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Abstract 

Genomic selection has been proposed as the standard method to predict breeding values in animal and plant breeding. 

Although some crops have benefited from this methodology, studies in Coffea are still emerging. To date, there have been 

no studies describing how well genomic prediction models work across populations and environments for different complex 

traits in coffee. Considering that predictive models are based on biological and statistical assumptions, it is expected that 

their performance vary depending on how well these assumptions align with the true genetic architecture of the phenotype. 

To investigate this, we used data from two recurrent selection populations of Coffea canephora, evaluated in two locations, 

and single nucleotide polymorphisms identified by Genotyping-by-Sequencing. In particular, we evaluated the performance 

of 13 statistical approaches to predict three important traits in the coffee—production of coffee beans, leaf rust incidence and 

yield of green beans. Analyses were performed for predictions within-environment, across locations and across populations 

to assess the reliability of genomic selection. Overall, differences in the prediction accuracy of the competing models were 

small, although the Bayesian methods showed a modest improvement over other methods, at the cost of more computation 

time. As expected, predictive accuracy for within-environment analysis, on average, were higher than predictions across 

locations and across populations. Our results support the potential of genomic selection to reshape traditional plant breeding 

schemes. In practice, we expect to increase the genetic gain per unit of time by reducing the length cycle of recurrent selection 

in coffee. 
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Plant and animal breeders have used quantitative genetics 

effectively to increase mean phenotypic performance in 

selected populations. Traditionally, genetic progress has 

been achieved by combining phenotypic evaluations with 

the pedigree record, which involves visual evaluation and 

trait screening over several successive generations (Goddard 

and Hayes 2007). These approaches have brought significant 

gains in recent decades. However, it is important to take into 

account the effort required to achieve these gains; for the 
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majority of perennial crops, this approach is costly and time-

consuming, particularly for traits expressed late in a plant’s 

life-cycle. 

The advent of molecular markers has provided an 

opportunity to achieve faster genetic gains (Lande and 

Thompson 1990). Meuwissen et al. (2001) first proposed to 

use all available molecular markers to predict quantitative 

traits in breeding programs. Known as genomic selection 

(GS), the methodology has become widely adopted in the 

animal and plant breeding communities because of its 

potential to increase genetic gains and shorten the breeding 

cycle. The rationale behind this approach is that, whenever 

marker density is high enough, most quantitative trait loci 

(QTLs) will be in linkage disequilibrium (LD) with some 

markers and hence estimates of marker effects will lead to 

accurate predictions of genetic merit for a complex trait 

(Goddard and Hayes 2007). 

When confronting the problem of modeling the 

relationship between genetic variation and variation in the 

observed traits, an important question is what statistical 

method might better describe this relationship. Several 

analytical approaches have been proposed for genome-based 

prediction of genetic values, such as penalized and Bayesian 

estimation procedures, as well as nonparametric regression 

and dimension reduction methods (Gianola et al. 2009; 

Kärkkäinen and Sillanpää 2012; Gianola 2013; de Los 

Campos et al. 2013). A common feature of all these methods 

is that they were designed to handle highly-dimensional 

data, with a particular focus on producing accurate estimates 

in settings in which the number of variables, or SNPs (p), is 

larger than the number of samples (n). Most successful 

approaches are based on variable selection and/or shrinkage 

techniques from the statistics literature (Kärkkäinen and 

Sillanpää 2012; Zhou et al. 2013; Garrick et al. 2014). 

Comparisons between genomic prediction models have 

been carried out in a variety of scenarios for different species 

and traits (Heslot et al. 2012; Riedelsheimer et al. 2012; 

Daetwyler et al. 2013; Wang et al. 2015). Empirical and 

simulation studies have suggested that different models 

work better in different scenarios, since biological and 

technical factors affect prediction accuracy. These factors 

include population size, genetic architecture and differences 

between the training and validation data sets (de Los 

Campos et al. 2013; Daetwyler et al. 2013). Because of this, 

when considering analyses of new species and breeding 

scenarios, it can be helpful to compare and assess several 

methods before carrying out the final genomic analyses. 

Here we perform such an assessment for genomic prediction 

in coffee, an important agricultural commodity in which 

genomic studies are still emerging. 

So far, genomic prediction accuracy has usually been 

evaluated within single environments (Windhausen et al. 

