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Abstract: Accurate identification of agriculture areas is a key piece in the building blocks strategy
of environment and economics resources management. The challenge requires one to deal with
landscape complexity, sensors and data acquisition limitations through a proper computational
approach to timely deliver accurate information. In this paper, a Machine Learning (ML) based
method to enhance the classification process of areas dedicated to seasonal crops (row crops)
is proposed. To this objective, a broad exploration of data from Moderate Resolution Imaging
Spectro-radiometer sensors (MODIS) was made using pixel time-series combined with time-series
similarity metrics. The experiment was performed in Brazil, covered 61% of the total agriculture
areas, five different states specifically selected to demonstrate biome differences and the country’s
diversity. The validation was made against independent data from EMBRAPA (Brazilian Agriculture
Research Corporation), RapidEye Sensor Scene Maps. For the eight tested algorithms, the results
were enhanced and demonstrate that the method can rate the classification accuracy up to 98.5%,
average value for the tested algorithms. The process can be used to timely monitor large areas
dedicated to row crops and enables the application of state of art classification techniques, two levels
classification process, to identify crops according to each specific need within the areas.

Keywords: remote sensing; agriculture; time series similarity metrics; machine learning; land use
dynamics

1. Introduction

The identification of agriculture areas is valuable information for the scientific community,
government agencies, farmers, and other members of the society. Agriculture main commodity
areas are monitored on a global scale to predict production, yield, demand, prices, climate risks, and so
forth [1–5]. Related statistics are produced and published to reduce the economic externalities impact
and to balance market information asymmetry [6,7]. Ongoing, accurate, and timely crop information
remains a challenge, as data becomes available long after the harvesting time, and the machine learning
classification is dependent on reliable data sources and processing needs enhancements, despite the
available capacity [8–10]. The accuracy of the latest results in distiguishing crops of agriculture areas
range from 84% to 95% [11–14]. The state of the art publications in agriculture remote sensing explore
the importance of machine learning applied in combined data sources and types in order to enhance
the process and accuracy for multiple crops as classes.

When it comes to process improvements and machine learning, Convolutional Neural Networks
(CNN) was applied to achieved significant results in image recognition tasks by automatically
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learning a hierarchical feature representation from raw data, and through combinations of time series
(temporal dimension) with 2D texture images (spatial dimension) to enhance features that could not
be gained in a single dimension. The unified frame work, times series, and CNN, demonstrated
competitive accuracy when compared with the existing deep architectures and the state-of-the
art time series algorithms [15]. The exploration of synergies between different sources of data to
improve classification of high-level spatial features produced by hierarchical learning (i.e., scene
labeling) to contrast with low-level features such as spectral information (morphological properties)
has also been made. Temporal and angular features played more important roles in classification
performance, especially abundant vegetation growth information. Multispectral and hyper-spectral
fusion successfully discriminated natural vegetation types diversity [16]. Also using fusion methods
techniques, in this case to mitigate spatiotemporal limitations of multi and hyper-spectral data from
multiple sensors, a compatibility between the hyper-spectral data and Sentinel-2 (multi spectral) data
has been validated. The method opened new possibilities for classifying complex and heterogeneous
land covers in multiple environments with the combination multiple data sources [17]. On the other
side, when accuracy enhancement is the major focus, an automated mapping process for soybean and
corn using crop phenology characteristics with time series and topographic features from multiple
sources combined was proposed by Reference [18]. The classification achievements range from 87% to
95%, which is an increase of 2.86% on previous published works [19]. For the case of row-crop areas in
Brazil, as is the case of this work, international publications that addresses this need were observed.
A experiment that covered 3 crops (corn, soybeans and cotton) in Mato Grosso, used time series
correlation coefficient and successive classifications has been performed to detect agricultural areas.
The approach was capable to achieve 95% accuracy and kappa index of 0.98 [14]. In another study,
a rigorous multiyear evaluation of the applicability of time-series for crop classification in Mato Grosso
was performed. The conclusion showed progress in refined crop-specific classification and appointed
the need for grouping of crops as classes. The results were consistently near or above 80% accuracy and
Kappa values were above 0.60. The authors also highlight the need for additional research to evaluate
agricultural intensification and extensification in this region of the world [20]. The combination of
different channels (red and near-infrared) were explored with five algorithms (Maximum Likelihood,
Support Vector Machines, Random Forest, Decision Tree, and Neural Networks). The methods accuracy
ranged from 85% to 95%, and demonstrated that 250 m imagery is efficient to map fields down to
20 ha. Results also suggested that cropland diversity could be addressed using regional and specific
landscapes training sets [13]. As a reference, the accuracy assessment of a supervised classification on
Landsat 8 satellite images was performed. The results indicated that the object classification was better
than the classifications by pixel and the best thematic map was generated by the SEGCLASS classifier.
The accuracy achieved was 74% and kappa index 0.57 [21].

