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Abstract: 

In northern Brazilian Amazon, the crops, savannahs and rainforests form a complex landscape 
where land use and land cover (LULC) mapping is difficult. Here, data from the Operational Land 
Imager (OLI)/Landsat-8 and Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)/ALOS-
2 were combined for mapping 17 LULC classes using Random Forest (RF) during the dry season. 
The potential thematic accuracy of each dataset was assessed and compared with results of the 
hybrid classification from both datasets. The results showed that the combination of PALSAR-2 
HH/HV amplitudes with the reflectance of the six OLI bands produced an overall accuracy of 83% 
and a Kappa of 0.81, which represented an improvement of 6% in relation to the RF classification 
derived solely from OLI data. The RF models using OLI multispectral metrics performed better than 
RF models using PALSAR-2 L-band dual polarization attributes. However, the major contribution 
of PALSAR-2 in the savannahs was to discriminate low biomass classes such as savannah grassland 
and wooded savannah. 

Keywords: Random Forest, LULC, hybrid classification. 
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Resumo:  

Na porção norte da Amazônia brasileira, as savanas, florestas estacionais e terras agropecuárias 
formam uma paisagem complexa, onde o mapeamento de uso e cobertura da terra é uma tarefa 
desafiadora. Nesse trabalho, dados Landsat-8/OLI e ALOS-2/PALSAR-2 foram combinados para 
mapeamento de 17 classes de uso e cobertura da terra usando o algoritmo Random Forest. O 
potencial de cada conjunto de dados foi analisado separadamente e em comparação ao modelo 
híbrido. Os resultados mostraram que o modelo híbrido com as polarizações PALSAR-2 HH/HV e 
seis bandas de reflectância do OLI produziu os melhores resultados, com acurácia global de 83% 
e Kappa de 0,81. Isto representou um aumento de 6% em relação à classificação das bandas do 
OLI somente. Os modelos usando os dados ópticos produziram resultados melhores do que os do 
SAR. Entretanto, a maior contribuição do PALSAR-2 foi melhorar a discriminação de classes de 
savana com menor biomassa, como os campos limpos e campos cerrados. 

Palavras-chave: Random Forest, uso e cobertura da terra, classificação híbrida. 

 

 

1. Introduction  

 

Optical remote sensing has been generally used to map land use and land cover (LULC) changes (Silva 
et al. 2014). Recent global and regional LULC mapping programs based on remote sensing imagery 
have emerged in the scientific literature. For instance, the Finer Resolution Observation and 
Monitoring of Global Land Cover (FROM-GLC) (Gong et al. 2013) and the GlobeLand30 (Chen et al. 
2015) are examples of high-resolution global LULC projects. However, they had limiting results in 
tropical landscapes, especially in the Amazon, with Kappa values of 0.262 and 0.677, respectively. 
Another example is the TerraClass project in Brazil, which mapped the entire Legal Amazon with a 
Kappa of 0.67 and an overall accuracy of 76.64% (Almeida et al. 2016). Thus, depending on the method 
and type of satellite data used in the analysis, there are uncertainties to detect the magnitude and 
extension of the LULC changes and to classify correctly the classes in tropical areas. In the Brazilian 
Amazon, most of the uncertainties are related to the difficulties inherent to optical remote sensing in 
persistent cloud-covered regions (Lu et al. 2007). The fragmentation of tropical landscapes and the 
subtle transitions between the vegetation types are also sources of uncertainties for LULC mapping 
using optical remote sensing (Laurin et al. 2013).   

In this context, orbital Synthetic Aperture Radar (SAR) sensors have become increasingly important in 
LULC studies. Furthermore, they are sensitive to the geometry of the surface and vegetation canopy 
structure (Lu et al. 2007). For instance, L-band SAR data have been used to detect deforested sites in 
the Brazilian Amazon (Santos et al. 2008). In addition, SAR data can be integrated to optical data 
whenever possible to obtain information not only associated with the biophysical attributes of 
vegetation, but also with the structural characteristics of the surface (Lu et al. 2011). Among the 
several approaches for integrating SAR and optical data, two strategies are commonly used: image 
fusion and hybrid approaches combining more than one method. Image fusion is often employed by 
means of Principal Component Analysis or Wavelet Transformations (Pereira et al. 2013; Otukei et al. 
2015). Hybrid approaches generally require feature selection or radiometric transformations that may 
affect the quality of the information retrieved from data integration or the interpretation of results (Lu 
et al. 2011; Hong et al. 2014). 
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Another emerging method to integrate SAR and optical data for LULC mapping is the Random Forest 
(RF) algorithm due to its robustness and capacity of handling a great number of variables (Jhonnerie 
et al. 2015). RF ranks the variables according to their importance for classification (Breiman 2001). The 
use of RF for SAR and optical data integration provides more accurate maps than the other classifiers 
(Forkuor et al. 2014). Furthermore, RF is a non-parametric classifier, which confirms its suitability for 
classification and integration of both datasets (van Beijma et al. 2014). Compared to support vector 
machine, RF presents better classification accuracy, requiring less user-defined parameters, as shown 
in previous studies using Enhanced Thematic Mapper Plus (ETM+) and RapidEye data  (Adam et al. 
2014). 

