasing new accessions 
for the collection. 

The establishment of core collections should be considered a dynamic process, 
with continuous evaluation of new accessions and incorporation of additional 
information when available. The CoreColl-4 proposed for C. frutescens is expected to 
increase emphasis on genetic resources exploration and therefore the efficiency of the 
C. frutescens breeding program carried out at Embrapa Vegetables, contributing 
effectively to the development of new cultivars that meet consumer’s demand. 

C. frutescens core collections were established using SSR and morphological 
characterization, as well as resistance to viruses. The best approaches for establishment 
of a core collection (CoreColl-4, consisting of 13 accessions) was found to be SSR and 
incidence of viruses, which included 77% of the genetic variability found in the full 
collection of C. frutescens. In addition, CoreColl-4 presented significative geographic 
representativeness (53.8% North, 30.8% Northeast and 15.4% Center-West Brazilian 
Regions). CoreColl-4 is the first Capsicum core collection available from the Embrapa 
breeding program. 
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