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Abstract

Traditionally, water conditions of coffee areas are monitored by measuring the leaf water

potential (ΨW) throughout a pressure pump. However, there is a demand for the develop-

ment of technologies that can estimate large areas or regions. In this context, the objective

of this study was to estimate the ΨW by surface reflectance values and vegetation indices

obtained from the Landsat-8/OLI sensor in Minas Gerais—Brazil Several algorithms using

OLI bands and vegetation indexes were evaluated and from the correlation analysis, a qua-

dratic algorithm that uses the Normalized Difference Vegetation Index (NDVI) performed

better, with a correlation coefficient (R2) of 0.82. Leave-One-Out Cross-Validation (LOOCV)

was performed to validate the models and the best results were for NDVI quadratic algo-

rithm, presenting a Mean Absolute Percentage Error (MAPE) of 27.09% and an R2 of 0.85.

Subsequently, the NDVI quadratic algorithm was applied to Landsat-8 images, aiming to

spatialize the ΨW estimated in a representative area of regional coffee planting between

September 2014 to July 2015. From the proposed algorithm, it was possible to estimate ΨW

from Landsat-8/OLI imagery, contributing to drought monitoring in the coffee area leading to

cost reduction to the producers.

Introduction

In Brazil, coffee production has great economic and social importance, generating employ-

ment, and increasing the population’s income. However, such production is threatened by

extreme weather events, such as prolonged droughts and frost. Therefore, coffee plantations

need to be constantly monitored in order to establish adequate management practices to mini-

mize production losses. Traditionally, water conditions of coffee areas are monitored by
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measuring the leaf water potential (CW) through a pressure pump. However, measurement is

time-consuming, involves high-cost equipment and maintenance, and is applicable only in

small areas.

Monitoring the water conditions of coffee plantations requires the use of technologies that

allow the evaluation of large areas or regions. In this context, the use of remote sensing pres-

ents as an opportunity to quantify drought stress when there is no in-situ weather station avail-

able (i.e., for time-series creation) [1,2]. In the past years, the new generation of free medium-

resolution satellite imagery such as the Landsat-8/OLI and Sentinel-2/MSI presents suitable

information for drought monitoring in agricultural lands [3,4]. Moreover, efforts such as the

Harmonized Landsat and Sentinel-2 (HLS) to combine both satellites in a virtual constellation

provide a seamless reflectance dataset with a reduced temporal resolution hence offering a

high potential for crop monitoring [5].

Recently, Ramoelo et al. [6] proposed modeling techniques to estimate theCw of crops

using spectral data obtained by remote sensing using the RapidEye sensors. Furthermore, Che-

mura et al. [7] evaluated a model to estimate plant water content (PWC) in Coffea arabica
based on field spectrometry. There are also vegetation indices that correlate well with biophysi-

cal vegetation parameters and are widely used in estimating biomass, changes in crop develop-

ment, and are indicative of biotic and abiotic stress [7,8]. For example, the Normalized

Difference Vegetation Index (NDVI) is one of the most commonly used vegetation indices in

ecological studies as it provides a general measure of vegetation state [9,10]. As these biophysi-

cal parameters are related to climate variability [11], NDVI could be used as a surrogate mea-

sure of its variability [10,12]. Therefore, several works attempted to explore the relationship

between NDVI and other vegetation indices (such as NDWI) with leaf water potential and

water stress in different crop cultures. Pu et al. [13] evaluated oak leaves with different water

concentrations and observed increased reflectance at wavelengths from 400 to 700 nm and

decreased from 750 nm when submitted to water stress. Ramoelo et al. [6] found moderate val-

ues for the Pearson correlation between NDVI and Cw, in dry seasons, using RapidEye images

in South Africa, for different species of trees and pasture. As NDVI is sensitive to the presence

of chlorophylls and other plant pigments that are responsible for the absorption of red band

radiation [14], lower NDVI values under water deficit conditions indicate a decrease in chloro-

phyll concentration in leaves. Despite NDVI, another commonly used vegetation index for

drought monitoring is the Normalized Difference Water Index (NDWI) [1,6,15].

Considering that Cw is a precise parameter for measuring the water condition of the plant

and that the spectral data obtained by remote sensing allows extensive area monitoring, mod-

els that establish a relationship between leaf water potential and remote sensing vegetation

data that can be used as a monitoring technology of the water conditions of coffee plantations.