Two orbital sensors that represent the state-of-the-art of the new generation of SAR and optical 
instruments are the PALSAR-2/ALOS-2 and the Operational Land Imager (OLI)/Landsat-8, respectively. 
OLI was launched in 2013 to ensure Landsat data continuity (Roy et al. 2014). PALSAR-2 was launched 
in 2014 to provide L-band data to complement the PALSAR-1 mission, which operated from 2007 to 
2011 (Rosenqvist et al. 2014). PALSAR-1 was employed successfully for LULC mapping in combination 
with other sensors over tropical forests in the Amazon (Liesenberg and Gloaguen 2013; Liesenberg et 
al. 2016) and West Africa (Laurin et al. 2013) with accuracy close to 90% for the classification of seven 
LULC classes in each study. Compared to PALSAR-1, the PALSAR-2 instrument has better Noise 
Equivalent Sigma Zero, better Signal to Ambiguity ratio and higher spatial resolution in selected modes 
(Kankaku et al. 2009). Despite these advantages, as far as we know, PALSAR-2 has not been used for 
LULC mapping in the Amazon. In other parts of the world, PALSAR-2, combined with other sensors, 
had good classification performance in Myanmar (Torbick et al. 2017) and in Bolivian lowlands (Reiche 
et al. 2018). In this context, we hypothesised that the combined use of PALSAR-2 and OLI data in the 
Amazon region is important because this combination can provide potentially more accurate LULC 
maps than the use of each dataset separately. 

The objective of this study is to analyse the thematic mapping products provided by the integration of 
PALSAR-2 and OLI data for LULC classification using RF in northern Amazon, Brazil. Differently from the 
other studies, we evaluated the classification of a great number of LULC classes (17). The region 
comprises a landscape of ecological tension in the transition zone between tropical semi-deciduous 
forests and savannahs. Due to the complexity of this landscape and the persistent cloud cover, three 
specific goals were defined: (1) to assess the potential of each dataset (PALSAR-2 or OLI) and derived 
metrics for LULC mapping; (2) to compare the LULC classification from each dataset with that derived 
from the integration of PALSAR-2 and OLI data; and (3) to identify the LULC classes with the highest 
gains in classification accuracy from the synergistic use of both datasets. 

 

2. Methodology 
 

2.1 Study area  
 

Located in northern Brazilian Amazon, in the state of Roraima, the study area comprises 1260 km² 
(approximately 33 km length and 38 km width) in parts of the municipalities of Mucajaí, Alto Alegre 
and Boa Vista. The region is characterized by the contact between semi-deciduous forests and 
savannahs, which are separated from each other by the Mucajaí River (Figure 1). According to the 
Köppen classification, the climate is tropical Awi with a dry season lasting five months (Barbosa 
and Fearnside 2005). Most of the precipitation in the rainy season occurs from May to August. The 
mean annual accumulated rainfall and temperature are 2000 mm and 28◦C, respectively. 
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The predominant vegetation type is a sub-montane semi-deciduous forest (Santos et al. 2008). 
The most important savannah physiognomies are woodland savannah (15-40% of canopy cover), 
wooded savannah (4-15%), shrub savannah (<4%) and savannah grassland (no trees). The 
Campinarana is a site-specific vegetation type (grasslands and shrubs) that occurs associated with 
alluvial fans. Due to deforestation/fire and subsequent land abandonment, areas of initial (less 
than 5 years of vegetation regrowth) and intermediate (5-15 years) secondary successions are 
usually observed in the study area. The contact between tropical rainforests and savannah forms 
a region of ecological tension. In addition to the natural complexity of the vegetation 
physiognomies, the study area also presents a mosaic of anthropogenic land use for both 
Smallholder and large-scale agribusiness farms.  

Seventeen thematic classes were chosen during two fieldwork campaigns in May 2014 and 
January/February 2015. They had their geographic coordinates registered using a Global 
Positioning System (GPS). The classes and their respective number of sample plots (polygons) from 
which pixels were extracted to avoid autocorrelation effects were, as follows: (1) agriculture 
(mostly soybean) – 15 plots; (2) waterbodies – 16 plots; (3) campinarana – 17 plots; (4) wooded 
savannah – 28 plots; (5) savannah grassland – 22 plots; (6) shrub savannah – 20 plots; (7) initial 
secondary succession (SS1) – 19 plots; (8) intermediate secondary succession (SS2) – 15 plots; (9) 
burned savannah – 23 plots; (10) woodland savannah – 23 plots; (11) mature forest – 39 plots; 
(12) clean pasture – 27 plots; (13) overgrown (dirty) pasture – 30 plots; (14) silviculture – 13 plots; 
(15) clear-cut silviculture – 18 plots; (16) bare soil – 15 plots; and (17) palm swamps – 12 plots. 
The definition of the savannah classes is based on Sarmiento (1983), while the nomenclature of 
the other classes are based on IBGE (2012) and Projeto RadamBrasil (1975).  