2012a, b; Beaulieu et al. 2014; Gamal El-Dien et al. 2015). 

In coffee, however, breeding schemes are most commonly 

performed in multiple environments to measure 

performance of genotypes across a range of conditions. In 

this study, therefore, we focus on the following question: are 

marker effects estimated in one set of environments useful 

for prediction in other environments? This question has 

important practical implications for the effectiveness of GS 

in perennial species such as coffee. If feasible, for example, 

a single prediction model could be used across different 

environments resulting in time and cost economy ( Resende 

et al. 2012a). 

This investigation builds on our earlier work that explored 

the potential of GS for production of coffee beans (Ferrão et 

al. 2017). In that work, we used a mixed model framework 

with integration of spatial and temporal variance-covariance 

structures. In combination, this investigation explores the 

potential of several statistical methods to predict three 

important traits—production of coffee beans, leaf rust 

incidence, and yield of green beans—evaluated in two 

recurrent selection populations of Coffea canephora. Our 

results demonstrate the usefulness of genome-base 

prediction for coffee breeding. We also provide guidance on 

implementing molecular assisted selection in practical 

breeding programs. 

Materials and methods 

The description of the Materials and methods is organized 

as follows. In the Sections “Plant material” and 

“Experimental design”, we describe the development of the 

population used in the experiments, collection of the 

phenotype data, and breeding scenarios proposed for GS 

investigation. We take additional steps, described in the 

Section “Phenotypic model”, to prepare the phenotype data 

for analysis with whole-genome prediction models. At this 

stage of the analysis, no marker information was included in 

the model. The protocols for DNA sequencing and calling 

SNP genotypes are described in the Section “Genotypic 

data”. Finally, in the Sections “Genomic prediction 

methods” and “Evaluation of genomic predictions” we 

describe the genomic prediction methods used in our 

experiments and explain how these methods were compared. 

Plant material 

We consider an experimental population designed by the 

Instituto Capixaba de Pesquisa, Assistência Técnica e 

Extensão Rural (Incaper), ES State, Brazil. Phenotype 

measurements were collected from two recurrent selection 
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populations formed from the recombination of superior C. 

canephora clones. Clones were selected by the Incaper as 

progenitors (founders) based on high production of coffee 

beans and similar stages of fruit maturity. The latter is an 

important feature of new coffee varieties because it allows 

harvests to be standardized. Based on the maturity group, 

coffee populations were designated as “Intermediate” or 

“Premature”. The Intermediate population, on average, had 

fruits that started to ripen in March and April, and then were 

harvested in June. The fruits of the Premature population 

started ripening, and were harvested one month earlier, on 

average. 

In 1997, the original Intermediate and Premature 

populations were derived from crosses of 16 and 9 

progenitors, respectively. Each population was planted in an 

isolated field under open pollination conditions. In 2000, 

after one cycle of recombination, seeds were derived from 

each maternal plant, which were then use to develop a new 

population. At this point, the same number of seeds per 

maternal plant were harvested in order to preserve genetic 

diversity. After four consecutive harvest-production years 

(2002–2005), 103 progenies from the Intermediate 

population and 87 progenies from the Premature population 

were selected based on their high performance in terms of 

production of coffee beans and tolerance to biotic and 

abiotic stress over these four years. In 2006, founders and 

the selected progenies belonging to both populations were 

cloned and assigned to randomized complete blocks with 

three replications and five plants per plot. The average 

measurement per plot was used as the phenotype for all 

subsequent analyses in this study. 

Both populations were established in two locations, 

chosen to be representative of Brazilian coffee production: 

Marilândia Experimental Farm, or FEM (latitude 19024’ 

south, longitude 40031’ west, 70 m altitude); and Sooretama 

Experimental Farm, or FES (latitude 15047’ south, longitude 

43018’ west, 40 m altitude). 

The complete experiment used phenotype measurements 

from 3570 coffee trees in the Intermediate population, and 

from 2880 coffee trees in the Premature population. 

Measures were recorded over four consecutive 

harvestproduction years (2008–2011) for three traits: 

production of coffee beans (mature coffee fruit in the 

“cherries” stage, in 60-kg bags per hectare); natural infection 

of coffee leaf rust, caused by the Hemileia vastatrix fungus 

(levels ranging from 1 to 9, according to visual sporulation 

intensity evaluated in field); and yield of green beans post-

harvest trait (ripened beans, in g, after processing by dry 

methods to remove dried husks in samples of 2 kg of coffee 

fruit in the cherries stage). 