Therefore, the objective of this study was to propose algorithms to estimate Cw of coffee areas

in Minas Gerais (Brazil) from remote sensing data. To address this objective, the following

procedures were performed: i) in-situ measurements of Cw were carried out between 2013–

2017 over two cities in Minas Gerais state; ii) Landsat-8/OLI surface reflectance and vegetation

indices were correlated with in-situCw; iii) Leave-One-Out-Cross-Validation (LOOCV) were

used to obtain the performance and applicability of the algorithms; iv) Best algorithm was

applied to Landsat-8/OLI imageries for spatialization.

Materials and methods

Study area

The study was conducted in experimental Coffea arabica variety Catuaı́ (spacing of 3,40 x 0,65

m) areas located in the municipalities of Santo Antônio do Amparo and Lavras (Fig 1). Both
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cities are located in the south region of Minas Gerais, with an average altitude of approximately

950 m. According to the Köppen-Geiser climate classification, the region has a Cwa climate,

humid subtropical, with hot and humid summers and cold and dry winters, with an annual

average air temperature of 19.4 ˚C and average annual total rainfall of 1530 mm [16].

Additionally, Cw (in MPa) was determined following Scholander et al. [17], using a Scho-

lander pressure chamber (1000 PMS Instruments Plant Moisture). All measurements were

made in fully expanded leaves of the 3rd or 4th pair from the tip of an actively growing branch

(plagiotropic branch). In order to avoid any inhibitory effects of light or temperature on the

leaf water potential, the measurements were conducted before dawn (between 04:30 and

05:30), at a mean temperature of 18 ˚C. Moreover, for the matter of this study, coffee plants

were sampled in a 44.2 m2 area at each 10 m. Cw was evaluated for 17 dates, using the mean

values of four replicates for the satellite images comparison.

Fig 1. Study area.

https://doi.org/10.1371/journal.pone.0230013.g001

Table 1. Landsat-8/OLI configuration for each spectral band (Barsi et al., 2014).

OLI Bands Spectral Interval (nm) Signal-To-Noise Ratio

B1 435–451 238

B2 452–512 364

B3 533–590 302

B4 636–673 227

B5 851–879 204

B6 1566–1651 265

B7 2107–2294 334

https://doi.org/10.1371/journal.pone.0230013.t001
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Remote sensing data were obtained from Landsat-8 satellite imagery, Operational Land

Imager (OLI). The Landsat-8 satellite was selected due to its spatial resolution and data avail-

ability close to the field campaigns. Launched in 2013, OLI sensor provides imagery with 30 m

spatial resolution in the visible to shortwave infrared wavelengths (See Table 1), with a revisit

time of 16 days [18]. This sensor shows similar characteristics when compared to other sensors

from the Landsat program (i.e., Landsat-5 and Landsat-7) with more advanced radiometric

and geometric quality.

The images were obtained free of charge via the United States Geological Survey (https://

earthexplorer.usgs.gov/) for the path-row 218–75 in surface reflectance (Landsat 8 Surface

Reflectance product–L8SR) [19]. L8SR uses an internal algorithm to provide the user with a

product with atmospheric correction. The correction used in L8SR is based on the 6SV (Sec-

ond Simulation of the Satellite Signal in the Solar Spectrum–Vector Version) [19,20] and sev-

eral authors demonstrated the accuracy of such correction for different targets worldwide,

such as vegetation [21,22] and water [23].

Images from the years 2014, 2015, 2016, and 2017 were selected for dates close to the field

Cw collection dates. The spectral bands used are in Table 2. To obtain the surface reflectance

values, a pixel was selected in each of the field experiments: (i) Lavras with 21o13’40” S;

44o57’44” W; altitude 963 m and (ii) Santo Antônio do Amparo: 20o54’57” S; 44 o51’13” W;

altitude 1090 m. The band values 2, 3, 4, 5 and 6 were extracted in coordinates abovemen-

tioned. With the reflectance values, vegetation indices NDVI [24] and NDWI [25] were calcu-

lated using Eqs 1 and 2 for NDVI and NDWI, respectively.

