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Fitting of fixed regression curves with different residual variance 
structures for Nellore cattle growth modeling

Ajuste da curva fixa da regressão sob estruturas de variância 
residual para modelagem de crescimento de bovinos Nelore

Diego Helcias Cavalcante1*; Severino Cavalcante Sousa Júnior2; Luciano Pinheiro 
Silva3; Carlos Henrique Mendes Malhado4; Raimundo Martins Filho5; Danielle 

Maria Machado Ribeiro Azevêdo6; José Elivalto Guimarães Campelo7   

Highlights: 
Fixed function class influences the fitting of Nellore Mocho cattle growth curve. 
A class-four function was significantly better for the fitting of Nellore Mocho cattle growth curve.
Residual variance modeling influenced the quality of estimated genetic parameters.
A six-class model had the best fit for the modeling of Nellore Mocho cattle growth.

Abstract

Different polynomial functions were tested for mean trajectory modeling with different residual 
variance structures. A total of 15,148 weight records of 3,115 Nellore Mocho cattle with ages between 
1 and 660 days, raised in northern Brazil. First, the mean trajectory of cattle growth curve was fitted 
by a fixed regression using orthogonal polynomials with orders ranging from two to seven. Analyses 
were performed using the least-squares method, disregarding animal and/ or maternal random effects. 
Then, the best model was evaluated using different residual variance structures and homogeneous and 
heterogeneous classes. We considered as fixed effects those of groups of contemporary and of dam age 
at birth (as linear and quadratic covariate). The random model part included animal and maternal effects 
(direct genetic and permanent environments). We concluded that the estimates of variance components 
and genetic parameters were affected by both fixed regression curve polynomial order and residual 
variance structure. Moreover, random regression model considering an order-four polynomial function 
with a fixed curve and six-class residual variance showed better fits.
Key words: Mean curve. Genetic parameters. Linear models. Random regression. Residual modeling.
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Resumo

Diferentes funções polinomiais foram avaliadas para a modelagem da trajetória média de crescimento 
sob diferentes estruturas de variância residual. Utilizaram-se 15.148 registros de pesos de 3.115 bovinos 
da raça Nelore Mocho com idade entre 1 e 660 dias, criados na região Norte do Brasil. Inicialmente, a 
trajetória média da população foi ajustada por uma regressão fixa sob polinômios ortogonais da idade 
com ordens variando de dois a sete. Estas análises foram executadas por meio do método de quadrados 
mínimos ordinários, desconsiderando os efeitos aleatórios do animal e materno. Posteriormente, o melhor 
modelo foi avaliado sob diferentes estruturas de variância residual por meio de classes homogêneas e 
heterogêneas. Os efeitos fixos considerados foram os de grupos de contemporâneos e a idade da mãe ao 
parto (como covariável linear e quadrática). Na parte aleatória do modelo incluiu-se os efeitos do animal 
e materno (genéticos diretos e ambientes permanentes). Concluiu-se que as estimativas de componentes 
de variância e parâmetros genéticos foram afetados tanto pela ordem polinomial da curva de regressão 
fixa, como pela estrutura da variância residual, e o modelo de regressão aleatória que considerou uma 
função polinomial de ordem quatro na curva fixa e seis classes de variâncias residuais apresentou o 
melhor ajuste.
Palavras-chave: Curva média. Modelagem residual. Modelos lineares. Parâmetros genéticos. Regressão 
aleatória.

Introduction

Random regression models allow random curve 
fitting for each individual included in a study. Such 
curves are expressed as deviations from a mean 
population curve. According to Bonafé et al. (2011), 
a mean growth curve is defined by a continuous fixed 
part function of these random regression models. 
These models are fitted by a covariance matrix, in 
which covariance functions are used as an efficient 
alternative (Sousa, Oliveira, Albuquerque, Boligon, 
& Martins, 2010). Moreover, the models allow 
residual variance modeling by means of different 
structures (Tholon & Queiroz, 2007).