Experimental design 

To investigate potential for GS, we considered two aspects 

of plant breeding: (i) prediction accuracy for different traits, 

and (ii) prediction accuracy within and across environments. 

Here we define “environment” as a specific combination of 

location and population. Figure 1 summarizes our 

experiments. 

For within-environment experiments (Scenarios A–D), 

predictions were evaluated using a Replicated 

Fig. 1 Genomic selection 

experimental scenarios. Here, 

“environment” is defined as a 

combination of location ( FEM, 
FES) and population 

(Intermediate, Premature). 

Scenarios a–d assess genomic 

selection within the same 

environment; Scenarios 1–4 

compare GS performance across-

locations; Scenarios 5–8 evaluate 

GS performance across 

populations; and Scenarios 9–12 

assess both across-location and 

cross-population predictions. 

Direction of the arrows indicate 

differences in the training and 

test data sets 
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TrainingTesting evaluation (Crossa et al. 2013). In each 

replication, 80% of the individuals were assigned randomly 

to the training set (TRN), while the remaining 20% were 

assigned to the test set (TST). This division was repeated 30 

times with different random assignments to TRN and TST. 

Models were fitted to the training data and prediction 

accuracy was evaluated in the test data. 

For across-environment experiments (Scenarios 1–12), 

we subdivide the experiments as follows (see Fig. 1): (i) 

Scenarios 1–4 capture across-location predictions, in which 

the test set contains samples collected from a different 

location than the training set, while the source population is 

kept the same; (ii) Scenarios 5–8 consider across-population 

predictions, in which the training and test sets contain 

samples from different populations, while the location is 

kept the same; (iii) Scenarios 9–12 capture both 

acrosslocation and across-population predictions, in which 

the test set has samples from a different population and a 

different location than the training set. In these experiments 

we did not use the Replicated Training-Testing design; for 

example, in Scenario 1 the model was trained with all 

Intermediate individuals from one location (e.g., FEM) and 

validated using all Intermediate individuals from another 

location (e.g., FES). 

Phenotypic model 

The phenotypes were adjusted for linear effects of 

environmental covariates, and other experimental 

covariates. In particular, in our experiments we collected 

longitudinal data across multiple harvest-years. Different 

variance-covariance structures were tested to describe this 

temporal variation across harvest, and therefore improve the 

estimation of genetic effects. Using a similar notation to 

Pastina et al. (2012), we considered the following statistical 

model (underlined terms indicate random variables): 

yijk ¼ μ þ Bj þ Hk þ Gij þ εijk ð1Þ 

where yijk is the phenotype measured in individual i ∈ {1,...,n} 

from block j ∈ {1,...,r} and harvest k ∈ {1,...,K}; µ is the 

intercept; Hk is the fixed harvest effect; Bj is the fixed block 

effect; Gij is a random genetic effect of genotype i at harvest 

k; and εijk is a random non-genetic residual error term. Here, 

r = 3 (the number of blocks) and K = 4 (the number of 

harvests). 

To model the random genetic effects, we assumed a 

multivariate normal distribution with a zero mean and a 

variance-covariance matrix G. We formulated G as the 

Kronecker product 
G 

¼ PK
H

K I
g

nnP, in which 
I
g

nn is the n × n 

identify matrix. Four structures K
H

K different levels of 

complexity (i.e., number of model parameters to be 

estimated) were investigated (see Supplementary Table S1). 

Similarly, for the residual error, we assumed a 

multivariate normal distribution with a zero mean and 

variancecovariance matrix R defined as R ¼ RK
H

K  IB
rr  Ig

nn. 

The term IB
rr is an Identity of dimension equal to the number 

of blocks, r. For the term RK
H

K, the “Ident” and “Diag” 
variance-covariance structures were considered 

(Supplementary Table S1). Our previous study showed no 

improvements in the goodness-of-fit values when spatial 

trends were evaluated (see Ferrão et al. 2017); therefore, we 

did not consider spatial analysis here. 