Figure 1. Location of the study area in Roraima state, Brazil. The colour composite (February 6, 
2015) includes the OLI/Landsat-8 bands 6, 5 and 7 in red, green and blue, respectively. 
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2.2 Fieldwork and remote sensing data 

 

The PALSAR-2 and OLI datasets were pre-processed for the extraction of several metrics, which 
were used for LULC RF classification (Figure 2). The main attributes from the optical and SAR 
datasets are shown in Table 1. Images were acquired in the dry season. From a gauge station 
located in Boa Vista, only 7.1 mm of precipitation was registered 30 days before image acquisition 
by both sensors. 

 

Figure 2. Flow diagram for Random Forest (RF) classification of the LULC classes using optical 
(OLI/Landsat-8) and SAR (PALSAR/ALOS-2) attributes and the combination of metrics of both 
datasets. 

The OLI/Landsat-8 image was acquired on February 6, 2015, with 30 m spatial resolution. The 
Landsat Climate Data Record (CDR) surface reflectance product was obtained from the United 
States Geological Survey (USGS) database. This product is automatically generated by the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) and is atmospherically corrected 
following a procedure similar to that used for the Moderate Resolution Imaging 
Spectroradiometer (MODIS). The procedure is based on the Second Simulation of a Satellite Signal 
in the Solar Spectrum (6S) algorithm (Masek et al. 2006). The CDR product has been used in several 
studies in the Amazon, such as those performed for monitoring secondary succession (Galvão et 
al. 2015) or for LULC change detection in lowland floodplains (Fragal et al. 2016).  

Six OLI bands were used in the data analysis: 2 (450-515 nm), 3 (525-600 nm), 4 (630-680 nm), 5 
(845-885 nm), 6 (1560-1660 nm) and 7 (2110-2290 nm). Clouds and resultant shadows accounted 
for 5.2% of the OLI scene. They were masked out using the mask information provided by the 
Landsat CDR product. In addition to the band reflectance, we calculated the Normalized Difference 
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Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), which have been also used in 
LULC studies (Akar and Güngör 2015; Jhonnerie et al. 2015).  

 
Table 1: Main attributes from optical and SAR datasets. 

 Landsat-8/OLI (CDR 
product) 

ALOS-2/PALSAR-2 (Stripmap Fine Bean 
Dual Level 1.5 product) 

Pixel size 30 m  10 m 

Temporal resolution 16 days On demand 

Radiometric resolution 16 bits 16 bits 

Spectral 11 bands (435 – 12510 
nm)  

L-band (23 cm) 

Imaging date February 6th,  2015 February 23th,  2015 

Swath 185 km 70 km 

Cloud cover of the scene 5.2 %  -  

Polarization  -  Dual (HH + HV) 

Pass Descending Descending (Right) 

View angle 0 32.5 degrees 

Path/row 232/58 - 

 

The Level 1.5 PALSAR-2/ALOS-2 Stripmap Fine mode, dual polarization (HH and HV) image, was 
acquired on February 23, 2015, from the Japan Aerospace Exploration Agency (JAXA) by means of 
Base Aerofoto company. The PALSAR-2 amplitude image has a pixel size of 6.25 m (2 looks), range 
resolution of 9.1 m, azimuth resolution of 5.3 m and a spatial resolution of 10 m. The product was 
provided in ground range and was georeferenced in the UTM coordinate system (WGS84 zone 
20N projection), which was the same projection of the OLI image. The PALSAR-2 image was 
processed in the open source Sentinel-1 Toolbox 1.1.1 (STB1), developed by the European Space 
Agency (ESA). The STB1 was used for speckle filtering and for extracting texture attributes. The 
Lee and Frost speckle reduction filters were tested with window sizes (WS) of 3x3, 5x5, 7x7, 9x9, 
11x11 and 13x13 pixels. Based on the analysis of the coefficient of variation, on the equivalent 
number of looks over a homogeneous tropical forest area and on the inspection of the edge 
degradation, face to the size of several patches of LULC classes, the Lee filter with WS of 3x3 pixels 
was selected. 