To properly model beef cattle growth curve, some 
authors have investigated not only the order of the 
polynomial function fitting to represent the random 
part but also mean growth curve (Meyer, 2001; 
Boligon, Mercadante, Baldi, Lôbo, & Albuquerque, 
2009; Baldi, Alencar, & Albuquerque, 2010). 
Concerning the modeling of residual variance in 
random regression, several studies have shown the 
need to consider residual variance heterogeneity in 
a random regression model for dairy cattle (Costa 
et al., 2008) and for beef cattle (Herrera, El Faro, 

Albuquerque, Humberto, & Machado, 2008; J. E. 
R. Sousa et al., 2010).

Residual variations in growth parameters tend 
to increase as animals gain weight. Therefore, 
growth curve modeling considering various residual 
variance classes as a function of age (heterogeneous) 
can improve partition of phenotypic variance 
into variance due to random effect included in 
the modeling, as observed by Meyer (2001) and 
Fischer, Van der Werf, Banks and Ball (2004). 
However, the number of residual variance classes 
should be increased carefully since a surplus of 
classes increases the number of parameters to 
be estimated, which can hinder analysis. When 
considering the divergences found in the literature 
regarding fixed curve modeling, as well as residual 
variation structure in random regression models, 
studies should be carried out on growth modeling of 
Nellore Mocho cattle (Barbosa et al., 2017).

Based on the above, this study aimed to compare 
random regression models to estimate order with 
the best fit to fixed effects, as well as to determine 
the most suitable residual variance structure for 
modeling of Nellore cattle growth in northern Brazil. 
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Material and Methods

Data were gathered from herds from the Ponderal 
Development Program, Brazilian Association of 
Zebu Breeders (ABCZ). These herds were being 
reared in seven states of northern Brazil (Amazonas, 
Acre, Amapá, Roraima, Rondônia, Pará and 
Tocantins).

At first, the database had 44,106 weight records; 
then, this information was edited out, eliminating 
records of animals with more 660 days of age, 
animals without sire and/or dam identification, 
animals with less than 3 weight records, and age-
matched groups with less than 3 animals. 

Within the age-matched groups, animals were 
grouped by sex, birth year, calving season, weight 
measure, weighing month, farm and breeding 
conditions. The calving seasons were classified 
into rainy (December to May) and dry (June to 
November), while the breeding conditions were 
divided into milk-fed and weaned animals (fed 
pasture). 

To delete records with measurement errors 
(outliers), data consistency was analyzed through 
observations of significant variabilities within each 
age-matched group. Weight records out of the range 
given by the mean of the age-matched group (± 3 
standard deviations) were excluded. As a result, a 
total of 1,819 age-matched groups with an average 
of 8.3 records were observed (Table 1). 

Table 1
Summary of the data structure for Nellore Mocho cattle used in the study reared in northern Brazil

Information Quantity
Data 15,148

Animals with observation 3,115
With 3 observations 712
With 4 observations 698
With 5 observations 549
With 6 observations 659

With 7 to 10 observations 497
Breeding 282
Matrices 764

Animals in the kinship matrix 5,678
Contemporary groups 1,819

After editing, the database had 15,148 weight 
records belonging to 3,115 animals, born between 
1995 and 2010 and fed pasture, with a mean birth 

weight of 28 kg. Figure 1 shows the mean weight 
and number of records by age. 
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Figure 1. Record number and average body weight by age of Nellore Mocho cattle from northern Brazil

