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2, Mônica Maria de Almeida Lopes3,

Paulo Riceli Vasconselos Ribeiro2, Andréia Hansen Oster4, Jhonyson Arruda
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Abstract

Pulsed light, as a postharvest technology, is an alternative to traditional fungicides, and can

be used on a wide variety of fruit and vegetables for sanitization or pathogen control. In addi-

tion to these applications, other effects also are detected in vegetal cells, including changes

in metabolism and secondary metabolite production, which directly affect disease control

response mechanisms. This study aimed to evaluate pulsed ultraviolet light in controlling

postharvest rot, caused by Fusarium pallidoroseum in ‘Spanish’ melon, in natura, and its

implications in disease control as a function of metabolomic variation to fungicidal or fungi-

static effects. The dose of pulsed light (PL) that inhibited F. pallidoroseum growth in melons

(Cucumis melo var. Spanish) was 9 KJ m–2. Ultra-performance liquid chromatography

(UPLC) coupled to a quadrupole-time-of-flight (QTOF) mass analyzer identified 12 com-

pounds based on tandem mass spectrometry (MS/MS) fragmentation patterns. Chemo-

metric analysis by Principal Components Analysis (PCA) and Orthogonal Partial Least

Squared Discriminant Analysis (OPLS-DA) and corresponding S-Plot were used to evaluate

the changes in fruit metabolism. PL technology provided protection against postharvest dis-

ease in melons, directly inhibiting the growth of F. pallidoroseum through the upregulation of

specific fruit biomarkers such as pipecolic acid (11), saponarin (7), and orientin (3), which

acted as major markers for the defense system against pathogens. PL can thus be pro-

posed as a postharvest technology to prevent chemical fungicides and may be applied to

reduce the decay of melon quality during its export and storage.
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Introduction

Melon (Cucumis melo L.) is a widely produced fruit in different parts of the world and is an

economically crucial part of Brazilian exports. However, a major fragility in the postharvest

chain of melon is the incidence of postharvest pathologies, particularly rot caused by Fusarium
pallidoroseum, which are responsible for postharvest melon losses. Melon is a ground plant

whose fruit is in contact with the soil, thus facilitating its contamination with F. pallidoroseum
[1]. This fungal pathogen is a widespread and common species in tropical, subtropical, and

Mediterranean climates, often isolated from plants with complex diseases; it is also known to

be toxigenic [2]. The losses caused by fungal diseases negatively affect the commercial balance

around the world, where the phytosanitary barriers of some countries only allow the import of

fruits with high biological control; therefore, these losses are important factors to be avoided in

melon cultivation.

Fungal diseases from the genus Fusarium in fruit are traditionally controlled by the applica-

tion of synthetic fungicides; this treatment leaves chemical residues, which could be harmful to

the consumer and also encourages the development of fungicide-resistant strains of fungal

pathogens. To overcome these challenges, several alternative or integrative approaches, includ-

ing physical methods, are imperative to develop fruit with increased natural defense responses

through the resistance mechanisms induced by abiotic stress [3].

Among these strategies, the application of technologies using light as an abiotic factor,

which aims to promote a regulatory and signaling role in the developmental and metabolic

processes of plants, is encouraged [4]. The application of ultraviolet light as a continuous low-

intensity radiation (UV-continuous) is widely reported in the induction of resistance mecha-

nisms and control of postharvest diseases, thus extending the shelf-life of fruit and vegetables

[5, 6]. Some studies show the efficiency of pulsed light (PL) treatment applied in the control of

microorganism growth in different fruits [7–11]. However, studies involving PL as radiation

from the perspective of inducing resistance mechanisms are still scarce [12].

PL is a new, non-thermal technology, where a lamp containing an inert gas such as xenon

emits high-frequency radiation pulses with wavelengths between 180 and 1100 nm [13]. This

technology is used to sanitize the surfaces of fruit and vegetable by acting on microorganism

cells and breaking and altering their DNA sequences, thus inhibiting the pathogen reproduc-

tive capacity [14]. Because of these positive effects of this technology on the control of patho-

gen growth in a wide variety of fruits, PL has been considered a new trend in the fruit industry

to avoid or reduce the use of chemical fungicides. Moreover, the use of PL as a physical method

can stimulate the production of phytochemicals in plant tissues to minimize the possible dele-

terious effects caused by radiation [15]. Thus, when fruit is subjected to abiotic stress, some

metabolomics changes might be down- or upregulated in a variety of compounds related to

fruit metabolism; this could even result in the production of new compounds linked to stress

tolerance [16].

Metabolomics has been emphasized within the “omics” sciences, and efficiently evaluates a

large part of the metabolites of an organism, both quantitatively and qualitatively, at a given

time and in a specific situation [17]. Metabolomics can identify a change in the concentration

of compounds involved in primary metabolism or the production of secondary metabolites.