NDVI ¼
R850� R640

R850 þ R640

ð1Þ

NDWI ¼
R850� R1600

R850 þ R1600

ð2Þ

Where R850, R640, and R1600 are the reflectance at bands 5, 3 and 6 of OLI sensor with the

subscript referring to the center wavelength of each spectral band. Moreover, precipitation

Table 2. Regression models and coefficient of determination (R2). Where B represents the satellite’s spectral bands.

Model Name Models Pearson r R2

B2Lin Cw = 0.1266–33.1014 (B2) -0.85 0.71

B3Lin Cw = 0.5308–24.4544 (B3) -0.61 0.33

B4Lin Cw = 0.4577–24.9085 (B4) -0.84 0.68

B5Lin Cw = -2.038 + 3.891 (B5) 0.57 0.28

B6Lin Cw = 1.473–9.955 (B6) -0.56 0.27

NDVILin Cw = -4.329 + 4.806 (NDVI) 0.91 0.82

NDWILin Cw = -1.455 + 2.375 (NDWI) 0.74 0.52

B2Quad Cw = -0.2065–10.9849 (B2) - 267.6433 (B2)2 - 0.71

B3Quad Cw = -3.135 + 107.559 (B3)– 1096.141 (B3)2 - 0.48

B4Quad Cw = -0.0988 + 2.5995 (B4)– 193.7306 (B4)2 - 0.69

B5Quad Cw = -6.825 + 29.639 (B5)– 32.893 (B5)2 - 0.36

B6Quad Cw = -0.8057 + 12.3297 (B6)– 53.3119 (B6)2 - 0.23

NDVIQuad Cw = -8.712 + 17.325 (NDVI) –8.739 (NDVI)2 - 0.89

NDWIQuad Cw = -1.865 + 5.539 (NDWI)– 4.693 (NDWI)2 - 0.52

https://doi.org/10.1371/journal.pone.0230013.t002
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data were obtained through a National Institute of Meteorology (INMET) meteorological sta-

tion located in Lavras (-21.75˚ and -45.00˚).

Table 2 shows the regression models and their respective determination coefficients for Cw

estimation using the spectral bands and the NDVI plant index. The quadratic models showed

higher values for the coefficient of determination. For a study in vineyards in the Mediterra-

nean using a field spectroradiometer, Serrano et al. (2010) obtained R2 = 0.57. When perform-

ing the multivariate analysis, using the VIF selection, the explanatory variables that best fit the

multivariate model were bands 2 and both vegetation indices (NDWI and NDVI), with VIF

values lower than 5. Therefore, the proposed multivariate model was Cw = -2.4877–13.753

(B2) + 0.26402�NDVI + 0.4254�NDWI, which presented R2 = 0.83 (p� 0.05; n = 17).

Statistical analysis and algorithm validation

The statistical relationships between Cw and remote sensing data were obtained by the coeffi-

cient of determination (R2) analysis and linear, quadratic, and multivariate models—with vari-

able selected using the Variance Inflation Method (VIF) from R Package [26]. VIF is a widely

used tool to measure the degree of multicollinearity between two or more predictor variables

[27]. To validate the models, Leave One Out Cross-Validation (LOOCV) technique was

applied to all models [28]. LOOCV is a commonly used statistical method for small sample

sizes that allow whole samples to be used in training and validation procedures [29,30]. At

each step, n-1 samples were used to train the model and another one is used for validation.

This process is repeatedly executed until all sample pairs were validated (n = 18 in this work).

For each model, Mean Absolute Percentage Error (MAPE) (Eq 3), Root Mean Squared Error

(RMSE) (Eq 4), determination coefficient (R2) and Pearson r coefficient were calculated.

MAPE ¼ 100 �
Pn

i¼1

ðyi � xiÞ
xi

ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
Pn

i¼1
ðxi � yiÞ

2

q

ð4Þ

Where xi is the field measured Cw values, and yi is the satellite estimated Cw values for

each station after the LOOCV. Therefore, after the algorithm validation, the one with the best

results was applied to Landsat-8 imagery using a geographic information system (GIS) and

Cw was therefore calculated. To illustrate the spatialization of estimated Cw values, a pilot

area of approximately 13 km2 was selected in Santo Antônio do Amparo, from September

2014 to July 2015.

