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Abstract 
In the current scenario of climate change, sorghum crop has high growth potential, requiring adaptation and 
selection studies for the various Brazilian production environments. Sorghum is among the most drought-tolerant 
cereals; however, extended summer can reduce the size and number of grains in the plant, reflecting into poorer 
yields. Sorghum breeding programs aim to develop hybrids more tolerant to water deficit, to ensure profitable 
yield even in the face of drought stress. The objective of the present study was to evaluate the effects of water 
restriction on grain sorghum hybrids in the pre- and post-flowering phases in the Brazilian semiarid. Twenty-five 
hybrids were evaluated under controlled irrigation conditions in Nova Porteirinha-MG and Teresina-PI. In the 
Nova Porteirinha, the hybrids were cultivated under conditions of non-drought stress and with drought stress in 
pre- and post-flowering stage. On the other hand, in Teresina, the experiment took place with non-drought stress 
and drought stress at post-flowering stage. The experimental design was in randomized complete blocks, in 
factorial scheme, with three replications. Drought stress reduced grain yield by more than 40%, showing that 
even being resistant, sorghum is affected by drought. Hybrids 1168093, 1167092, 1236020 and 1423007 showed 
high yields in the various environments, outyielding the commercial controls, what allows the recommendation 
of these cultivars for the semiarid areas or late off-season in the Cerrado region. 

Keywords: abiotic stress, drought stress, semiarid, Sorghum bicolor 
1. Introduction 
Climate change, especially those concerned with availability of water during the crop growing, is among the 
main problems of world agriculture. In Brazil, in some regions or growing seasons, such as in the Semiarid and 
during the second crop in the Cerrado, prolonged period of drought is common, alternating with periods of 
irregular rainfall distribution, causing significant losses in grain yield of cereals. The use of crops that are more 
tolerant to drought, such as sorghum, can partially mitigate these climate effects. More stable hybrids under 
drought stress conditions are essential to avoid losses due to these uncontrollable climate variations (Menezes et 
al., 2015; Reddy, 2019; Batista et al., 2019) 

Sorghum is one of the most drought tolerant cereals, presenting good yield potential in regions with irregularity 
of rainfall, due to its dense and deep root system, leaf stay-green, ability to reduce transpiration through leaf curl, 
stomatal closure and reduced metabolic processes (Xu et al., 2000; Blum, 2004; Reddy et al., 2009; Mutava et al., 
2011; Reddy, 2019). In Brazil, sorghum is a rainfed crop, always in late plantings, when the risk for the growing 
of corn increases. Sorghum is the best planting option in the Brazilian semiarid and in the so-called late second 
crop (Santos et al., 2005; Cysne & Pitombeira, 2012; Tabosa et al., 2013; Menezes, 2016). Nevertheless, when 
planted too late, it can still suffer reduction in its yield. 

The lack of local research, especially of tests of cultivars more adapted to regions with adverse climatic 
characteristics has limited the expansion of sorghum cultivation in Brazil. To minimize the effects of genotypes × 
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environments interaction and have greater predictability of behavior, in an efficient and rational way, it is 
necessary to identify more stable cultivars (Ramalho et al., 2012; Martins et al., 2016). Thus, both evaluation and 
identification of sorghum hybrids which outstanding performance under these growing conditions is essential, 
providing the farmer with accurate information for the use of sorghum in its production system.  

Drought stress is directly related to the reduction in grain yield, besides reflecting in some morphophysiological 
characteristics of the plant. Sorghum crop suffers interference from drought in different ways at the 
developmental stages, depending on whether stress occurs before (pre) or after flowering (post) (Tardin et al., 
2013; Batista et al., 2019). In pre-flowering, the plants present leaf curl and discoloration. On the other hand, 
after flowering, the plants show symptoms of early death, stem collapse and lodging (Borrell et al., 2000; Blum, 
2004). The physiological responses to drought tolerance may vary according to the severity and duration of 
stress imposition, phenological stage and genetic material (Shao et al., 2008; Magalhães et al., 2012). As the time 
of stress occurrence in rainfed planting is not predictable, it is necessary to study the performance of the hybrids 
in more than one stress condition. 

Even if the mechanisms that confer sorghum tolerance to drought are known, the understanding of how the plant, 
in different stages of its growth, reacts to factors limiting its development becomes necessary. The use of this 
information aims to allow the expansion of sorghum cultivation, especially in regions with greater problems of 
drought.  

The objective of this work was to carry out the phenotypic selection of grain sorghum hybrids when subjected to 
drought stress in pre- and post-flowering of the plant, aiming to select those best suited for planting in the 
Semiarid region and at the second crop in the Cerrado bioma.  