After filtering the PALSAR-2 images, the Gray-level co-occurrence matrix (GLCM) was obtained to 
retrieve several texture metrics from the HH and HV images. The window size for the GLCM 
extraction was based on the variogram method (Szantoi et al. 2013) with a window size of 5x5 
pixels in both HH and HV polarizations. Using the STB1, ten texture metrics were computed for 
each image: mean, variance, contrast, entropy, energy, dissimilarity, correlation, homogeneity, 
angular second moment and maximum correlation coefficient. In addition to the metrics of texture, 
synthetic bands that contributed to improve classification in other LULC studies were calculated: 
HH+HV (Lehmann et al. 2012); HH-HV (Dong et al. 2012); HH/HV and HV/HH (Avtar et al. 2012); 
and the SAR Index = (HH*HV)/(HH+HV) (Lu et al. 2011).  



PALSAR-2/ALOS-2 and OLI/LANDSAT-8 …                                                                                                                                      256 

Bulletin of Geodetic Sciences, 24(2): 250-269, Apr-Jun,2018 

The OLI and PALSAR-2 images were co-registered and the optical data were resampled to 10 m 
using the nearest neighbour algorithm in order to preserve SAR’s fine spatial resolution. Thus, a 
total of 35 metrics derived from PALSAR-2 (27 metrics) and OLI (8 metrics) was used for RF 
classification. They were, as follows: the reflectance of six OLI spectral bands and two vegetation 
indices (NDVI and EVI) for OLI; HH and HV polarizations, twenty GLCM metrics (ten for each 
polarization) and five synthetic bands for PALSAR-2. 

 

2.3 Random Forest (RF) classification and validation 

 

The RF algorithm adopts a bootstrap approach for building decision trees. The RF classification 
was performed in R environment with the packages “raster”, “maptools”, “GIStools” and 
“randomForest”. In the classification, the original set of training samples is randomly divided into 
subsets with 65% of the original samples being used to create the trees. The remaining samples 
are used for cross-validation of the model through the determination of the out-of-bag estimate 
error (OOBE). At each split of the tree, a subset of m attributes is randomly selected and evaluated 
by the OOBE. The most accurate attributes divide the nodes of the trees. The variable importance 
(VI) is estimated by randomly permuting the value of the OOBE samples for a variable Xj and, thus 
producing a new estimative of error. The sum of the difference between the disturbed sample and 
the observed error for all trees provides a measure of the mean decrease in accuracy of that 
variable for the model. Variables with high importance show a great disturbance in the accuracy 
of the model. The VI is determined by Equation 1: 

 

VI(𝑋𝑗) =
1

ntree
∑(OOBE𝑡

𝑗
− OOBE𝑡

𝑗
)               (1) 

 

where, VI is the variable importance of Xj; ntree is the number of trees in the forest; sum is over 

all t trees OOBE𝑡
𝑗
 is the OOB error estimated by permuting the variable Xj; and OOBE𝑡

𝑗
 is the OOB 

error at each tree for that given variable. 

Users must define two parameters in RF: the number of trees in the forest (ntree) and the number 
of variables at each node of the tree (mtry). Default values for these parameters are 500 trees and 
the square root of the number of input variables (√N), which are commonly used for LULC mapping 
using remote sensing (Forkuor et al. 2014). There is no consensus on the minimum number of 
trees to reach an optimal RF performance (Akar and Güngör 2015). Therefore, many previous 
works assumed 1000 trees (van Beijma et al. 2014) because this quantity did not affect the 
performance of the model (Breiman 2001). Some efforts have been made to optimize both the 
ntree and mtry values aiming to reduce the OOBE and to yield more accurate results (Jhonnerie 
et al. 2015). The RF calibration approach adopted in this research was adapted from Eisavi et al. 
(2015). The approach consisted in processing RF for each of the established models with 100, 200, 
300 and up to 1000 trees and 1, 2, 3, ..., N mtry values, where N is the number of input variables 
in each RF model. Thus, the number of forests in each model was 10xN. The forest whose 
combination of ntree and mtry parameters resulted in the lowest OOBE was used for classifying 
the specific remote sensing dataset of a certain model (Table 2) and the different models were 
compared by means of independent validation. 
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Following the approach by van Beijma et al. (2014), different RF classification models were 
obtained using either the PALSAR-2 metrics or the OLI attributes, or the combination of them 
(hybrid models) (Table 2). The objective was to allow comparison of the RF classification accuracy 
as a function of the spectral range (optical or microwave) and the number and type of metrics. In 
addition, the idea was to better understand the role played by the polarization-derived metrics on 
the LULC discrimination. Because of the well-known SAR limitations for LULC mapping, 
demonstrated by Li et al. (2011), Li et al. (2012), Laurin et al. (2013) and Liesenberg et al. (2016), 
a greater number of SAR metrics (27 metrics) was adopted in the data analysis, when compared 
to the optical metrics (8 metrics). In the literature, the SAR texture is commonly used for adding 
spatially dependent information for improving classification (Sheoran and Haack 2013). In our 
study, the texture attributes were calculated for both HH and HV SAR polarizations, resulting in a 
much larger number of input variables for the SAR-derived RF models than for the optical-derived 
RF models.  