These metabolic alterations may arise from cellular lesions, metabolic adjustments to restore

cellular homeostasis, or the synthesis and/or accumulation of metabolites in cellular pathways

[18].

The objective of this study was to investigate the fungicidal or fungistatic effect of PL treat-

ment on F. pallidoroseum on Cucumis melo var. Spanish, using chemometric tools to identify

the possible metabolic changes in the defense mechanisms related to these effects (fungicidal
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or fungistatic). Where these biomarkers signify a normal or abnormal process or an adverse

condition, a biomarker can be used to evaluate how well the organism responds to biotic and

abiotic stress.

Material and methods

Chemical compounds

We used the following reagents: acetonitrile (PubChem CID: 6432), formic acid (PubChem

CID: 284), methanol (PubChem CID: 887), sodium hypochlorite (PubChem CID: 23665760),

MilliQ water (PubChem CID: 962), and liquid nitrogen (PubChem CID: 947).

Plant material

Melons (C. melo var. Spanish) were obtained at the maturity stage (10–12˚Brix; weight around

1.5 to 2.0 kg) from a commercial growing field of Norfruit Northeast Fruit, located in Mos-

soro-RN, Brazil (04˚54’9.4”S, 37˚21’59.9”W). The surfaces of mature melons were disinfected

with 200 μg L–1 sodium hypochlorite solution for 2 min, rinsed, and allowed to dry. The mel-

ons were then artificially inoculated.

Fruit inoculation

Fusarium pallidoroseum spore suspension was produced from pure colonies of the fungus at a

concentration of 106 spores mL–1. Melons were inoculated near the peduncles and adjacent

regions with 100 μL inoculums of F. pallidoroseum (n = 5 inoculants). After inoculation, the

melons were subjected to PL treatment.

Disease control by PL treatment

After 12 h, there was already a pathogenic effect [19] on fruits inoculated with F. pallidoro-
seum. These fruits were irradiated in a PL chamber (XeMaticA-2LXL; SteriBeam1 GmbH,

Kehl, Germany) equipped with two xenon flash lamps and Teflon1 transparent supports,

which allowed the melons to be uniformly exposed over 360˚ by both lamps. There was a dis-

tance of 0.07 m between the fruit and lamps, and all internal sides of the chamber were covered

by mirrors to improve the absorption of PL by the fruit. The lamps produced short-time pulses

of 0.3 μs, where each pulse provided 0.3 KJ m–2 of energy, delivering broad-spectrum white

light (200–1100 nm) with approximately 15%–20% of UV-continuous, according to the sys-

tem’s built-in photodiode readings. The evaluation of disease control against F. pallidoroseum
was carried out by dose screening, as follows: 0 (non-treated with PL), 6, 9, and 12 KJ m–2,

according to the standard limits proposed [20]. After PL-screening, the inoculated and PL-

treated melons were incubated in a box protected from light for 48 h at 28 ± 1˚C with a relative

humidity of 92% to ensure optimal conditions for mycelium growth [21]. The melons were

then stored at 25 ± 1˚C for 21 days. After this time, the severity of fungal disease was analyzed

by measuring the radial lesion diameter in the inoculum region using a digital pachymeter

(Digimess1, São Paulo, Brazil), and expressed as meters (m) and percentage of disease inci-

dence (%). These analyses were performed using a randomized design, each treatment com-

prised eight replicates and data were subjected to analysis of variance (ANOVA) followed by

Tukey’s test at 5% probability.

Disease control promoted by a suitable PL dose against F. pallidoroseum
After PL-screening, an additional experiment was conducted using a suitable PL dose capable

of controlling fungal disease in the fruit. To evaluate disease control, melons were inoculated
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with F. pallidoroseum under the same inoculation conditions described in the “Fruit inocula-

tion” section. Inoculated melons were then irradiated with a PL dose of 9 KJ m–2 in the same

instrumental and storage (48 h) conditions as those described in the “Disease control by PL

treatment” section. The control group included inoculated and non-inoculated melons both

without PL treatment. After 96 h of PL treatment, which is the time necessary for the fruit

defense system to respond to stress conditions [7, 22–24], biological triplicates of each treat-

ment were subjected to extraction processes for injection into a UPLC system.

Extract preparation

Extracts were obtained according to the method of Moore et al. [25] with modifications. Pellets

were extracted from different adjacent regions (0.005 m) to the inoculum at thicknesses

approximately similar to that of the melon rind. Melon peel powder (1.00 g) was resuspended

in 4 mL of MeOH/H2O (7:3 v/v). The homogenate was then subjected to sonication (Ultra-

Cleaner 1450, Unique1, Brazil) for 30 min, followed by centrifugation at 6,000 × g for 5 min.