Data were analyzed following two steps: 1) 
definition of the fit order of the fixed regression 
curve, and 2) fit of the number of residual variance 
classes in the random regression models.
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Wherein: Y is the vector of N observations 
regarding Nd animals; β is a vector which contains 
the fixed effects and the regression coefficients bm 
of fixed effects; a is a vector Ka x ND of random 
regression coefficients of direct additive effects, 
wherein ND > Nd denotes the total number of 
animals analyzed, i.e. in the kinship matrix (5,678); 
Y is a vector Km x ND of random regression 
coefficients of maternal genetic effects; δ is a vector 
Kc x Nd of random regression coefficients of animal 
permanent environmental effect; λ is a vector Kq x 
Nm of random regression coefficients of maternal 
permanent environmental effects, wherein Nm 
equals to the number of females with progenies 
included in the dataset; e is a vector of random errors; 
X, Z1, Z2, Z3, and Z4 are the incidence matrices 
of fixed effects, direct genetic, maternal genetic, 
animal permanent environmental, and maternal 
permanent environmental effects, respectively; 
Ka, Kc, Km, and Kq are the (co) variance matrices 
among the regression coefficients of direct genetic, 
animal permanent environmental, maternal genetic, 
and maternal permanent environmental effects, 
respectively; A is the numerator matrix of the 
coefficients of relationship among individuals; IndNd 
is an identity matrix of size Nd; INm is an identity 
matrix of size Nm; ⊗ is the Kronecker product; and 
R is a diagonal matrix of residual variances, whose 
size varies with the analysis structure.

Covariance between direct additive genetic 
effects and breastfeeding was assumed to be zero. 

According to the adjusted model, (co) variances 
among random regression coefficients of direct 
and maternal additive genetic and permanent 
environmental and animal feeding were estimated 
by restricted maximum likelihood (REML), using 
WOMBAT software (Meyer, 2007). 

All models were initially compared by changing 
maximum likelihood function logarithm (Log L), 
through likelihood ratio test (LRT), as follows: 
LRTij = 2 Log Li - 2 Log Lj; wherein: Log Li is 
the likelihood function maximum for a full model i, 
and Log Lj is the likelihood function maximum for 
a reduced model j. The estimate of LRT compared 
with chi-square table value, with d degrees of 
freedom and significance level of 1%, wherein d is 
the difference between the number of parameters 
estimated by the full and reduced models.

Akaike (AIC) and Bayesian Schwarz (BIC) 
information criteria were used to compare non-
nested models and impose penalties according to 
the number of parameters being estimated.

Results and Discussion

When comparing function orders fitted by 
ordinary least squares method, the worst fit was 
observed for linear order and, as the fit-order is 
increased, RMS, AMD, R², and PSB improved as 
well. Moreover, the largest difference was between 
linear (k = 2) and quadratic (k = 3) fits (Table 2).

Table 2
Prediction error residual mean square (RMS), absolute mean deviation (AMD), determination coefficient (R2), 
percentage square bias (PSB) for the fitting of mean population trajectory by polynomial functions of different 
orders (k)

Order RMS* ADM* R² PSB
K=2 143.94 8.88 0.97 0.33
K=3 138.31 (-5.62) 8.65 (-0.23) 0.98 0.31
K=4 134.21 (-4.10) 8.53 (-0.12) 0.98 0.31
K=5 133.83 (-0.39) 8.51 (-0.01) 0.98 0.30
K=6 132.46 (-1.37) 8.46 (-0.05) 0.98 0.30
K=7 132.43 (-0.03) 8.46 (0.00) 0.98 0.30

* Data in parentheses represent the difference between the analyzed model and the following model.
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A linear fit was the worst among the fitting 
orders evaluated since it was far from the values 
observed in the beginning and end of the curve. In 
the other fit orders, functions differed mainly from 
the middle to the end of the growth curve, whereas 
fourth-order functions tended to bring curves closer 

to each other (Figure 2). Function orders higher 
than or equal to four had greater flexibility from 
the middle to the end of the curve when compared 
to lower orders. These models have therefore the 
capacity to represent a mean growth curve that is 
consistent with cattle body development.

Figure 2. Dispersion of observed mean weights according to age and estimated population mean trajectory (fixed 
regression with orthogonal age polynomials) by least squares according to fit order (K).

mean growth curve that is consistent with cattle body development. 
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Sakaguti et al. (2002) asserted that the lower flexibility of cubic functions compared to higher-

order functions has no effect on the fit of growth models to cattle body weight data. According to the 

authors, this is because cubic order functions provide a growth curve highly consistent with animal body 

development, which was thus chosen to represent a fixed function in random models. Additionally, higher-

order functions over-parameterize models and hence hinder data convergence in genetic parameter analyses. 