Table 2: Combination of attributes (marked with X) used in the different Random Forest (RF) 
models. Models 1 to 6 were processed only with PALSAR-2 metrics, while models 7 to 12 were 
generated only with OLI attributes. Models 13 to 18 were hybrid when combining optical and 

SAR attributes. 

Attributes Random Forest models 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

HH Amplitude X X  X  X         X X X X 

HV Amplitude X  X X  X         X X X X 

HH GLCM textures (10 images)  X  X  X          X X X 

HV GLCM textures (10 images)   X X  X          X X X 

HH+HV     X X        X    X 

HH-HV     X X        X    X 

HH/HV     X X        X    X 

HV/HH     X X        X    X 

(HH*HV)/(HH+HV)     X X       X X   X X 

OLI Band 2       X   X X    X X X X 

OLI Band 3       X   X X    X X X X 

OLI Band 4       X X X X X    X X X X 

OLI Band 5        X X X X    X X X X 

OLI Band 6        X  X X    X X X X 

OLI Band 7         X X X    X X X X 

NDVI           X X X X   X X 

EVI           X X X X   X X 

Number of variables (N) 2 11 11 22 5 27 3 3 3 6 8 2 3 7 8 28 31 35 

 

For validation of the RF classification, we selected pixels over the field-visited areas of each class 
and divided the pixels randomly into training (70%) and validation (30%) datasets. Multiple sites 
were selected per class to retrieve the training and validation pixels, to represent the 
heterogeneity of the classes and to avoid the autocorrelation effects. The performance of 
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classification using the validation set of pixels was evaluated by obtaining the overall classification 
accuracy and the Kappa statistics from the confusion matrices. Following previous studies, Kappa 
values were compared with paired-Z tests to verify statistical differences between the models at 
0.01 significance level (Silva and Santos 2011).  

 

3. Results 

 

3.1 Random Forest classification models 

In general, classification accuracy and Kappa values were lower for PALSAR-2 models than for OLI 
models and improved with the combination of optical and SAR metrics in hybrid models (Table 3). 
The parameters of the best PALSAR-2 RF classification (model 4) were 900 trees and 10 variables 
at each split (N = 22). For the OLI dataset, the best classification (model 10) was obtained with 600 
trees and 2 variables (N = 6). The hybrid model number 15 presented the highest accuracy with 
600 trees and 3 variables (N = 8). None of the models reached the lowest OOBE with the default 
parameters in the R software. This issue had already been reported in the literature, indicating the 
importance of the RF parameter of calibration before LULC classification with remote sensing data 
(Odindi et al. 2014). 

Table 3: Accuracy assessment of each of the 18 Random Forest (RF) classification models. Values 
in bold highlight the best models using either PALSAR-2 or OLI data, or the combination of both 

datasets (hybrid models). 

Dataset RF model Overall accuracy (%) Kappa 

PALSAR-2 

1 
2 
3 
4 
5 
6 

30.46 
36.23 
38.88 
44.60 
29.95 
44.54 

0.238 
0.296 
0.328 
0.390 
0.232 
0.389 

OLI 

7 
8 
9 

10 
11 
12 

57.01 
68.94 
67.89 
76.88 
76.86 
56.57 

0.527 
0.658 
0.646 
0.744 
0.743 
0.523 

PALSAR-2 plus 
OLI (hybrid 
models) 

13 
14 
15 
16 
17 
18 

67.29 
67.43 
82.96 
82.61 
82.15 
82.41 

0.638 
0.639 
0.810 
0.806 
0.801 
0.804 

 

In the PALSAR-2 model 4, the classification accuracy and Kappa were 44.60% and 0.390, 
respectively, after adding the GLCM textures and SAR metrics to the RF model. The classes with 



259                                                                                                                                                                      Pavanelli,J.A.P, et al. 

Bulletin of Geodetic Sciences, 24(2): 250-269, Apr-Jun,2018 

the highest producer’s accuracy (PA) were silviculture (95%), water (83.72%) and savannah 
grassland (82.53%). The most important metrics in model 4 were the GLCM mean HV (23%) and 
GLCM variance HV (20%), followed by the GLCM mean HH (17%) and GLCM variance HH (15%). In 
the OLI model 10, after the inclusion of the six multispectral bands (2, 3, 4, 5, 6 and 7), the 
classification accuracy and Kappa reached 76.88% and 0.744, respectively. The most important 
variables were the reflectance of the near-infrared (NIR) band 5 (54%), followed by the reflectance 
of the shortwave infrared (SWIR) band 7 (50%) and red band 4 (45%). 