2. Material and Methods 
2.1 Location 

The experiments were carried out at the experimental station of Embrapa Maize and Sorghum located in Nova 
Porteirinha-MG and at the experimental station of Embrapa Mid-North in Teresina-PI. These sites are located in 
a semiarid region, and present a well-defined dry season, allowing water control to be performed only by 
irrigation. Nova Porteirinha is situated in the mesoregion of the North of Minas Gerais, considered as a semi-arid 
area. The geographical coordinates are 15°48′ S latitude and 43°18′ W longitude. The climate, according to 
Köppen, is of the type Aw (tropical with dry winter). The soil of the experimental area is characterized as 
medium-textured Red-Yellow Latosol. Teresina presents the geographic coordinates of 05°05′ S latitude and 
42°48′ W longitude. The climate, according to the classification of Thornthwaite and Mather, is characterized as 
dry sub-humid, mega-thermal, with moderate water surplus in the summer. Teresina is located in a semi-arid 
area. The soil of the experimental area is a sandy loam-textured Dystrophic Yellow Argisol. In Teresina-PI, two 
trials were performed, one with non-stress and another with stress at post-flowering. In Nova Porteirinha-MG, 
three trials were conducted, one with non-stress, one with drought stress at pre-flowering and another with stress 
at post-flowering. Each trial was considered an environment, amounting to five environments.  

2.2 Experimental Area 

In the environments with non-water stress, irrigation was performed until the physiological maturity of grains. In 
the environment with drought stress at pre-flowering, carried out only in Nova Porteirinha-MG, irrigation was 
cut from 30 to 60 days after sowing, so that the drought stress occurred before flowering. In environments with 
drought stress at post-flowering, irrigation was cut at the plant booting stage, approximately 45 days after 
planting, so that drought stress would occur after flowering. In the latter, irrigation was not returned. In all the 
trials, irrigation by fixed conventional sprinkler system was used. Irrigation management was performed based 
on crop evapotranspiration. In Teresina-PI, the irrigation depths, summed to rainfall, were of 298.0 mm in the 
water-stress environment at post-flowering and 501.4 mm in the non-drought stress environment. In Nova 
Porteirinha, there was no rainfall during the experiment, and the applied irrigation depths were 680 mm in the 
environment with non-drought stress, 480 mm in the water deficit environment at pre-flowering and 360 mm in 
the water deficit environment at post-flowering.  

In Teresina, the field capacity and permanent wilting point values are 21% and 9% respectively. Under full 
irrigation, soil moisture remained between 18% and 21%, equivalent to a consumption of 25% of soil water 
available. On the other hand, under water deficit, the soil moisture varied from 11% to 13%, equivalent to 75% 
of the available water, below the critical limit of 50% (Doorenbos & Kassam, 1994), characterizing, therefore, 
the water deficit. In Nova Porteirinha, the field capacity and permanent wilting point values are 22% and 8% 
respectively. Under full irrigation, soil moisture remained close to yield capacity and, under water deficit regime, 
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the soil moisture ranged from 11% to 14%, equivalent to 75% of the available water, therefore, below the critical 
limit of 50% required by sorghum crop. 

2.3 Experimental Design 

The experimental design was a randomized complete block, in a factorial design of 3 × 25 in Nova Porteirinha 
and 2 × 25 in Teresina, with three replications. The plots consisted of four rows three meters in length, and the 
two central rows being considered useful area. Twenty-four grain sorghum hybrids belonging to Embrapa Maize 
and Sorghum and one hybrid (50A70) belonging to Pioneer Company (Table 2) were evaluated.  

Soil tillage was carried out in a conventional manner, with one plowing and two harrowings at pre-planting. 
Soon afterwards, the area was furrowed and set to the 0.5 m spacing inter-rows. The fertilization was performed 
according to the results of soil analysis and crop requirement, using 350 kg ha-1 of formula 8-28-16 (NPK), in 
addition to 72 kg ha-1 of N at topdressing, using urea as a nitrogen source at 30 days after planting. Sowing was 
manually, distributing about 15 seeds m-1 at a depth of 3 cm. At 20 days after sowing, thinning was performed 
leaving nine plants m-1 to obtain a final stand of 180,000 plants ha-1.  

2.4 Trait Evaluation 

Grain yield consisted of the weighing of the grains harvested in the useful area of each plot and converting the 
data to kg ha-1. The data were submitted to individual variance analysis, having considered the effect of the 
hybrids as fixed and the other effects as random. As it was found that the ratio between the largest and the 
smallest mean square of the residue of the individual variance analysis did not exceed the 7:1 ratio, the joint 
analysis of the assays was performed (Banzatto & Kronka, 2006). Soon afterwards, the data were submitted to 
adaptability and stability analysis by means of the GGE biplot method (Yan et al., 2000).  