In this study, the second stage, which aimed to fit model residue, considered a cubic-order model 

for fixed regression fitting and quadratic functions to the model random part with different residual variance 

structures. Table 3 shows a model fit improvement as the number of residual variation class increases. LRT 
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Sakaguti et al. (2002) asserted that the lower 
flexibility of cubic functions compared to higher-
order functions has no effect on the fit of growth 
models to cattle body weight data. According to the 
authors, this is because cubic order functions provide 
a growth curve highly consistent with animal body 
development, which was thus chosen to represent 
a fixed function in random models. Additionally, 
higher-order functions over-parameterize models 
and hence hinder data convergence in genetic 
parameter analyses.

In this study, the second stage, which aimed to 
fit model residue, considered a cubic-order model 
for fixed regression fitting and quadratic functions 
to the model random part with different residual 
variance structures. Table 3 shows a model fit 
improvement as the number of residual variation 
class increases. LRT indicates a larger difference 
in Log L between CL6 and CL5 models. Such 
improvement is noticeable when comparing models 
by AIC and BIC.

Table 3
Number of parameters (NP), maximum likelihood function logarithm (Log L), Akaike information criterion 
(AIC), Bayesian information criterion (BIC), and likelihood ratio test (LRT) estimated by the different tested 
models

Model NP Log L AIC BIC
CL1 25 -43848.1 87746.2 87933.6
CL2 26 -43847.6 87747.3 87942.2 (CL2-CL1) = 0.9 ns

CL3 27 -43842.7 87739.4 87941.8 (CL3-CL2) = 9.9 **
CL4 28 -43829.7 87715.3 87925.2 (CL4-CL3) = 26.0 **
CL5 29 -43828.5 87715.0 87932.4 (CL5-CL4) = 2.3 ns

CL6 30 -43808.4 87676.9 87901.8 (CL6-CL5) = 40.1 **
CL7 31 -43807.9 87677.9 87910.3 (CL7-CL6) = 1.0 ns

CL8 32 -43807.9 87679.9 87919.8 (CL8-CL7) = 0 ns

CL: Model name added by the number of residual classes; NS Non-Significant; **Significant (P<0.01).

The fulfillment of AIC and BIC criteria is 
important to ascertain fit quality since both criteria 
consider the number of estimated parameters in 
a model. Also, their formulas downgrade more 
parameterized models, which can make it difficult 
to calculate genetic parameters due to variance 
decomposition. After analyzing different fitting 
models, these criteria were the most promising 
for the model selection process. As shown in 
Table 3, model CL6 had better fits regarding AIC 
and BIC guidelines and a more significant Log 
L improvement when compared to the previous 
one (CL5). Still according to Log L, AIC, and 

BIC standards, CL1 was the least suitable model, 
thereby, models considering a homogeneous 
residual variation are charged as less suitable for 
analysis of genetic parameters.

If compared to the significantly different 
heterogeneous classes (CL3, CL4, and CL6), 
the homogeneous class (CL1) showed residual 
variations at the beginning and the end of the curve 
smaller than that in the middle thereof (Figure 3). 
This way, a fit model that considers a single variation 
class is unsuitable since it disregards changes in 
residual variation.
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Figure 3. Estimates of homogeneous (CL1) and heterogeneous (CL3, CL4, and CL6) residual variance 

indicates a larger difference in Log L between CL6 and CL5 models. Such improvement is noticeable when 

comparing models by AIC and BIC. 