Results

Variability of remote sensing, PH, and precipitation for the study area

Fig 2 shows the time-series of Landsat-8 reflectance values for both sites of Lavras and Santo

Antônio do Amparo for NDVI and NDWI (Fig 2A), and bands 2, 3, 4, 5 and 6 (Fig 2B) for the

dates of field surveys. Note that dates for Lavras and STA are referring to dates wereCw was

measured in each site. In the dates corresponding to the drought period in the region (August

and September), the reflectance values in bands 2, 3, 4, and 6 increase, and the inverse occurs

for band 5 and vegetation indices NDVI and NDWI. It is also important to note the variability

of the intensity of NDVI values. For the drought season of 2014 (September 29), NDVI pre-

sented a value of 0.48, the lowest value in the analyzed time-series.

Fig 3 shows the monthly rainfall that occurred in the studied period, as well as the average

normal rainfall for the region and the mean values of Cw, measured in the field. The variation
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of Cw values was from 0 up to -1 MPa, except for September 2014, when the value reached

-2.4 MPa. Cw values follow the observed for the vegetation indices and reflectances (Fig 2A

and 2B), as the minimum Cw was for the same date of minimum NDVI value. On the other

dates, Cw follows the tendency of the spectral response, being high in the rainy period and low

at the end of the dry season.

Concerning the precipitation levels, the precipitation in 2014 was much lower than

expected, according to the historical mean. The water potential is a crucial water relation

parameter that describes the energy state of water; lowCw is associated with the extent of

plant dehydration [31]. Therefore, according to the values of Cw, the region has favorable cli-

matic conditions to maintain coffee hydration, but the occurrence of low rainfall in 2014

resulted in a moderate water deficit to the plants. Variations in leaf water status may cause

alterations in photosynthetic pigment concentrations and photosynthetic activity, in turn,

leading to changes in spectral reflectance properties [32].

Leaf water potential algorithms

The best Pearson correlations were between the values of Cw and the spectral bands of the vis-

ible B2 (R = -0.85), B3 (R = -0.61), and B4 (R = -0.84) (Table 2). There was a strong negative

correlation indicating that for smaller Cw values, a higher reflectance occurs in these bands.

The results obtained for the bands of blue and red (bands 2 and 4, respectively), characterize a

higher reflectance in the absorption bands of chlorophyll, indicating a smaller photosyntheti-

cally active area. Drought stress stimulates earlier leaf senescence, particularly in physiologi-

cally older leaves. Besides, this drought stress can decrease the net photosynthetic rate per unit

leaf area. These decreases are strongly associated with stomatal factors, as coffee stomata are

quite sensitive to both soil water availability and evaporative air demand [31].

Fig 2. Temporal variability of vegetation indices (A) and surface reflectance (B) for Lavras and Santo Antônio make Amparo points.

https://doi.org/10.1371/journal.pone.0230013.g002
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LOOCV results and spatialization

Then, the models were applied to the LOOCV technique in order to validate the empirically

developed algorithms. The results of the LOOCV were presented in Table 3. For most of the

algorithms, the results were not accurate, with R2 values lower than 0.6 and MAPE and RMSE

values high, indicating errors of up to 50% in theCw estimate (MAPE values higher than 50%

were not shown in Table 3 for brevity).

The best result obtained for the LOOCV was for the Quadratic NDVI algorithm (NDVI-

Quad), with errors lower than 30%. Moreover, a good agreement between the field-measured

Cw and the predicted Cw by OLI sensor (R2 = 0.84, Pearson r = 0.92) was observed. These

Fig 3. Variability of Cw (MPa) values, total rainfall (mm), and average mean rainfall (mm), according to the meteorological station (Lavras, MG), from

2014 to 2017.

https://doi.org/10.1371/journal.pone.0230013.g003

Table 3. Statistical results obtained through the LOOCV.

Model Name MAPE (%) R2 Pearson r RMSE (Mpa)

MV� 48.97 0.18 0.48 0.48

B4Lin 44.63 0.39 0.66 0.39

NDVILin 45.23 0.67 0.83 0.29

NDWILin 37.18 0.34 0.62 0.41

B4Quad 49.79 0.05 -0.14 0.65

NDVIQuad 27.09 0.85 0.93 0.21

NDWIQuad 31.33 0.24 0.54 0.46

Values in bold indicate the best results for each statistical metric.

�Multivariate Model

https://doi.org/10.1371/journal.pone.0230013.t003
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results are in agreement with the exploratory analysis (See Table 3), in which NDVIQuad was

the best regression to estimate Cw. Fig 4 shows the results of the LOOCV using the NDVIQuad

algorithm, with the satellite predicted Cw and the values obtained in the field.