In common is that References [11–13,18,21–24] share the best results in the crop classification
with their methodologies within the studied area, and present the challenges related to the limited
amount of training data to scale up the process. As each of the studies was performed within unique
field information and conditions, including different crop varieties contrasted, the results cannot be
compared properly.

In this research the aim is to propose a process to enhance classification accuracy in agriculture
areas dedicated to row crops and put them in evidence to support the land monitoring process and
generate a first knowledge layer to support specifics needs and fine-tuning classification. Although time
series has been extensively explored to classify agriculture and it is a well-stablished process [25,26],
the combination of time series and similarity metrics to explore the classification as proposed is a
novel, explore the crop growing season cycle of a variety of temporary crops with multiple algorithms.

1.1. Remote Sensing

The use of the pixel as a sensor in remote sensing to monitor agriculture cycles requires quality
images and fine specs to be granularly classified accordingly to each unique purpose, so unexpected
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dynamics can be detected and properly managed [8,9], (e.g., crop phenology stage, chemicals
administration, mechanization, and irrigation management, among others). The critical components
for remote sensing are: accurate and current information for training the classifiers; an affordable
source of data that qualifies for the specific objective; a storage and processing capacity [10,27,28].
By using MODerate-resolution Imaging Spectrometer (MODIS) products that include the Enhanced
Vegetation Index (EVI) [29], among others, we have access to a complete record of data from each
of the Terra and Aqua MODIS sensors, at varying spatial (250 m, 0.05 degree) and temporal (8-day)
resolutions validated with accuracies depicted by a pixel reliability flag and with globally averaged
uncertainties of 0.015 units. Further, the MODIS/EVI combination is a robust set for exploring seasonal
crops (soybeans) [22]. The spatial resolution adopted are consistent in expressing accurate cropland
information in fields that are larger than 20 ha [13], and appropriate to this task [30]. This experiment
relies on the achievements and specifications above to explore the spectral dynamics of extensive areas,
in accordance with the specifics purpose stablished for this research.

1.2. Brazilian Agriculture in Numbers

In Brazil, agriculture represents almost a quarter of the country GDP’s, 24.1% in 2017 [31].
According to the Brazilian Institute of Geography and Statistics (IBGE) rural census [32], the harvested
area during the 2016/2017 season represented 7.9% of the total area with 73,797,057 hectare (ha)
dedicated for temporary and semi-temporary crops and another 5,184,813 ha for permanent crops,
with the final results published in 2019. For the purpose of this study, detailed statistics of the studied
areas are summarized on the Table 1. The column “Total” shows the total area (country/State).
The column “Agriculture” presents the harvested area (country/State). It is important to highlight
that, due to geographical and environmental conditions, which include climate and/or technologies
(e.g., irrigation), it is common to have multiple crops per year in tropical areas. Therefore, the conclusion
is that the harvests are larger than the total area dedicated to agriculture, a total of 67,547,537 ha
according to EMBRAPA [33,34] and MAPA [35].