The pellet was re-extracted twice using 3 mL of MeOH/H2O (7:3 v/v), under the same ultra-

sound and centrifugation conditions. The supernatant was filtered through a 0.22 μm polyte-

trafluoroethylene (PTFE) membrane (Biotechla1, Bulgaria) and injected directly into the

UPLC system.

Chromatographic analysis by UPLC-QTOF-MSE

Analyses were performed on an Acquity UPLC (Waters, USA) system coupled to a Xevo

QTOF mass spectrometer (Q-TOF, Waters). Separations were performed on a C18 column

(Waters Acquity1UPLC C18; 150 mm × 2.1 mm, 1.7 μm). For metabolic fingerprinting, a

2 μL aliquot of the extract was subjected to UPLC analysis using an exploratory gradient with a

mobile phase comprising deionized water (A) and acetonitrile (B), both containing formic

acid (0.1% v/v). The extracts from melons were subjected to the exploratory gradient as fol-

lows: 2%– 95% for 15 min, at a flow rate of 500 μL min–1. Ionization was performed with an

electrospray ionization (ESI) source in negative ion mode, in the range of 110–1200 Da. The

optimized instrumental parameters were as follows: capillary voltage of –2800 V, cone voltage

of –40 V, source temperature of 120˚C, desolvation temperature of 330˚C, flow cone gas of 20

L h–1, desolvation gas flow at 600 L h–1, and microchannel plate (MCP) detector voltage of –

1900 V. The mode of acquisition was MSE, and the system was controlled using MassLynx 4.1

software (Waters Corporation). The extracts were injected in triplicate.

Statistical analysis

The UPLC–MS data were processed using MassLynx1 software (Waters Co., Milford, MA,

USA), under the following conditions: retention time variation, ± 0.05 min; mass range, 110–

1200 Da (accurate mass tolerance ± 0.05 Da); and noise elimination level, 5. For the structural

identification of metabolites, molecular formulas were considered and m/z values were

obtained from high-resolution spectra observed in the chromatogram at the higher intensity.

The relative error is given in ppm for each formula. Margins of error of less than 10 ppm were

considered for MS/MS study.

The structural proposals of molecules were performed using MS/MS data through the

establishment of rational fragmentation patterns reported in the literature [26–29]. A list of

peak identities was created using the retention time (tR) and error (m/z). For unidentified

peaks, all possible molecular formulas were derived (elements C, H, N, and O, with a tolerance

of 10 ppm, at least 2 C atoms) using the elemental composition tools available in MassLynx1

software.
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The UPLC–MS data analyzed by chemometrics were processed using MarkerLynx1 soft-

ware for Principal Components Analysis (PCA) and Orthogonal Partial Least Squared Dis-

criminant Analysis (OPLS-DA) and S-Plots. S-Plots were obtained by OPLS-DA analysis to

determine potential biomarkers that significantly contributed to the difference among groups

[30–33].

Results and discussion

Growth of F. pallidoroseum under PL treatment

The lesion diameter of fungal infection (Fig 1) and percentage of disease incidence were ana-

lyzed to determine the suitable PL treatment dose for the control or inhibition of F. pallidoro-
seum in melon fruit. The growth of the pathogen on inoculated melon fruit was strongly

inhibited by PL treatment (Fig 1). This is corroborated, as shown in Fig 1, by a mean lesion

diameter of 0.013 m, with a 100% incidence of fungal disease in melons without PL radiation.

Disease progression in the 6 KJ m–2 PL-treated group was significantly lower than that in

the untreated group, with a significant reduction in lesion diameter (0.007 m) (Fig 1) and

62.5% incidence of fungal disease. Moreover, a dose of 9 KJ m–2 was the most effective of all

the doses employed, and was associated with a mean lesion diameter of 0.004 m (Fig 1) and

33.3% disease incidence by F. pallidoroseum. This result indicates that the pathogen growth

was inhibited or reduced, as shown in other studies that used PL technology [34, 35]; this

behavior might encourage the fruit industry to avoid or significantly reduce the use of chemi-

cal fungicides.

The hormesis concept was used to explain the fungal behavior at the PL dose of 9 KJ m–2.

Hormesis is a phenomenon in which low levels of potentially damaging radiation elicit benefi-

cial responses, i.e., the physiological stimulation of beneficial responses in plants by low levels

of stressors that otherwise elicit harmful responses. Hormetic doses of UV light (UV-continu-

ous) radiation are involved in plant susceptibility toward diseases, and are capable of eliciting

plant-resistance mechanisms such as the production of anti-fungal compounds [12, 36, 37].