The best hybrid model (number 15 in Table 3) produced a classification accuracy and Kappa of 
82.96% and 0.810, respectively. In addition to the six OLI multispectral bands, the PALSAR-2 HH 
and HV amplitudes were added into the model. In reality, paired comparisons of Kappa values by 
the Z test showed no statistically significant differences at the 0.01 level between the hybrid 
models 15, 16, 17 and 18. However, model 15 had the advantage of including a smaller number 
of attributes (8) than the other hybrid models (28, 31 and 35 attributes, respectively). 

 

3.2 RF classification maps using hybrid metrics 

 

The resulting RF LULC classification map of model 15, which had the highest classification accuracy 
in Table 3, is shown in Figure 3. From the analysis of the confusion matrix of this model, the classes 
that had more than 90% of pixels correctly classified were, as follows: agriculture, water bodies, 
silviculture, campinarana, clear-cut silviculture and mature forest (Table 4). The first three ranked 
metrics in order of importance were the reflectance of the NIR, SWIR and red OLI bands 7, 5 and 
4, respectively, with more than 40% of the mean decrease in accuracy (Figure 4). Compared to the 
optical attributes, the PALSAR-2 HH (8%) and HV (18%) amplitude had lower importance for 
classifying the LULC classes. On the other hand, they increased the overall classification accuracy 
in 6%. From the OLI RF model 10 to the hybrid model 15, the Kappa increased from 0.744 to 0.810 
(Table 3). 
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Figure 3. LULC map derived from the best Random Forest classification (model 15) using the HH 
and HV PALSAR/ALOS-2 amplitude and the surface reflectance of OLI/Landsat-8 bands 2 to 7. 

From top to bottom in the map, red rectangles are zoomed below showing the result of the RF 
classification, the OLI colour composition (R6G5B7) with examples of training polygons and the 

PALSAR-2 HH Amplitude band with examples of validation polygons. 
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Figure 4. The most important variables in the hybrid Random Forest model 15, expressed by the 
normalized mean decrease in classification accuracy, which ranges from zero (low importance) to 
one (high importance). 

Table 4: Confusion matrix derived from Random Forest classification using the validation set of 
pixels and the combination of optical (OLI/Landsat-8) and SAR (PALSAR-2/ALOS-2) attributes (RF 

model 15). 

Land use and 
land cover 
(LULC) classes 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total 
(pixels) 

User's 
accuracy 
(UA) (%) 

1 Agriculture 1018 0 0 69 0 0 0 7 0 0 0 32 44 0 0 251 0 1421 71.63 

2 Water 0 674 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 674 100 

3 Campinarana 0 0 3812 19 0 4 38 14 0 57 13 0 24 0 137 0 6 4124 92.43 

4 Wooded 
savannah 

0 0 15 2100 31 502 0 0 72 0 0 104 112 0 26 9 31 3002 69.95 

5 Savannah 
grassland 

0 0 0 94 1540 82 0 0 42 0 0 120 0 0 0 43 0 1921 80.16 

6 Shrub 
savannah 

0 0 0 79 47 79 0 0 4 0 0 1 2 0 0 6 0 218 36.23 

7 SS1 0 0 16 0 0 0 29 16 0 2 0 0 0 0 0 0 4 67 43.28 

8 SS2 0 0 10 0 0 0 3 7 0 6 20 0 0 0 0 0 0 46 15.21 

9 Burned 
savannah 

0 0 8 17 0 0 0 0 1532 0 0 0 0 0 34 300 0 1711 79.01 

10 Woodland 
savannah 

0 0 51 15 0 0 3 0 0 223 13 0 22 0 0 2 4 333 66.96 

11 Mature 
forest 

0 0 0 0 0 0 0 60 0 133 2498 0 0 32 0 0 49 2772 90.11 

12 Clean 
Pasture 

0 0 44 84 101 59 0 0 0 0 0 166 42 0 0 0 4 500 33.20 

13 Dirty 
Pasture 

0 0 12 45 4 57 10 169 0 69 2 48 765 0 0 84 0 1265 60.47 

14 Silviculture 0 0 6 0 0 0 44 0 0 1 114 0 3 2763 0 0 10 2941 93.94 
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Table 4: Continuation 

15 Clear cut  
silviculture 

0 0 18 5 13 0 0 0 14 0 0 0 0 0 3193 9 0 3252 98.67 

16 Bare soil 0 0 0 2 0 0 0 0 0 0 0 85 0 0 0 168 0 255 65.88 

17 Palm 
swamps 

0 0 1 0 0 0 1 34 0 9 23 0 0 5 0 0 15 88 17.04 

Total (pixels) 1018 674 3993 2529 1736 783 128 307 1484 500 2683 556 1014 2800 3390 872 123 24590  

Producer’s  
accuracy (PA) 
(%) 

100 100 95.46 83.03 88.70 10.08 22.65 2.28 91.10 44.60 93.10 29.85 75.44 98.67 94.18 19.26 12.19   

Overall 
accuracy (%) 

82.96                   

Kappa 0.810                   

 

Figure 5. Producer's accuracy (PA) and User's accuracy (UA), indicating gains (positive values) and 
losses (negative values) in Random Forest classification from the inclusion of the PALSAR-2 HH 

and HV polarization into the OLI dataset. 