The final model choices were based on AIC ( Akaike 

Information Criterion) (Akaike 1974) and BIC ( Bayesian 

Information Criterion) (Schwarz 1978). Since calculation of 

heritability in complex linear mixed models is not 

straightforward (Cullis et al. 2006; Oakey et al. 2016) , 

broad-sense heritability (h2) was estimated from the simplest 

phenotypic model—that is, identity structure for the 

 
geneticis the estimatedand residualvariancematricesof the—

as:genotypeh2 ¼ σ2gcomponent, þσσ2ge2=rK; whereσe2
σ

is2
g 

the estimated variance of the residual component, and r and 

K are the number of blocks and harvests, respectively. 

All analyses described in this section were performed 

using the R package nlme (Pinheiro et al. 2013). 

Genotypic data 

The Intermediate and Premature populations were 

genotyped using the Genotype-by-Sequencing (GBS) 

approach that was first developed by Elshire et al. (2011). 

We followed the GBS protocol used by the Genomic 

Diversity 

Facility at Cornell University. 

Leaves were collected and lyophilized. DNA was 

extracted using Qiagen DNeasy Plant, and the genomic 

libraries were prepared following Elshire et al. (2011). The 

DNA samples were digested using the ApeKI restriction 

enzyme, and 96 samples were multiplexed per Illumina flow 

cell for sequencing. 

The GBS analysis pipeline was implemented with the 

TASSEL-GBS software, version 4.3.7 (Glaubitz et al. 2014). 

Sequenced tags were aligned against the C. canephora 
genome assembly (Denoeud et al. 2014). SNPs were 

extracted from the raw Variant Call Format (VCF file) and 

filtered manually as follows: (i) triallelic SNPs were 

removed; (ii) SNPs with minor allele frequency (MAF) less 
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than 1% were removed; and (iii) SNPs with genotypes that 

were called in less than 70% of the samples were discarded. 

To ensure that all genotypes were called consistently, we 

used a Bayesian approach that incorporates genetic 

background information, similar to Chan et al. (2016), to call 

genotypes with low coverage (which we defined as 

genotypes with less than or equal to five sequenced reads). 

Specifically, we used a two-step approach: first, the 

maximum-likelihood estimates of genotypes were computed 

following Chan et al. (2016) (assuming a uniform genotype 

prior); second, the inferred parental genotypes were 

provided as prior information for inferring the genotypes of 

the progenies. To improve accuracy of the parental genotype 

estimates, we increased the sequencing coverage of the 

parents to 3× the coverage of the progenies. To call the 

genotypes, we retained the maximum-probability genotype, 

encoded as reference allele counts (0, 1 or 2) in our files. 

All SNP manipulation and genotype calling (aside from 

genotypes of low-coverage samples) were carried out using 

VCFtools (Danecek et al. 2011). We used R (R Core Team 

2013) to implement the Bayesian genotype calling 

incorporating parental genotype estimates. SNP density 

plots were created using the synbreed R package (Wimmer 

et al. 2012). 

Genomic prediction methods 

We compared 13 different methods for genomic prediction 

of coffee traits. Most of the genomic prediction approaches 

included in our experiments are based on a linear regression 

in which the outcome of interest y is modeled as a linear 

combination of the SNP markers: 

y ¼ μ1n þ Xβ þ ε ð2Þ 

Here, y is an n-vector of phenotypes measured on n 
individuals, after adjusting for linear effects of 

environmental factors and other experimental factors, as 

explained in Sec. 2.3; X is an n × p matrix of genotypes 

measured at p SNPs; β is a p-vector of SNP effects to be 

estimated; 1n is an n-vector of 1’s; μ is the intercept, and ε is 

an n-vector of normally distributed residuals, ε  N0; σ2
eInn. 

For comparing genomic prediction approaches, we 

defined three classes of methods: (1) fixed multiple 

regression, (2) Bayesian methods, and (3) a third class of 

methods based on techniques originally developed in 

machine learning (which don’t already fit into the first two 

categories). 