The main crops cultivated locally are presented below, in Table 2, and the data is organized as a
percentage of total area occupied to provided a land use perspective view, and put in evidence of a
larger area per crop cultivated.

Table 1. Studied areas (ha).

Country/State Total Agriculture (%)

Brazil (BR) 851,605,394 67,547,537 7.9
Goias (GO) 34,011,178 6,106,279 17.9
Minas Gerais (MG) 58,652,212 4,814,438 8.2
Mato grosso (MT) 90,336,619 14,872,045 16.5
Paraná (PR) 19,930,792 8,776,871 44.0
São Paulo (SP) 24,822,362 6,835,741 27.5

State Subtotal 227,753,038 41,405,374 61.3

Source: https://censos.ibge.gov.br/agro/2017/.

Table 2. Temporary crops.

Crop Type Area (ha) Fraction of Total (%)

Soybean 30,622,460 45.3%
Corn 17,985,764 26.6%
Sugar cane 9,153,709 13.6%
Beans 3,069,622 2.1%
Wheat 1,796,065 2.6%
Rice 1,778,190 2.6%
Manioc 943,323 1.4%
Cotton 910,057 1.3%

Total area 64,660,183 93.7%

Source: https://censos.ibge.gov.br/agro/2017/.

https://censos.ibge.gov.br/agro/2017/
https://censos.ibge.gov.br/agro/2017/
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2. Methods

2.1. Studied Area

The study was performed over Brazil at the state level, see Figure 1. The locations were selected to
bring the diversity (biome, crop, climate, etc.) and its complexity into the analysis. The states studied
were: Goiás (GO), Minas Gerais (MG), Mato Grosso (MT), Parana (PR) and São Paulo (SP), Table 1.
In this study the growing season (phonological) cycle is the key aspect taken in consideration, crop
recognition requires specifics and may be performed in accordance to them, combining scenes and the
growing season maps.

Figure 1. The experiment was performed over GO, MG, MT, PR, and SP, and a country-wide view.

2.2. IBGE Census

As a reference in this study, IBGE Agriculture census data was used to contrast results, that is,
quantify the total area and row crop areas for each studied state. The original numbers were
consolidated and published by municipalities and by state, consequently. For this research objective
the productive clusters are represented in maps and at the state level, without municipal geopolitical
boundaries. The preliminary census results were published in 2018 and final results late in 2019.

2.3. Ontology

The use of expert knowledge management based on ontology process to support the collective
understanding of a single event (Data driven approach) was applied to proper address crop growing
season specifics to expand the comprehension possibilities in a multidisciplinary context [36]. The same
author defined ontology scope as being the “specialist of specifics”, meaning the understanding of
a domain group. In this environment the essential is the potential for information and knowledge
sharing [37]. The proposed Ontology is presented in the concept map below, Figure 2, where the
target class are highligted and the profiles are demonstrated. The data was segmented in accordance
to the Global Food Security (GFS) [38] and MODIS ontology into two large classes, Agriculture and
Other. Agriculture, as the target class, included: Irrigated and dry seasonal crops areas potentially
featuring corn, soybean, cotton, barley, potato, alfalfa, sorghum, rye, canola, peanut, manioc, and beet.
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The Others class included: perennial and semi-perennial/semi-temporary crops, natural vegetation
(forest, cerrado, amazon forest, tropical forest), pasture, urban areas, and water surface, among others.
The agriculture class areas are those where we expected to find a high level of EVI values dynamics,
which is the purpose of this study, and is also compatible with the objective of the sensor selected. As a
reference, the profile images that are representing the target group are from SatVeg [39]. Only the crops
that can be found within the region and are described as part of sensor ontology are here in evidence.