 

The main contribution of the PALSAR-2 HH and HV amplitude was to improve the discrimination 
of the lowest biomass classes, as deduced from the analysis of gains and losses in producer’s (PA) 
and user’s (UA) accuracies after the inclusion of these metrics to the OLI spectral bands (Figure 5).  
For instance, savannah grassland and wooded savannah showed more than 20% of improvement 
in PA, while overgrown pasture had 44% of improvement, compared to the classification using 
only the reflectance of the OLI bands. On the other hand, wooded savannah and palm swamp had 
more than 5% of loss in PA, while SS2 showed a significant decrease (13%) in UA.  

Scatterplots of the relationships between the reflectance of the OLI bands 5 and 7 confirmed the 
spectral confusion between the savannah grassland and wooded savannah using the optical 
dataset (Figure 6a). When the HV amplitude replaced the OLI band 7 in the scatterplot, a better 
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discrimination between the two land cover types was observed, showing the contribution of the 
SAR signal to improve classification accuracy (Figure 6b).  

Figure 6. (a) Spectral confusion between the savannah grassland and the wooded savannah in 
the OLI/Landsat-8 bands 5 and 7. (b) Increase of discrimination between the two physiognomies 
with the inclusion of the PALSAR-2/ALOS-2 HV amplitude. Values of OLI data are in reflectance 

and PALSAR-2 in amplitude, as used for inputs in the RF classifier. 

 

4. Discussion 

 

The current approach makes three important contributions to other LULC studies in the Amazon. 
First, it demonstrated the potential of the new generation of polarimetric PALSAR-2 data to classify 
LULC classes in a specific large area of ecological tension between forest and savannah in the 
Amazon during the dry season. It also indicates the ability of RF to compose hybrid models using 
a small number of metrics retrieved from SAR and optical data. 

As a second contribution, the use of the hybrid RF models combining optical and SAR data 
demonstrates that it is possible to classify correctly a great number of classes (17 classes) without 
the need of merging them a priori to improve classification accuracy. In addition, the classification 
accuracy (83%) obtained here was excellent and surprisingly high because some of the 17 classes 
were relatively similar land covers from a spectral point of view. Liesenberg et al. (2016) obtained 
a Kappa of 0.79 using ALOS-1/Landsat data with a much smaller number of classes (7). The 
protocol established here can be therefore tested for a major understanding of broad 
approaches/scenarios in the Amazon rainforest and in other complex fragmented landscapes in 
the savannah and tropical forest environments. 

The last contribution of our work is to indicate clearly the LULC classes that benefit from the 
multispectral optical and SAR dual polarization L-band data integration. According to Joshi et al. 
(2016), in a literature review on the topic, this is a critical aspect of most LULC studies addressing 
optical and SAR data fusion. The findings showed that the main contribution of adding SAR to 
optical data, especially HH and HV amplitude, was to classify correctly classes with low biomass 
such as savannah grassland and wooded savannah, in which OLI did not have good performance 
to separate them. 

Our findings showed that the use of five PALSAR-2 synthetic bands (HH+HV, HH-HV, HH/HV, 
HV/HH and SAR Index) in model 6, in these specific conditions of incidence angle, passing, dual 
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polarization, and water content, did not result in significant improvement in classification 
accuracy, compared to the classification using the HH and HV amplitude and the related GLCM 
texture metrics (model 4). Zhu et al. (2012) reported an enhancement from 31% to 72% in 
classification accuracy by adding metrics of texture to the polarizations in an urban study. In our 
study area, the addition of these metrics to the polarizations increased the classification from 
30.0% to 44.6% but the number of classes selected for classification (17) was much higher than in 
the other studies. 

The discrimination of silviculture plantations from croplands and savannahs using RF was 
facilitated in the study area due to the interaction of the HV polarization in L band with canopy 
structure (Li et al. 2012). The signal depolarization due to volumetric backscattering, related to 
multiple scattering process of the incident radar signal, also explains the confusion between the 
silviculture plantation and mature forests, which are similar in vertical structure, volume and 
aboveground biomass content. The discrimination of waterbodies and savannah grasslands from 
the other scene components was related to the small amounts of backscattering of the microwave 
signal (Sano et al. 2005). 