UV-continuous radiation might also have a fungistatic effect promoted by phenolic com-

pounds; they act as a barrier against both pathogenic attack and the diffusion of water and

nutrients, which is important in pathogen growth [38].

A recent study compared the application of low-intensity UV-continuous and high-inten-

sity PL sources as elicitors of hormesis in tomato fruit (Solanum lycopersicum ‘Mecano’) [12].

Curiously, these authors showed that postharvest hormetic treatment of tomato fruit with 16

pulses of PL (7.4 KJ m–2) with a spectral range (240–1050 nm) significantly delayed ripening

along with inducing disease resistance to Botrytis cinerea, with a 41.7% reduction in disease

progression compared to a 38.1% reduction in conventional low-intensity UV-continuous

(254 nm) treatment at 0.37 KJ m–2. Thus, according to the authors, PL treatment, although

rich in UV-continuous (broader spectral output), elicited the same pathways or responses as

hormesis induced by conventional low-UV sources (narrower spectral range), making PL

treatment more commercially attractive; it allows a substantial reduction in treatment time

from seconds to microseconds [39, 40].

The last dose applied, 12 KJ m–2, corresponded to a disease incidence (37.5%) statistically

equal to the treatment with 9 KJ m–2, but showed a mean lesion diameter twice as large (0.008

m) as that in the 9 KJ m–2 treatment (Fig 1). These results showed a possible damaging effect

on melon, where an excess of PL can inhibit the fruit defenses against fungal disease, and that

the dose of 12 KJ m–2 stipulated by the FDA [20] was limiting to the conditions assessed.

Based on these results, we can hypothesize that the PL treatment of 9 KJ m–2 applied here

acted as a fungistatic agent inhibiting the mycelial growth of F. pallidoroseum; this behavior is
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linked to the probable hormetic effect associated with the induction of metabolite synthesis.

Therefore, 9 KJ m–2 was chosen for identification of the metabolites produced.

Putative metabolite identification by UPLC-QTOF-MS

The chemical profile of melon samples was established by analyzing the negative mode (ESI–)

chromatograms (Fig 2) together with the mass spectra. The peaks were numbered according

to their elution order, and the compounds were tentatively identified by interpretation of their

MS and MS/MS spectra, acquired by QTOF-MS, along with data from the literature and open-

access mass-spectra databases using MassLynx1. Table 1 lists the MS data of tentatively identi-

fied compounds, including the experimental and calculated m/z values for the molecular for-

mula, error, and fragments obtained by MS/MS, as well as the proposed compound for each

peak. In general, 12 metabolites of distinct chemical classes, organic acids, non-protein amino

acids, and phenolics, were tentatively identified.

Peak 1 (tR = 3.16 min) was tentatively identified as hydroxybutanoic acid ethyl ester-hexo-

side. This compound showed the ion m/z of 293.1232 [M-H]−in MS and the fragment ion m/z
of 131.0708 [M-H-162]−in MS/MS, indicating a pattern loss of the hexoside moiety [41]. These

classes of phenolic acids were also reported in melon by Mallek-Ayadi et al. [42] and other

studies on Cucumis sativus showed the same presence of this class of compounds [43].

Fig 1. Screening of pulsed light (PL) doses to evaluate the lesion diameter (m) in melons inoculated with Fusarium pallidoroseum. Mean values followed by the

same small letter did not differ significantly between PL treatments, by Tukey’s test at 5% probability.

https://doi.org/10.1371/journal.pone.0220097.g001
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The mass spectrum of peak 2 (tR = 3.58 min) showed the precursor ion m/z 609.1454

[M-H]–. The MS/MS spectrum showed fragment ions m/z 489.1016 [M-H-120]–, 429.0793

[M-H-180]–, and 309.0857 [M-H-180-120]–. The losses of 180 and 120 u are significant for

diglucosides like sophoroside (1–2 linkages of two glucose molecules). Through the correlation

of ions observed in MS and MS/MS, the compound was tentatively identified as luteolin-6-C-

glucosyl-200-O-glucoside, also known as isoorientin-200-O-glucoside [44].

Fig 2. Base-peak chromatogram of melon inoculated with Fusarium pallidoroseum and subjected to pulsed light (PL) treatment at 9 KJ m–2.

https://doi.org/10.1371/journal.pone.0220097.g002
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The mass spectrum of peak 3 (tR = 3.78 min) presents a precursor ion m/z 447.0936

[M-H]−that exhibited fragment ions m/z 357.0532 [M-H-90]–, 327.0522 [M-H-120]–, and

285.0197 [M-H-162]–. The fragment ion m/z 285.0197 [M-H-162]−is the aglycone formed

from the loss of the glycosidic group (Table 1 and Fig 2) [45]. Thus, the compound was tenta-

tively identified as 8-C-glucosyl luteolin, also known as orientin [44]. Peaks 2 and 3 show moi-

eties identified as luteolin are also found in Cucumis sativus L. as described by Abu-Reidah

et al. [46].