Thus, with the best results for the NDVIQuad model, it was inserted into the geographic infor-

mation system (GIS) and the values ofCw were estimated from Landsat-8 OLI images between

September 2014 and July 2015, corresponding to a dry and rainy period, respectively. Fig 5

shows the map of estimated Cw values in an area representative of the study region. It was esti-

mated that, during the dry season (September/2014), the meanCw value was -0.91 ± 0.35 MPa.

For January 2015, as precipitation increases, the meanCw was -0.70 ± 0.29 MPa. The increase

inCw values was also observed until June 2015, with mean estimated Cw of -0.50 ± 0.25 MPa.

Fig 4. LOOCV results for the NDVIQuad algorithm. The upper left box refers to MAPE, R2, Pearson r, and RMSE for the validation using

LOOCV.

https://doi.org/10.1371/journal.pone.0230013.g004
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With the end of the rainy season, mean Cw starts to decrease again (mean values of -0.61 ± 0.25

MPa). Furthermore, as orbital remote sensing provides a synoptic view of land areas, the spatial

variability ofCw can be beneficial for planning coffee management.

Discussions

The currently widely used method to assess plant drought and water status is the pressure

chamber. However, this method has the limitations of being destructive, point-based, and

user-dependent, which restricts large areas of monitoring. In this work, we provided a Land-

sat-8/OLI-based Cw algorithm using NDVI to predict Cw with reliable accuracy

(MAPE < 30%, R2 > 0.85, RMSE < 0.21 Mpa). Therefore, it was possible to apply the algo-

rithm and obtain a synoptic view of an experiment area, which could contribute to cost reduc-

tion in coffee water status management.

The use of NDVI as an indicator of drought vegetation stress and soil moisture was already

reported by several authors [2,9,10,12] as NDVI provides a general measurement of vegetation

state and health and has been used for accessing drought status since the 1970s when this

index was proposed by Rouse [33]. However, there is also a difficulty in monitoring water

stress using vegetation indices as this response is observed when notable damage to the culture

has already occurred [10].

When the plant is submitted to a water stress condition, NDVI values tend to decrease as

water conditions alter the biophysical conditions in the leaves. Despite near-infrared and red

bands not being directly correlated with the water content, they are linked to chlorophyll and

other biophysical parameters such as aboveground net primary production [34], green leaf

biomass and leaf photosynthetic activity [35] and these variables are linked to water stress [36].

Gu et al. [37] found a high correlation (r = 0.73) between fractional water index (FWI) and

both NDVI and NDWI for sites surrounded by relatively homogeneous vegetation with silt

loam soils at Oklahoma, USA. Furthermore, Mbatha and Xulu (2018) also demonstrate the

applicability of NDVI to monitor the impact of intense drought in South Africa due to El Niño

effects. The results obtained for the quadratic NDVI model in this work were better than those

obtained by Ramoelo et al. (2015) and better than those obtained by Rallo et al. (2014), with R2

= 0.36 and RMSE of 0.44 MPa, and Cotrozzi et al. (2017), with R2 = 0.65 and RMSE of 0.51

MPa, using a field spectroradiometer.

Conclusions

In this work, we provided an empirical algorithm for estimate Leaf Water Potential (Cw)

using Landsat-8 surface reflectance and vegetation indices data for Coffee Arabica areas in

Minas Gerais state, Brazil. From the validation, a quadratic NDVI algorithm presented the

best result forCw estimative, with Mean Absolute Percentage Error (MAPE) of 27.09% and an

R2 of 0,85, being, therefore, an option to estimate Cw of coffee areas from the surface reflec-

tance obtained from the Landsat-8 satellite OLI sensor. The spatialization of the estimated Cw

values in the region is a technology that can enable the satellite monitoring of water conditions

of coffee plants to establish appropriate practices, such as irrigation economics, pest and dis-

ease control, and fertilization management, allowing environmental and economic sustainabil-

ity of coffee plantations in the largest coffee region of Brazil.

Fig 5. Cw estimated (MPa) between September 2014 and July 2015, in an area representative of the study region, in Santo Antônio do

Amparo.

https://doi.org/10.1371/journal.pone.0230013.g005
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