Despite the complexity and large number of LULC classes of our study area, the PALSAR-2 allowed 
separation of the vegetation physiognomies according to their structure and biomass, such as the 
savannah and forests. Similar results in L band were found in Central Africa using the JERS-1 
amplitude, in which savannah grassland, forests and flooded vegetation were correctly classified 
(Simard et al. 2000). In the absence of optical data due to frequent cloud cover in tropical regions, 
the monitoring of the transition zone between savannahs and forests in the study area is 
important, because deforestation and fire frequently occur in this zone (Laurin et al. 2013). For 
instance, the Mucajaí municipality presents high deforestation rates in the Roraima state in Brazil, 
with 45 km² of new deforested areas detected only from 2015 to 2016, according to the Projeto 
de Monitoramento do Desflorestamento na Amazônia Legal (PRODES) 
(http://www.dpi.inpe.br/prodesdigital/prodesmunicipal.php). On the other hand, 38% of 
savannah area burns yearly (Barbosa and Fearnside 2005). In this context, further studies with SAR 
polarimetric decomposition can reveal disturbances in forests affected by fire (Santos et al. 2008). 
For instance, Martins et al. (2016) showed that polarimetric L-band PALSAR data were sensitive to 
variations in forest structure and biomass caused by forest fire. 

When compared to the SAR classification, results using RF applied to the reflectance of the OLI 
bands showed higher classification accuracy. The most important OLI metrics were the NIR band, 
closely followed by the SWIR band. In contrast, studies in forests from Belgium and Costa Rica 
reported the SWIR bands as more important than the NIR bands for LULC classification (Chan and 
Paelinckx 2008). 

The hybrid dataset (PALSAR-2 plus OLI) produced better RF results than the use of OLI or PALSAR-
2 metrics separately, which was consistent with previous studies integrating optical and SAR data 
(Pereira et al. 2013; Laurin et al. 2013). In the hybrid dataset, the optical bands were more 
important than the SAR attributes. From the PALSAR-2 metrics tested in our study, the HV and the 
HH amplitudes were selected in the RF classification of the hybrid dataset. Similar findings were 
also found by Braun and Hochschild (2015) when working with OLI and C-band Sentinel-1 data. In 
our study area, the main contribution of SAR was to classify correctly classes with low biomass 
such as savannah grassland and wooded savannah. They are not easily discriminated using optical 
data. On the other hand, the addition of PALSAR-2 attributes to the OLI metrics affected the RF 
classification of SS2, woodland savannah and palm swamps. The confusion between woodland 
savannah and mature forests is caused by similar branches and trunk arrangements of these 
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classes (Hess et al. 1998). Secondary successions are well discriminated with surface reflectance 
even after thirty years of vegetation regrowth (Galvão et al. 2015), but signal saturation in the SAR 
L-band due to high biomass and branches/trunk structure generally leads to misclassification 
(Araújo et al. 1999). 

Palm swamps also present high biomass mainly due to the height of the trees (9-38 m) but have a 
less organized branched structure (Goodman et al. 2013). In the differentiation between palm 
swamps and mature forest, seasonality has an important role on SAR backscattering. The 
classification of them is better delineated in the wet season than in the dry season (Einzmann et 
al. 2012) because of the greater amounts of water in the soil profiles and streams where the palms 
are located. In the wet season, the waters of the streams favour double bounce scatter 
mechanisms between the water surface and the smooth palm trunks (Horritt et al. 2003). Because 
our investigation was performed in the dry season, the PALSAR-2 metrics did not allow correct 
classification between palm swamps and forests. Further studies are therefore necessary to 
evaluate gains from the use of PALSAR-2 images acquired in the rainy and dry seasons in the 
classification approach. 

 

5. Conclusions 

 

The potential of the PALSAR-2 and OLI sensors was evaluated as well as the combination of 
different metrics from them for LULC classification with RF in the ecological tension zone of 
northern Amazon. The results showed that the combination of the PALSAR-2 HH and HV 
amplitudes with the reflectance of six VNIR-SWIR OLI spectral bands (2 to 7) produced an overall 
classification accuracy of 83% and a Kappa of 0.81. This result represents an improvement in 
classification of 6%, in relation to the classification derived from the use solely of the OLI bands. 
They highlight the importance of the hybrid models to classify a great number of LULC classes, as 
in the case of the current study (17 classes).   

In general, the addition of some metrics into the RF models, such as vegetation indices and texture 
attributes, did not improve the accuracy of the combined OLI and PALSAR-2 classifications. All RF 
models using OLI metrics performed better than the RF models using PALSAR-2 attributes. While 
the inclusion of the NDVI and EVI did not improve the classification performed with the reflectance 
of the OLI bands, the texture attributes increased the classification performed with the PALSAR-2 
HH and HV amplitudes.  

Compared to the OLI, the PALSAR-2 was able to distinguish the major LULC classes because of the 
differences in canopy structure (e.g. semi-deciduous forest and savannah physiognomies). This is 
useful for monitoring this landscape in the absence of optical data due to cloud cover. More 
importantly, the inclusion of the PALSAR-2 HH and HV amplitude into the OLI reflectance dataset 
improved the discrimination of the low biomass classes such as savannah grasslands and wooded 
savannah. 
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