Peak 4 (tR = 3.96 min), showed in the mass spectrum as the precursor ion m/z 593.1486

[M-H]–, also exhibiting the fragment ions m/z 413.0811 [M-H-180]−and 293.0408 [(aglycone

+41)-18)]–, which are characteristic of flavone O-glucosyl-C-glucoside, indicating the presence

of sophoroside and apigenin as aglycone. This compound was characterized as apigenin-6-C-

glucosyl-200-O-glucoside, also known as 400-O-glucosylvitexin or isovitexin-200-O-glucoside

[44, 47].

Peak 5 (tR = 4.11 min) showed in the mass spectrum as the precursor ion m/z 623.1591

[M-H]−and its respective fragment ions m/z 443.1021 [M-H-162+18]–, which suggested the

loss of a glucose moiety, one unit of water, and the fragment ion m/z 323.0592 [M-H-120]–.

These patterns of fragmentation indicate the presence of a diglucoside linkage; thus, com-

pound 5 was tentatively identified as isoscoparin 200-O-glucoside [48].

Table 1. Secondary metabolites tentatively identified by UPLC-QTOF-ESI-MSE in melons treated with pulsed light (PL).

Peak tR

(min)

Positive ion mode Negative ion mode Molecular

formula

Compounds

[M+H]+

Observed

[M+H]+

Calculated

Error

(ppm)

[M-H]-

Observed

[M-H]-

Calculated

MS/MS Error

(ppm)

1 3.16 295.1405 295.1393 4.1 293.1232 293.1236 131.0708 -1.4 C12H22O8 Hydroxybutanoic acid ethyl

ester-hexoside

2 3.58 611.1619 611.1612 1.1 609.1454 609.1456 489.1016

429.0793

309.0857

-0.3 C27H30O16 Isoorientin-20 0- O-glucoside

3 3.78 449.1066 449.1084 -4.0 447.0936 447.0927 357.0532

327.0522

285.0197

2.0 C21H20O11 Orientin

4 3.96 595.1645 595.1663 -3.0 593.1486 593.1506 413.0811

293.0408

-3.4 C27H30O15 40 0 -O-glucosylvitexin

5 4.11 625.1752 625.1769 -2.7 623.1591 623.1612 443.1021

323.0592

3.4 C28H32O16 Isoscoparin 2@-O-glucoside

6 4.23 433.1118 433.1135 -3.9 431.0968 431.0978 341.0652

311.0542

-2.3 C21H20O10 Vitexin

7 4.28 595.1641 595.1663 -3.7 593.1498 593.1506 503.1073

473.9605

341.0679

-1.3 C27H30O15 Isovitexin-70 0- O-glucoside

(Saponarin)

8 4.40 463.1236 463.1240 -0.9 461.1052 461.1084 371.0816

341.0660

299.0436

-2.8 C22H22O11 Diosmetin-6-C-glucoside

9 4.49 801.2205 801.2242 -4.6 799.2114 799.2086 461.1159

341.0681

3.5 C38H40O19 Isoscoparin 7-O-[60 0-

feruloyl]-glucoside

10 4.59 771.2106 771.2136 -3.9 769.1970 769.1980 623.1699

443.0993

413.0831

-1.3 C37H38O18 Isoscoparin-20 0-O-(60 0 0-ρ-

coumaroyl)-glucoside

11 4.76 130.0866 130.0868 -1.5 128.0710 128.0712 84.0796 -1.6 C6H11NO2 Pipecolic acid�

12 6.62 273.0753 273.0763 -3.7 271.0605 271.0606 177.0180

151.0026

119.0489

-0.4 C15H12O5 Naringerin

� Compound tentatively identified in negative and positive ionization mode, with MS/MS in positive ion mode.

https://doi.org/10.1371/journal.pone.0220097.t001
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Peak 6 (tR = 4.23 min) in the mass spectrum presented the precursor ion m/z 431.0968

[M-H]–. In the MS/MS spectrum, it showed the fragments ions m/z 341.0652 [M-H-

90]−and 311.0542 [M-H-120]–, indicating the presence of hexose as the monosaccharide

and apigenin as aglycone. Therefore, the compound was tentatively identified as 8-C-glu-

cosyl apigenin, also known as vitexin [44]. The peaks 4 and 6 both presents apigenin as

aglycone; the presence of apigenin derivates are reported in Cucumis in the literature

[46].