Figure 2. A concept map of the ontology used—Target groups highlighted above share seasonal
characteristics with each other and within the time frame selected from EVI collected maps. Sources:
EMBRAPA, MODIS, IBGE.

2.4. Datasets Processing

The criteria for the selection of the sensor was based on the most recent publications and goal,
as cited above. The .tiff (Tagged Image Format) dataset files were downloaded from the MODIS
repository as .hdf (Hierarchical Data Format) files according to provided guidelines, and then framed
in accordance to each studied state and a country view. The experiment was performed using EVI
from MOD13Q1 with 250 m of spatial resolution.

Accord to the methodology outlined as a flowchart in Figure 3, a large amount of random
Pixels Time Series (PTS) were extracted from each studied area to achieve 99%+1

−1 of confidence
level, with 17,000 points for each dataset, and 5 datasets per state. PTS values were extracted as
vectors and stored as .csv (Comma Separated Values) files using a expert system created for this
purpose. Each vector contained the pixel position, EVI raw data as time series values, and calculated
computational distances, with similarity metrics proposed. The data were then pre-classified into
two large groups, Agriculture and Others. Agriculture was the target group, which expected areas
with high spectral dynamics level, and the Others group contained lower dynamics level areas. Each
experiment used 20% of data set for training.

Given the inherent complexity of vegetation and environments which are all reflected within
the region selected, for each state, a group of similarity metrics were selected and tested as a way to
put in evidence the expected characteristics and work as a hybrid index in the classification process,
as in Reference [40]. The computational distances used in this experiment are: Manhattan distance,
Minkowski distance, Sum, Mean, Median, Standard deviation, Coefficient of Variation, Variance,
and Difference [41,42]. All the similarity metrics that used the distances were calculated for each pixel
time-series. In particular, the Minkowski distance used has been explored by References [43,44] to
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cluster time series that have different temporal resolutions, as the case for the Dynamic Time Warp
(DTW), and in this case it was used to measure the length of the time-series. The possible values for
the c are useful to accommodate the time difference into the time series. The equation is demonstrated
below, Equation (1):

D(p, q) = (
n

∑
i=1
|pi − qi|c)1/c. (1)

where: the distance D, p and q are the data points (xi+1 and xi, respectively) and used c = 2.

Figure 3. Process Flow—Target groups selected—Agriculture & Other. Elaborated by the authors.

2.5. Time-Frame

For this research, 36 raster layers from the MODIS sensor were used, with an 18 month time frame
coverage, from July 2016 to December of 2017 to match IBGE census data also used as a reference in
this study. The time frame selected meets the objective of measuring annual dynamics for temporary
crops, thus excluding semi-temporary crops (e.g., sugarcane) from the analysis.

2.6. Validation

Tree levels of validation were considered—the classification accuracy, the concordance between
algorithms, and the computational metrics relevance. EMBRAPA scene maps were used as an external
reference data source to contrast and validate accuracy. The spatial resolution of the the validation
maps was 5 m to provide quality data for the training set used, to preserve the characteristics that are
relevant to the experiment [8], and to match the field size.

The classification accuracy validation was made according to the proposed ontology, a confusion
matrix used to contrast results as True-Positive (TP), False-Negative (FN), False-Positive (FP) and
True-Negative (TN). Accuracy stands for all that were correctly classified, as in the Equation (2),
and recall stands for positives that were correctly classified, as in the Equation (3), below:

accuracy =
TP + TN

TP + FP + TN + FN
, (2)

recall =
TP

TP + FN
. (3)

The concordance between algorithms assessment were made using the Cohen’s Kappa coefficient
or simply (k), which has been largely used to evaluated classification algorithms performance as
described in Reference [45]. Kappa values ranges from −1 to 1, where −1 represents “complete
disagreement”, 0 is a “random classification”, and 1 is a “perfect agreement”.
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The computational metrics used are the sensitivity and specificity, Equations (4) and (5) below,
where we expect to identify the impact of the selected similarity metrics composition on the
classification process of the target group.

sensitivity =
truepositive

positive
(4)

speci f icity =
truenegative

negative
, (5)

where “true positive” is the number of correctly predicted areas, “positive” is the number of agriculture,
“true negative” is the number of correctly predicted as others, and “negative” is the number of others
shown in the classification.