Fixed multiple regression 

This class of method builds on standard statistical 

association analysis approaches used in genome-wide 

association studies (GWAS) which test each SNP, one at a 

time, for association with the phenotype (we refer to this as 

“singleSNP” analyses). We implement a fixed regression 

procedure following Spindel et al. (2015), using a subset of 

markers identified from a single-SNP analysis. For each 

replication in the cross-validation scheme (Replicated 

Training-Testing evaluation), single-marker regression was 

applied to all SNPs, and association p-values were computed 

using an F-test. A linear regression model was then fitted to 

the data using the 100 most significant markers. We refer to 

this method as “fixedMRL”. 

Machine learning methods 

We consider three approaches from the machine learning 

literature: regularized regression, dimension reduction, and 

random forests. 

1. Regularized regression: This method fits a regression 

model with all p SNPs, shrinking all coefficients 

toward zero. Regression coefficients are fitted by 

solving an optimization problem that balances 

goodness-of-fit against model complexity (de Los 

Campos et al. 2013; James et al. 2013). Several 

regularized approaches have been proposed, and they 

differ in the choice of penalty function. Ridge 

regression (RR) and LASSO are the two most 

prominent approaches. RR shrinks all coefficients 

toward zero, with a penalty applied to the ℓ2-norm of 

the coefficients. In contrast, LASSO uses the ℓ1norm 

(James et al. 2013). The RR-BLUP is a version of RR 

that implements best linear unbiased prediction 

(BLUP) using a mixed model approach (Endelman 

2011). The RR-BLUP and LASSO approaches were 

implemented using, respectively, the rrBLUP 

(Endelman 2011) and glmnet (Friedman et al. 2010) R 

packages. The LASSO penalty strength was chosen 

via cross-validation, following Silva et al. (2011). 

2. Partial least squares regression (PLSR): This is a 

dimension-reduction approach that transforms the 

variables (SNPs), then fits a model with the 

transformed variables. PLSR is similar to principal 

component regression (PCR); both methods construct 

a matrix of latent components as a linear 

transformation (James et al. 2013). PLSR was 

implemented using the pls R package (Wehrens and 

Mevik 2007) with the default settings. 

3. Random forest (RF): A random forest is a collection 

of regression trees, in which a subset of SNPs is used 

to define the best split at each node (James et al. 2013). 
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Different variables are used at each split in different 

trees. The RF prediction for an observation is obtained 

by averaging the predictions over trees. One feature of 

the RF approach is that it allows for non-linear 

relationships between genotype and phenotype. RF 

was implemented in our study using the 

RandomForest R package (Liaw and Wiener 2002) 

with the default settings. 

Bayesian methods 

All Bayesian approaches are based on a hierarchical linear 

regression method, building on (2), and differ primarily in 

the priors placed on the regression coefficients and other 

model parameters (Gianola 2013). Using notation similar to 

de Los Campos et al. (2013), the posterior distribution of the 

model parameters μ, β, σ2 given the hyperparameters ω 

Table 1 Summary of effect size distributions used in selected genomic 

prediction methods, adapted from Zhou et al. (2013) 

is expressed as: 

Name pðβω j Þ Keyword Software 

t 

Point-t 

Point-normal 

Point-

normalmixture 

βjj  t0;υ;σ2
a2a 

βj  π t 0;υ;σa2 þ ð1  πÞδ0 β  π 

N 0;σ þ ð1  πÞδ0 

βj  π1N0;σ2
a
 
þ π2πN10;π0:31σa

2π3
þ

Þ δπ0 3N0; 

0:01σa
2 

þð
1   

 

bayesAa 

bayesBa 

bayesCb, 

bayesVSc 

bayesRd 

BGLRh 

BGLRh 

BGLRh , 

varbvsc 

BayesR d 

Normal 

Normal-mixture 

Doubleexponential 

βjj  π N0;σ2a2a 2b  b β  π N 
0;σ þ σ þ ð1  πÞN 0;σ2 

βj  DEð0;θÞ 

bayesRRe 

bslmmf 

bayesLASSOg 

BGLRh 

GEMMAf 

BGLRh 

a 
Meuwissen et al. (2001) 
b 
Habier et al. (2011) 
c 
Carbonetto et al. (2017) 
d 
Erbe et al. (2012) 
e 
Whittaker et al. (2000) 
f 
Zhou et al. (2013) 
g 
Pérez and de los Campos (2013) 
h 
Park and Casella 2008 

**Notation used in Zhou et al. 2013. DE =“double-exponential’” 
distribution. For the scaled t- distribution, υ and σ2

a are the number of 

degrees-of-freedom and scale parameter, respectively. In the DE 

distribution, θ is the scale parameter.δ0 denotes a point mass at zero. 