 

Table 3 
Number of parameters (NP), maximum likelihood function logarithm (Log L), Akaike information 
criterion (AIC), Bayesian information criterion (BIC), and likelihood ratio test (LRT) estimated by the 
different tested models 

Model NP Log L AIC BIC  
CL1 25 -43848.1 87746.2 87933.6  
CL2 26 -43847.6 87747.3 87942.2 (CL2-CL1) = 0.9 ns 
CL3 27 -43842.7 87739.4 87941.8 (CL3-CL2) = 9.9 ** 
CL4 28 -43829.7 87715.3 87925.2 (CL4-CL3) = 26.0 ** 
CL5 29 -43828.5 87715.0 87932.4 (CL5-CL4) = 2.3 ns 
CL6 30 -43808.4 87676.9 87901.8 (CL6-CL5) = 40.1 ** 
CL7 31 -43807.9 87677.9 87910.3 (CL7-CL6) = 1.0 ns 
CL8 32 -43807.9 87679.9 87919.8 (CL8-CL7) = 0 ns 

CL: Model name added by the number of residual classes; NS Non-Significant; **Significant (P<0.01). 
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If compared to the significantly different heterogeneous classes (CL3, CL4, and CL6), the 

homogeneous class (CL1) showed residual variations at the beginning and the end of the curve smaller than 

that in the middle thereof (Figure 3). This way, a fit model that considers a single variation class is unsuitable 

since it disregards changes in residual variation. 
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Figure 3 also shows that residual variation 
estimates at the beginning of the growth curve were 
high for all models except for CL6, which had low 
variation (76.9 kg). Toral, Alencar and Freitas (2009) 
assessed residual variations in beef cattle growth 
curves by different structures and reported similar 
results. They observed that residual variation starts 
low and increases sharply right at the beginning of 
the curve but tends to decrease in the end.

Once residual variation is assumed homogeneous, 
considerable distortions are created in total 
variance partitioning (Sousa, Silva, Sarmento, 

Sousa, & Souza, 2010). We observed implications 
in the estimated residual variations, unlike those 
considering heterogeneity. Figure 4 shows the 
effect of different residual classes on various 
sources of variation such as direct and maternal 
heritabilities, the ratio of permanent and maternal 
environmental variations, and phenotypic variation. 
Thus, unsuitable residual variance modeling entails 
uneven total variance decomposition, what has 
serious implications mainly on the direct heritability 
estimates of a given trait.
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When estimated by a homogeneous model, 
maternal heritability was about 0.12 near 
parturition, and by the heterogeneous model CL6, it 
was 0.25. Maternal heritability different from zero 
at parturition is biologically consistent, as dams 
have an influence on offspring since pregnancy, 
i.e., maternal effects contribute since before animal 
birth (Sarmento et al., 2006).

As part of phenotypic variation, permanent 
animal environment estimated considering residual 
variation homogeneity and heterogeneity differed 
only from the third part of the curve to the end, 
showing very low magnitude (Figure 4), as did the 

Figure 4. Direct heritability (h2 - upper left) and maternal (m2 - upper right) and variance components for animal 
permanent environment (C2 - lower left) and maternal (q2 - lower right) as a proportion of the phenotypic variance.

Figure 3 also shows that residual variation estimates at the beginning of the growth curve were high 

for all models except for CL6, which had low variation (76.9 kg). Toral, Alencar and Freitas (2009) assessed 

residual variations in beef cattle growth curves by different structures and reported similar results. They 

observed that residual variation starts low and increases sharply right at the beginning of the curve but tends 

to decrease in the end. 

Once residual variation is assumed homogeneous, considerable distortions are created in total 

variance partitioning (Sousa, Silva, Sarmento, Sousa, & Souza, 2010). We observed implications in the 

estimated residual variations, unlike those considering heterogeneity. Figure 4 shows the effect of different 

residual classes on various sources of variation such as direct and maternal heritabilities, the ratio of 

permanent and maternal environmental variations, and phenotypic variation. Thus, unsuitable residual 

variance modeling entails uneven total variance decomposition, what has serious implications mainly on the 

direct heritability estimates of a given trait. 

 

 
 
Figure 4. Direct heritability (h2 - upper left) and maternal (m2 - upper right) and variance components for 
animal permanent environment (C2 - lower left) and maternal (q2 - lower right) as a proportion of the 
phenotypic variance. 