The impact of each similarity metric as an attribute over the target class was evaluated using
Shannon entropy index to reveal in a [0:1] scale the cluster behavior [46,47]. The calculation of the
distances was made according to the Equation below, Equation (6):

Ei = −
n

∑
i=1

pi log(pi), (6)

where E is the information strengh of the attibute n over the class i, and p is the probability of the class
in n.

2.7. Computation Tolls

All data manipulation and tests were performed using R R© language, Matlab R©, RapidMiner R©, and
QGIS R©. Using these tools to evaluate the effectiveness of the proposal, we explored the data with eight
Machine Learning algorithms: Naive Bayes, Logistic Regression, Decision Tree, Gradient Boosted Tree,
Generalized Linear Model, Deep Learning, Random Forest. This collection represents most of the
algorithms used in the cited publications.

The data used were min-max normalized to comply with the classification tolls specs. The values
were linearly reduced to a scale between [0:1], where 0 and 1 are the minimum and maximum values,
respectively. The z is the normalized value accord to Equation (7) below:

zi =
xi −min(x)

max(x)−min(x)
. (7)

3. Results

By performing the study as proposed, we observed that the addition improved the specificity
and sensitivity of the algorithms. The sensitivity of the algorithms can be verified by contrasting ROC
comparison curve (detection probability in machine learning). The Figure 4 shows the classification
process for data without similarity metrics and Figure 5 shows the sme process for data with similarity
metrics. Specificity raised from 98.6% to 99.2% with a direct effect on accuracy, sensitivity enhancement
from 94.62% to 97.4% which improved processing performance despite the data dimensional increase.
As we can verify, data with similarity metrics increased sensitivity for all tested algorithms.

The enhancement for each method is demonstrated below, Table 3, where the results for each
state are presented. The caption MT, GO, MG, SP and PR are the abbreviations of the states mentioned
on Section 2.1. The columns RD and DSM represent the accuracy with the different type od data,
Raw Data (RD) and Data with Similarity Metrics (DSM). It is important to point the difference in
results between the algorithms, these differences reflect the way each of them internally organizes the
data toward the best solution.

The concordance of the algorithms index (Kappa) and the enhancement range achieved for each
method with Raw Data and Data with Similarity Metrics (RD-DSM) is demonstrated in the Table 4.
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The highest impact was achieved with Deep Learning, increased the accuracy from 83.9% to 98.6%
with Kappa index of 0.95. However, the highest accuracy was achieved with Gradient Boosted Tree,
results were enhanced from 95.2% to 99.6% and with Kappa index of 0.96.

Figure 4. ROC—Classification process effectiveness—Data witout similarity metrics on the data set.
Comparison—Naive Bayes, Logistic Regression, Decision Tree, Gradient Boosted Tree, Generalized
Linear Model, Deep Learning, Random Forest.

Figure 5. ROC—Classification process effectiveness—Data with similarity metrics as part of the data
set. Comparison—Naive Bayes, Logistic Regression, Decision Tree, Gradient Boosted Tree, Generalized
Linear Model, Deep Learning, Random Forest.

The hierarchal clustering analysis below, Figure 6, put in evidence the hierarchal importance of
each metric for the process. The relevance of each attribute is calculated accord to Shannon information
and the normalized score is represented hierarchically. The Minkowski distance played a key part in
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the classification process and demonstrated to be very representative of the target class, highest score.
Canberra distance, Standard deviation, Mean, Coefficient of Variation, and Variance were also very
relevant in the high score process, but not as decisive. The removal of the Manhattan distance, Sum,
Median, and Difference had no impact on the process accuracy.