The mass spectrum of peak 7 (tR = 4.28 min) showed the ion m/z 593.1498 [M-H]−and the

fragment ions m/z 503.1073 [M-H-90]−and 473.9605 [M-H-120]–. This pattern of loss indi-

cates the presence of a diglucoside similar to that in compound 5 and m/z 341.0679 [M-H-

120-132]–; the loss of 132 Da represents a pentoside. Thus, the compound was tentatively iden-

tified as isovitexin-700-O-glucoside, also known as saponarin [49].

Peak 8 (tR = 4.40 min) in the mass spectrum showed the precursor ion m/z 461.1052

[M-H]−and its fragments m/z 371.0816 [M-H-90]–, 341.0660 [M-H-120]–, and 299.0436

[M-H-162]–. The fragment ion m/z 299.0436 [M-H-162]−represents aglycone, formed by the

loss of a glucoside moiety. Thus, the compound was characterized as diosmetin-6-C-glucoside

[50]. Diosmetin derivate was also found in related studies [46].

The peak 9 (tR = 4.49 min) with a mass spectrum showing the ion m/z 799.2114 [M-H]−and

its fragments m/z 461.1159 [M-H-338]–, representing a loss of feruloyl plus a glucoside moiety,

and m/z 341.0681 [M-H-feruloyl-glucoside-120]–. Thus, based on fragmentation, the metabo-

lite was tentatively identified as isoscoparin 7-O-[600-feruloyl]-glucoside [48].

The peak 10 (tR = 4.59 min) in the mass spectrum presents the ion m/z 769.1970

[M-H]−and its fragments m/z 623.1699 [M-H-146]–, showing a loss of the coumaroyl moiety;

and m/z 443.0993 [M-H-coumaroyl-162-18]–, showing the successive losses of coumaroyl, glu-

coside, and a unit of water. The correlation of the observed ions indicates that the metabolite

in question is isoscoparin-200-O-(6000-p-coumaroyl)-glucoside [4].

Negative and positive ionization modes were used to identify pipecolic acid, a non-protein

amino acid (homolog of proline). Therefore, the peak 11 (tR = 4.76 min) showed the ions m/z
128.0710 [M-H]−and m/z 130.0866 [M+H]+ in the MS in the negative and positive ionization

modes, respectively. Corroborating with chemical identification, the fragment ion m/z 84.0796

[M+H-COOH]+ was observed in the positive mode, referring to an aromatic core obtained

from the cleavage of the carboxyl group (Table 1 and Fig 2) [51].

In peak 12 (tR = 6.62 min) the ion m/z 271.0605 [M-H]−was observed with a fragmentation

pattern in MS/MS showing the loss of ring B at m/z 177.0180 and by retro-Diels-Alder reaction

at m/z 151.0026 and m/z 119.0489. Thus, it was tentatively identified as flavanone naringenin

[52, 53]. This compound was also reported in other studies investigating phenolic compounds

in Cucumis melo [42, 46].

Chemometric analysis

PCA is a multivariate data analysis method that can synthesize data from an original matrix

with many variables in a set of smaller orthogonal variables [54, 55]. We confirm that the che-

mometric analyses were centered in PL treatment with a dose of 9 KJ m-2, considered here as

treatment for disease control in melon inoculated with F. pallidoserum (Fig 1).

Therefore, PCA-2D was performed to discriminate between different treatment groups

according to their metabolic profiles represented by the retention time and mass-to-charge

ratio (rt-m/z) from the UPLC-QTOF-MSE analysis (Fig 3). The PCA-2D showed perfect sepa-

ration of all groups evaluated with 89% of the total cumulative variance in the diaxial axes PC1

and PC2 (R2X[1] = 0.7401 and R2X[2] = 0.1571), with a data noise level of 6%, indicating a
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robust model for data certainty. The formation of groups was related to the similarity between

biological triplicates.

The PCA-2D in the PC1 showed the inoculated group (negative scores) and non-inoculated

group (positive scores), whereas in the PC2 (positive scores), discrimination between the inoc-

ulated control and non-PL-treated group was observed. PC2 (negative scores) also showed the

separation of inoculated PL-treated and non-inoculated groups (Fig 3). The separation of neg-

ative and positive groups in PC1 and PC2 was clearly linked to the differences between the

metabolomic profiles [56]. Therefore, OPLS-DA chemometric analysis was applied to the

UPLC-QTOF-MSE data for comparing samples according to the metabolites that had influ-

enced disease control against F. pallidoroseum in PL-treated melons. OPLS-DA is an analysis

method used to study ions that contribute to experimental sample classification; the classifica-

tion between the two groups in the OPLS-DA model can be visualized in the form of a score

chart and scatter plot (S-plot).