2.5 Statistical Analysis 

The GGE biplot model utilized was: Yij – μ – βj = αi + y1·εi1·ρj1 + y2·εi2·ρj2 + εij. where, Yij represents the 
average grain yield of the genotype i in the environment j; μ is the general mean of the observations; βj is the 
main effect of the environment; αi is the main effect of the genotype i; y1 and y2 are the scores associated to the 
first (PC1) and to the second principal component (PC2) respectively; ε1 and ε2 are the values of the  PC1 and 
PC2, respectively, of the genotype of order i; ρj1 and ρj2 are the values of the PC1 and PC2, respectively for the 
environment of the order j; and εij is the error associated with the model of the i-th genotype and j-th environment 
(Yan et al., 2000). The analysis used the GGEGui package implemented in the R software (R Development Core 
Team, 2016).  

3. Results and Discussion 
3.1 Analysis of Variance 

The joint analysis of variance displayed significant effects for the hybrids x environments interaction, indicating 
that the hybrids reacted in a distinct way to the environments. The effect of hybrids was also significant, showing 
variability among the genotypes. The coefficient of variation (14.52%) was low, emphasizing the satisfactory 
experimental quality for the trials at field level.  

The overall mean of grain yield in all the environments was 4.151 kg ha-1 higher than the national mean obtained 
in 2019, which was of 2.973 kg ha-1 (CONAB, 2019). When evaluating the average grain yield in each local, the 
drought stress reduced grain yield by 45% and 48% in Nova Porteirinha-MG, in the environments with stress at 
pre- and post-flowering, respectively, and in Teresina-PI by 58% in the stressed environment at post-flowering 
(Table 1). Despite being more tolerant to drought than other cereals, sorghum when subjected to drastic drought 
stress has it yield reduced. Extended summer are common in the semiarid region and off-season crop in the 
Cerrado bioma, making the selection of drought tolerant cultivars fundamental to warrant to the farmer reduced 
risk of yield fall.  
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Table 1. Average grain yield (kg ha-1) of 25 grain sorghum hybrids grown under non-water stressed conditions 
and with stress at pre- and post-flowering 

Treat. Hybrids NP-NS NP-PRE NP-POST T-NS T-POST Mean 

1 1423037 9522 2929 3890 3592 1368 4260 

2 1324241 8775 5674 4913 1266 813 4288 

3 1324228 7950 3809 4271 4180 720 4186 

4 1167048 9120 3892 4275 3882 3714 4977 

5 1167093 9234 4007 5016 4121 2527 4981 

6 1421038 6078 3195 2245 2163 895 2915 

7 1423007 8814 5080 3604 3523 1033 4411 

8 1239017 9160 4895 5197 2710 502 4493 

9 1244003 8557 5626 4852 1864 240 4228 

10 1168093 8463 5434 5418 5121 1209 5129 

11 1516037 9331 5602 4447 1848 491 4344 

12 1167092 9719 4708 3905 2760 1740 4567 

13 1516043 8170 4032 5015 3022 969 4242 

14 1516049 8572 3788 5086 2404 949 4160 

15 1167017 8020 5597 4080 2993 2135 4565 

16 1421007 5580 3685 2134 3033 1458 3178 

17 1527039 7327 4289   4668 2784 1092 4032 

18 1527052 7932 5193 4335 3008 875 4269 

19 1236020 9413 4417 4593 3017 982 4485 

20 1105661 7616 4742 4808 1276 1177 3924 

21 1236043 5768 4519 3800 1017 445 3110 

22 1421037 6381 3248 2735 1913 874 3030 

23 50A70 8831 5524 4463 1720 419 4191 

24 BRS373 7826 3840 4444 1820 500 3686 

25 BRS330 8066 5331 3817 2161 1256 4126 

Mean 8169 4522 4240 2688 1135 4151 

Note. NP-NS: Nova Porteirinha-MG, Non-stressed; NP-PRE: Nova Porteirinha-MG, with stress at pre-flowering; 
NP-POST: Nova Porteirinha-MG, stress at post-flowering; T-NS: Teresina-PI Non-stresses; T-POST: 
Teresina-PI, stress at post flowering. 

 

3.2 Adaptability and Stability Analysis 

The best way to visualize the data of various experiments, when genotypes × environments interaction is 
significant, is through adaptability and stability analysis. GGE biplot is one of the most used methods to estimate 
these, for being both efficient and of easy interpretation  

In the GGE biplot method are presented the main components (PC1 and PC2), which are derived from the 
decomposition of the singular values of the effects of the genotypes and genotypes × environments interaction. 
The first of the principal components (PC1) indicates the adaptability of genotypes being, thus, highly correlated 
with yield. On the other hand, the second of the principal components (PC2) indicates the phenotypic stability, 
thus the genotypes with PC2 closest to zero are the most stable (Yan et al., 2000). In the present study, the first 
(PC1) and second (PC2) principal components explained 75.92% of the total variation of the data (Figure 1), 
respectively, indicating safety in using only two axes to explain data variation. According to Rencher (2002), at 
least 70% of the total variance must be explained by the first and second principal components of the plot.  
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