 

When estimated by a homogeneous model, maternal heritability was about 0.12 near parturition, 

and by the heterogeneous model CL6, it was 0.25. Maternal heritability different from zero at parturition is 

biologically consistent, as dams have an influence on offspring since pregnancy, i.e., maternal effects 

maternal permanent environment. Different results 
were observed by Sarmento et al. (2011) and by S. 
C. D. Sousa et al. (2010), who observed variations 
in estimates between models that were much more 
expressive.

Differences between homogeneous (CL1) and 
heterogeneous (CL6) models were evaluated using 
predicted genetic values for the five best animals 
at birth, 240 and 660 days of age (Table 4). When 
homogeneity was assumed, predicted genetic values 
were almost all underestimated if compared to those 
considering a heterogeneous residual variation.
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Table 4
Predicted genetic values of the five best animals for birth weight at 240 and 660 days of age, considering 
residual variation homogeneity and heterogeneity (CL6)

Age (days) Animal
Predicted Genetic Value (kg)

Homogeneous CL6 Deviation (%)1 Correlation (ρ)

Birth

12032 3.12 4.61 -32.48

0.97

10755 3.29 4.60 -28.40
18367 2.61 3.42 -23.80
1291 2.35 3.22 -27.01
18358 2.26 3.08 -26.61
11374 2.40 3.07 -21.64
16075 2.18 3.06 -28.91
8337 2.18 2.95 -25.97
18345 1.82 2.80 -35.06
13904 2.34 2.78 -15.89
15445 2.16 2.77 -21.91
10637 2.11 2.72 -22.17
10749 1.96 2.66 -26.37
578 2.30 2.65 -13.27

11947 1.98 2.60 -23.72
18237 1.79 2.56 -30.09
12251 1.77 2.54 -30.16
18343 1.65 2.54 -34.96
17641 1.73 2.53 -31.81
18355 1.76 2.53 -30.57
7932 2.11 2.52 -16.20
18338 1.80 2.52 -28.50
14569 1.95 2.48 -21.24
10810 1.44 2.42 -40.31
17916 1.67 2.42 -30.76

57 1.90 2.41 -21.46
18357 1.70 2.39 -29.07
7821 1.71 2.32 -26.48
17686 1.78 2.29 -22.04
11817 1.72 2.26 -23.93
18341 1.63 2.25 -27.38
15426 1.52 2.24 -32.45
11170 1.59 2.24 -28.87
15279 1.87 2.23 -16.23
10819 1.36 2.22 -38.86
16016 1.52 2.21 -31.34
17036 1.77 2.21 -19.57
101 1.63 2.19 -25.48

10796 1.60 2.18 -26.80
18389 1.68 2.17 -22.68

continue
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240 days

17615 23.23 23.13 0.44

0.99

17917 22.35 21.70 2.98
1045 21.26 21.18 0.36
10755 20.54 21.16 -2.91
17206 20.47 20.92 -2.17
17537 20.11 20.10 0.04
18345 19.41 19.71 -1.52
16664 19.29 19.49 -1.03
17557 19.77 19.37 2.04
16075 19.23 18.96 1.43
17536 18.66 18.51 0.79
16945 18.43 18.19 1.33
18237 18.54 18.12 2.32
18343 17.24 17.39 -0.88
16029 17.23 17.16 0.39
16033 16.98 17.11 -0.78
5910 17.98 17.07 5.32
8517 16.77 16.90 -0.80
15973 17.04 16.89 0.93
16036 16.60 16.46 0.84
8700 16.47 16.38 0.53
17503 15.98 16.14 -0.99
18303 16.32 16.11 1.28
16007 15.87 16.05 -1.11
16038 16.30 16.02 1.79
17659 17.35 16.00 8.42
18358 15.91 15.99 -0.47
8693 16.12 15.97 0.93
8680 15.76 15.84 -0.56
8725 15.76 15.83 -0.39
18352 15.86 15.81 0.32
15426 16.10 15.81 1.86
13617 16.06 15.72 2.16
16133 15.34 15.59 -1.62
18305 15.66 15.58 0.49
17825 15.62 15.55 0.43
18119 15.68 15.42 1.68
17275 16.52 15.41 7.19
16790 15.63 15.37 1.70
17920 15.47 15.32 1.03