Fig 4A summarizes the separation between the non-inoculated and non-treated fruit (con-

trol), and the non-inoculated fruit treated with PL (9 KJ m–2), with respect to the metabolic

responses in the function of PL as abiotic stress, through OPLS-DA (R2X[cum] = 0.9232). The

S-Plot generated from OPLS-DA, with variable influence on projection (VIP) > 1.0 and

p< 0.05, showed the potential biomarkers between the treatments evaluated.

The control group showed the synthesis of principal secondary metabolites, such as narin-

genin (peak 12), hydroxybutanoic acid ethyl ester-hexoside (1), isoorientin-200-O-glucoside

(2), orientin (3), and 400-O-glucosylvitexin (4). However, the upregulation of naringenin (12)

and hydroxybutanoic acid ethyl ester-hexoside (1) was highlighted (Fig 4A). Naringenin is a

Fig 3. Discrimination of treatment groups by PCA-2D.

https://doi.org/10.1371/journal.pone.0220097.g003
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flavonoid that serves as a primer for more advanced flavonoid structures and as a substrate for

glycosylation reactions. Hydroxybutanoic acid ethyl ester-hexoside has been previously

described in other varieties of melon, such as Piel de Sapo, Galia, and Cantaloupe [41]. Inter-

estingly, naringenin (12) and hydroxybutanoic acid ethyl ester-hexoside (1) were downregu-

lated in melons treated with hormetic PL radiation, whereas specific flavonoid compounds

Fig 4. Orthogonal partial least squares discriminant analysis (OPLS-DA), S-Plot graphs and intensity of biomarkers between the non-inoculated control and the non-

inoculated and pulsed light (PL)-treated melons (9 KJ m–2) (A). OPLS-DA, S-Plot graphs, and intensity of markers between the inoculated control and the inoculated

and PL-treated melons (9 KJ m–2) (B).

https://doi.org/10.1371/journal.pone.0220097.g004
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such as orientin (3), 400-O-glucosylvitexin (4), and isoorientin-200-O-glucoside (2) were upre-

gulated (Fig 4A). Thus, the upregulated compounds might be considered as biomarkers caused

by PL treatment. The accumulation of flavonoid precursors, such as phenylalanine ammonia

lyase, in vacuoles present in the epidermal and subepidermal mesophyll tissues of a fruit stimu-

late plant defense mechanisms under specific PL radiation conditions [36]. Many phenylpro-

panoids have been associated with induced disease resistance and disease control. According

to Jung et al. [4] the flavonoids orientin, isoorientin-200-O-glucoside, and 400-O-glucosylvitexin

are secondary metabolites involved in antioxidant activities against abiotic stress in rice leaves

(Oryza sativa ‘Ilmi’) that were exposed to different conditions of LED-light radiation.

The differences between the inoculated control and inoculated PL-treated (9 KJ m–2) mel-

ons are shown in Fig 4B. Separation of the two treatment groups using the OPLS-DA graph

(R2X[cum] = 0.8882) indicated the differences among groups according to their chemical pro-

files. The S-Plot obtained from the OPLS-DA graph, demonstrated the different potential bio-

markers between groups for VIP > 1.0. Inoculation with F. pallidoroseum mainly induced the

synthesis of glycosylated flavonoids, such as diosmetin-6-C-glucoside (8), isoorientin-200-O-

glucoside (2), and 400-O-glucosylvitexin (4) (Fig 4B); this behavior is because of the presence of

flavonoids at the infection site that are responsible for defense mechanisms against pathogens

[57]. However, these metabolites, which are a natural response of fruit against the pathogen,

were not sufficient to control the pathogen growth, as shown by the control treatment in Fig 1.

Biotic and abiotic stress might systemically regulate the defense mechanism by induced sys-

temic resistance (ISR) or systemic acquired resistance (SAR) [58, 59]. PL treatment and inocu-

lation with F. pallidoroseum led (by SAR) to the upregulation of two major biomarkers in

melon, pipecolic acid (11) and orientin (3) (Fig 4B), which are present in high concentrations

in the treatment. This indicated a change in the metabolic pathway, where the fruit preferen-

tially used these specific compounds as biomarkers in response to the treatment [60]. The pres-

ence of pipecolic acid was verified in both of the groups that were inoculated with F.

pallidoroseum. The presence of pipecolic acid in pathogen inoculation sites is associated with

plant defense responses and acts as a regulator of inducible plant immunity [61]. Thus, when

the PL treatment is applied, the pipecolic acid and orientin are upregulated, significantly

achieving disease control (fungistatic effect), which is shown in Fig 1 with the 9 KJ m–2 treat-

ment. Curiously, pipecolic acid is the supposed precursor of betaines, accumulated in the cyto-

plasm as a result of physiological plant responses to stress phenomena induced—in part—by

adverse environmental conditions. These compounds, which are biochemically inert in the

cell, are synthesized from some specific amino acids, such as serine, alanine, methionine, the

non-protein amino acid such as γ-aminobutyric acid, and some cyclic amino acids, such as

proline and pipecolic acid. The biosynthesis of betaines in the cytoplasm under abiotic stress

conditions is mainly because of the action of methyltransferases, which utilize S-adenosyl-

methionine as a methyl group donor [60].