Table 3. Accuracy classification results.

Algorithms GO MG MT PR SP

RD DSM RD DSM RD DSM RD DSM RD DSM
Naive Bayes 88.4 94.5 84.2 93.8 85.8 93.1 89.2 94.1 80.0 90.5
Generalized Linear Model 93.4 98.4 96.9 99.3 94.9 99.3 91.1 98.4 89.7 97.8
Logistic Regression 97.4 97.4 97.7 98.6 97.4 98.9 91.0 98.7 96.3 97.8
Deep Learning 83.9 97.9 86.9 99.2 88.9 99.2 85.1 98.2 83.9 97.6
Decision Tree 85.2 98.6 92.3 99.4 92.3 99.1 85.1 98.7 86.5 97.5
Randon Forest 85.8 98.2 92.3 99.3 95.8 99.6 86.9 98.9 76.2 97.6
Gradient Boosted Trees 96.0 98.4 97.1 99.4 97.4 99.6 96.0 98.8 95.2 97.8
Support Vector Machine 97.9 98.3 98.1 99.5 97.8 99.1 97.4 98.9 97.0 92.2

RD: Raw data and SM: Data with Similarity metrics.

Table 4. Concordance.

Tested Models (RD-DSM) Kappa

Naive Bayes 80.0–93.8% 0.89
Generalized Linear Model 89.7–99.3% 0.97
Logistic Regression 91.0–99.3% 0.96
Deep Learning 83.9–98.6% 0.95
Decision Tree 86.2–99.4% 0.94
Randon Forest 86.6–99.5% 0.97
Gradient Boosted tree 95.2–99.6% 0.96
Support Vector Machine 97.0–99.5% 0.95

Average 88.7–98.6% 0.95

Figure 6. Shannon information with Euclidian distance for the key main decision levels. In this case:
Minkowski Distance (Minkowski); Coefficient of Variation (CV); Standard Deviation (SD); Canberra
distance (Canberra); Mean value (Mean).
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The correlation between a group of indexes found in the bibliography were also evaluated as
alternatives to the EVI. Results are presented in Table 5, where the correlations are contrasted. From this
perspective, none of the indexes were found as strong enough to be used as alternative or to be replaced
within the same method.

Table 5. Correlation.

Correlação EVI NDVI NIR MIR

EVI 1

NDVI 0.1964 1

NIR 0.6510 0.1088 1

MIR 0.3227 0.3283 0.2417 1

Finally, from the process it was possible to generate a scene map layer identifying row crops areas,
as presented on Figure 7, below. The figure shows where the row crops clusters are located.

Figure 7. Country view without geopolitical boundaries.

4. Discussion

As presented in the Results section, the proposed approach enhanced the classification accuracy
for all tested methods. The similarity metrics in combination with time series improved the average
accuracy from 88.7% to 98.5%, as presented on Table 4. Therefore, the proper selection of similarity
metrics showed potential to enhance the classification efficiency, increase classification accuracy
without extra processing time.

The results achieved are higher than all previous work that addressed classification of agriculture
row crop areas in Brazil and, in particular, the results achieved by References [13,14,20–22,24] as
presented in Table 6. In regard to Reference [14], which achieved the highest result prior to this work,
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despite the large area, they only study one state (Mato Grosso) and tree crops. The second highest
result achieved [13], compared results for 6 algorithms and results ranged from 84% to 96%, covered
5 countries and noticed the lowest accuracy for Brazil (84%). The same author appointed as a key
finding that “the site effect dominates the method effect”.

Table 6. Results contrasted.