continue

continuation
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660 days

1045 66.50 67.35 -1.26

0.99

17615 64.19 64.90 -1.10
17536 63.51 64.38 -1.37
17206 55.77 57.23 -2.56
13617 51.34 52.62 -2.42
16945 49.12 49.47 -0.70
16939 47.49 47.84 -0.72
16038 47.01 47.53 -1.08
16664 45.38 46.36 -2.10
16286 45.49 46.09 -1.30
18305 45.02 45.38 -0.78
17557 44.11 44.87 -1.71
17537 44.60 44.86 -0.58
8693 44.10 44.82 -1.60
8725 43.71 44.42 -1.60
16033 43.42 44.14 -1.63
17743 43.69 43.74 -0.12
17917 42.70 43.12 -0.99
17540 41.45 42.12 -1.58
15980 41.77 41.96 -0.45
17547 41.57 41.91 -0.82
15591 41.48 41.82 -0.82
16009 41.46 41.67 -0.52
16573 40.94 41.21 -0.66
17545 40.38 40.93 -1.34
16790 40.34 40.91 -1.38
18303 40.35 40.76 -1.00
17843 40.09 40.63 -1.33
16665 39.66 40.43 -1.91
16996 40.09 40.42 -0.83
16186 39.99 40.42 -1.06
17750 39.77 40.36 -1.45
8680 39.58 40.14 -1.39
17503 39.35 39.97 -1.54
17920 39.48 39.95 -1.17
17203 38.25 39.71 -3.66
16960 39.50 39.69 -0.48
17275 41.35 39.55 4.56
15870 38.73 39.16 -1.10
17140 38.76 39.14 -0.98

1Deviations of the genetic values predicted by the homogeneous and CL6 models (expressed as a percentage).

continuation
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In analyzing the deviations of predicted genetic 
values (in percentage), the largest values were found 
for birth weight, ranging from 23.80 to 32.48%, for 
the five best animals within the population. At 240 
and 660 days of age, the relative variation accounted 
for between 1 and 3% of the genetic value. We also 
found that the Spearman correlation between the 
models for age at birth was 0.97.

Our findings confirm that improper residual 
modeling results in erroneous estimates of animal 

genetic value, which, in turn, lead to the selection of 
less productive animals, and in the long term, large 
production losses for wasting herd genetic potential. 
Predicting the genetic value of early-stage animals 
is an important decision-making tool in terms of 
genetic improvement. It allows to increase genetic 
gain and reduce intergenerational interval. Thus, the 
correlation between genetic values tends to increase 
when they are predicted at closer ages, as shown in 
Figure 5.

Figure 5. Spearman correlation of direct additive genetic value obtained at different ages by a 6-class residual variance 
model (CL6).

 
 
Figure 5. Spearman correlation of direct additive genetic value obtained at different ages by a 6-class 
residual variance model (CL6). 

 

The correlation of genetic values had moderate to high magnitude between animals with 660 days 

of age and at weaning (240 days). Therefore, selecting the best animals by weight at 240 days of age 

presupposes selecting the best animals at 660 days of age. 

 

Conclusion 

An order-four (cubic) polynomial function is the best suited to describe the mean growth curve of 

Nellore Mocho cattle by random regression models. 

A heterogeneous residual variation structure is more suitable for correctly modeling variations in 

the growth curve of Nellore Mocho cattle. 

A six-class model was superior for growth modeling of Nellore Mocho cattle, reared in northern 

Brazil and with birth age of 660 days. 
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selecting the best animals by weight at 240 days of 
age presupposes selecting the best animals at 660 
days of age.

Conclusion

An order-four (cubic) polynomial function is the 
best suited to describe the mean growth curve of 
Nellore Mocho cattle by random regression models.

A heterogeneous residual variation structure is 
more suitable for correctly modeling variations in 

the growth curve of Nellore Mocho cattle.

A six-class model was superior for growth 
modeling of Nellore Mocho cattle, reared in 
northern Brazil and with birth age of 660 days.
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