Fig 5A shows the results of the OPLS-DA graph (R2X[cum] = 0.9684) between the inocu-

lated and non-inoculated groups in the function of F. pallidoroseum as a biotic stressor. The

S-Plot originating from the OPLS-DA data demonstrated potential biomarkers in each group,

with VIP > 1.0 and p< 0.05.

The number of compounds upregulated in non-inoculated melons was much higher than

that in inoculated melons, and naringenin (12), hydroxybutanoic acid ethyl ester-hexoside (1)

and orientin (3) were notably upregulated (Fig 5A). However, saponarin (7) was a biomarker

present in the inoculated control melons and isoorientin-200-O-glucoside (2) showed slight

upregulation in the same group (Fig 5A). Hydroxybutanoic acid ethyl ester-hexoside is a com-

pound linked to amino acid groups, and some studies have indicated significant interconnec-

tions between different branches of amino acid metabolism and plant resistance to pathogens
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[62, 63]. Naringenin is a flavonoid that has shown metabolic activity associated with barley

resistance to F. graminearum [64].

The results in Fig 5B show the separation of distinct groups, where the OPLS-DA plot (R2X

[cum] = 0.9798) presents differences between the non-inoculated fruit and inoculated PL-

treated fruits. The S-Plot obtained by the OPLS-DA graph indicates the potential markers for

each group. The upregulation of flavonoids, such as naringenin (12), orientin (3) and 4”-O-

Fig 5. Orthogonal partial least squares discriminant analysis (OPLS-DA), S-Plot graphs, and intensity of biomarkers between non-inoculated and inoculated melons

(A). OPLS-DA, S-Plot graphs, and intensity of markers between pulsed light (PL)-treated non-inoculated (9 KJ m–2) and PL-treated inoculated melons (9 KJ m–2) (B).

https://doi.org/10.1371/journal.pone.0220097.g005
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glucosylvitexin (4), in non-inoculated PL-treated fruit (9 KJ m–2) was much higher than that

in the inoculated PL-treated (9 KJ m–2) group (Fig 5B). The synthesis of flavonoids in detri-

ment to the abiotic stress observed in PL treatment occurs owing to a change in the metabolic

pathway of fruit in response to the stress received [8]. In contrast, inoculated and PL-treated

melons accumulated a glycosylated flavonoid (identified as saponarin) (7) and pipecolic acid

(11) as biomarkers [65]. Nevertheless, the presence of pipecolic acid in non-inoculated PL-

treated (9 KJ m–2) melons (Fig 5B) shows that this metabolite might be synthetized by abiotic

stress also. Saponarin is an antioxidant belonging to the flavones and is known to inhibit malo-

naldehyde formation in barley. In a normal reaction, malonaldehyde is formed from oxidized

lipids on the surface of barley leaves by UV irradiation [66]. PL treatment of melons inoculated

with fungi resulted in a response mediated by the synthesis of pipecolic acid in the cellular

medium; this resulted in increased levels of betaines in the cell and induced the fruit immunity

system [60].

Conclusions

In this study, a PL dose of 9 KJ m–2 in melon inoculated with F. pallidoroseum controlled the

disease promoted by this pathogen (fungistatic effect) and induced metabolic variation in the

fruit defense system. Pipecolic acid (11) and orientin (3) were the two possible biomarkers

associated with postharvest disease control against F. pallidoroseum in infected melons treated

with PL radiation. This study also showed that fruit subjected separately to biotic and abiotic

stresses demonstrated different metabolic responses, with a chemical profile in response to

each stress. The compounds orientin (3), 400-O-glucosylvitexin (4), and isoorientin-200-O-glu-

coside (2) were only found in response to PL treatment. Our findings highlight that the appli-

cation of PL technology provided control against the postharvest disease of Cucumis melo var.

Spanish by directly controlling the growth of F. pallidoroseum through the synthesis/upregula-

tion of specific compounds that acted as principal biomarkers of the defense system against

pathogen. Thus, PL can be readily proposed as a new postharvest technological alternative to

chemical fungicides; this could become an agriculture industry trend aimed at reducing the

decay caused by F. pallidoroseum in Cucumis melo var. Spanish without leaving chemical resi-

dues during their export and storage.
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