Author Area (ha) Accuracy Kappa Comments

Publications that share at least one common aspect: Brazil as studied area

[14] 5,617,250 95.0% 0.98 - 3 tree seasonal crops in Mato grosso/
[13] 507,728 84.0% - used the same algorithms, achieved 84% accuracy for Brazil/
[22] 724,293 84.0% 0.56 - differentiated Soybean and non-soybean/
[24] 1600 83.0% 0.78 - used high spatial resolution images/
[21] 9658 74.6% 0.57 - seasonal crops group as part of the results/

International Publications that share at least one similarity

[48] 258,500 97.0% - seasonal crops group as part of the results/
[12] 2,800,000 94.6% - seasonal crops classification/

It is important to highlight that in Brazil we have summer crop season which is in general rainy
and cloudy, more than 90% of the production is rainfed. According to References [49,50], less than
40% of temporal images are useful for analysis. In this context, in this research, we bring the need for
the combination of high temporal resolution with high spatial resolution for validation, MODIS and
RapidEye, respectively.

According to Reference [48] the combination of temporal and spectral information can improve
classification accuracy than only using spectral information, 10–15% higher. In this work, we
demonstrated that the proper similarity metric can enhance time series classification accuracy, 3–14%,
10% on average for the tested algorithms. In fact, the combination created condition to increase
specificity (accuracy) and sensibility (convergence). Both aspects are demonstrated on Figures 4 and 5
above. The sensibility, in this case the positive impact on the classification process, for each of the
algorithms were different. Below we present the sensibility for each one of the algorithms:

• Low: Suport Vector Machine, Deep Learning, Gradient Boosted Tree
• Moderate: Naive Bayes
• High: Logistic Regression, Decision Tree, Gradient Boosted Tree, Random Forest

Two level classification strategy, as proposed by Reference [18], or multi-level as used by [14] are
a possibility from the achieved results. The layer identifying temporary crop clusters, as presented on
Figure 7, meets the demand presented by References [12,20,22,48], among others.

Another important aspect is the potential of the process to remotely identify agricultural areas as
a dynamic census process. Timely spatial information about productive areas with a high confidence
level (99%+1

−1) is relevant for policy makers and for the private sector. This information can support
IBGE statics and contribute to their monitoring process. In regard to private sector, precision agriculture
services can be provided in large scale when geospatial data organized and available.

The process also demonstrated some limits that are related to the objective of each search and
complexity of the environment. An accurate time-frame collection of maps is required to enhance the
uniqueness of the target. It is also important to remember that on top of spectral resolution, temporal
and spatial resolutions are key to put in evidence specifics of cultivars. Therefore, sugarcane and
cultivated pasture have specifics in growing season, and requires specifics in spectral and temporal
resolution to enhance the classification process [51].
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5. Conclusions

This study explored the classification of agriculture areas dedicated to temporary crops using
well-known ML algorithms to examine time-series from a collection of vegetative indexes in
combination with similarity metrics. As a conclusion we have that:

• As the primary objective, the results demonstrated that the approach enhanced the classification
accuracy for all tested algorithms. This is the highest accuracy for the classification of agriculture
areas in Brazil, 99.6% with kappa index of 0.96 using Gradient Boosted Tree algoriothm;

• The similarity metrics worked to increase the accuracy within the context proposed, EVI data
reflecting the growing season dynamics of temporary crops. The similarity metric added 3–14%
points to the accuracy;

• The process increased accuracy and without extra computational cost.
• The results are robust to support policy maker and precision farming, 99%+1

−1 of confidence level.

The field knowledge (scene map generated) allows crop level classification improvements, that is,
crop differentiation using the available techniques accordingly to each specific need. This information
is useful for further research and also to support the private sector and public sectors on monitoring
and spatial planning of annual crops in Brazil.

To enhance results and explore the approach, modifications in the Minkowski equation, c value,
should be tested to address specifics in phenology time frame. The size of the data set for training
should be quantified, it is expected that the a smaller data set size would maintain accuracy. Moreover,
DTW can be used to explore the differences in growing season for the two levels crop classification
process, among others. Specifics in computational costs and cloud computing benefits should also be
explored and demonstrated.
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