Notes: Some applications of these methods combine a particular effect 

size distribution with a random effects term, with covariance matrix K, 

to capture sample covariance structure (“cryptic relatedness”); if K∝XXT, 

it can be shown that this is equivalent to assuming a normal distribution 

for the effect sizes; this is one motivation for the effect size 

distributions used in the many of the methods summarized in the above 

table. In some papers, the “Keyword” column may refer to fitting 

techniques rather than the assumed effect size distributions. More 

details in Zhou et al. 2013 

Evaluation of genomic predictions 

pμ;β;σ2jy;ω / pyμ;β;σ2pμ;β;σ2jω ð3Þ 

where pðμ;β;σ2jy;ωÞ is the posterior density of model 

parameters μ, β, σ2 given the data (y) and the 

hyperparameters ω, pyμ;β;σ2 is the regression likelihood 

based on (2), and pðμ;β;σ2jωÞ is the prior density of model 

parameters. Table 1 summarizes the Bayesian methods 

evaluated in our experiments. 
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For all Bayesian methods except bayesVS, we ran the 

Markov chain for 20,000 time steps, with a burn-in of 2000. 

The bayesVS method uses a variational approximation 

instead of Markov chain Monte Carlo (MCMC) (Carbonetto 

and Stephens 2012). The bayesA, bayesB, bayesC, bayesRR 

and bayesLASSO models are implemented in the BGLR 

package (Pérez and de los Campos 2013); the bayesR 

method is implemented in the BayesR package (Erbe et al. 

2012); and the BSLMM (Bayesian Sparse Linear Mixed 

Model) method is implemented as part of the GEMMA 

software (Zhou et al. 2013). For all methods, we adopted the 

default hyperparameter and prior settings. 

We applied each of the 13 methods to predict 

withinenvironment phenotypes (Scenarios A–D in Fig. 1). 

The best performing method was used in the others scenarios 

(Scenarios 1–12 in Fig. 1). To compare the models, we 

primarily focused on quantifying the prediction ability, 

commonly used in the GS literature as a measure of the 

prediction accuracy. To this end, we compute the Pearson 

correlation (rgp) between predicted (ybi) and adjusted 

phenotypes (yi) obtained with Eq. (1). 

Following Asoro et al. (2011), we used analysis of 

variance (ANOVA) to investigate how different factors 

might be responsible for differences in accuracy among 

methods. We used the following model in the ANOVA: 

rgp ¼ μþ method þ trait þ pop þ loc þðmethod  traitÞ þðmethod  

popÞþðmehotd  locÞþðtrait  locÞþ error ð
4

Þ 

where μ is the intercept; the levels of method are the 

prediction methods; the levels of trait are the three traits 

(production of coffee beans, coffee leaf rust, and yield of 

Fig. 2 Left-hand panel: summary of production of coffee beans (in 60kg 

bags of mature coffee fruit in the cherries stage per hectare) and yield 

of green beans (in g, of mature beans after processing using dry 
methods to remove the entire dried husk in samples of 2 kg of coffee 

fruit in the cherries stage) evaluated in two locations (FEM, FES), four 

harvests (2008–2011) and two populations (Intermediate, Premature). 

Right-hand panel: Summary of coffee leaf rust scores (Hemileia 
vastatix), ranging from 1 to 9, according to sporulation observation. 

Curves are kernel density estimates, which are smoothed version of the 

histogram 

green beans); the levels of pop are the two populations 

(Intermediate and Premature), and the levels loc are the two 

locations (FEM and FES) considered. Other terms in (4) 

correspond to double interactions among factors. 

Alternatively, we also estimate the mean squared 

prediction error (MSPE), slope and computational time to 

compare the 13 models. MSPE was computed using the 

formula: 

MSPE ¼ 1
n Pn

i¼1 ðyi  ybiÞ2, where n is the number of 

samples in the test set. To compute the slope, adjusted 

phenotypes were linearly regressed on predicted phenotypes 

to express the degree of bias of the predictions, as suggested 

by Moser et al. (2009). Runtimes for model fitting were 

recorded in minutes for all methods and data sets. All 

computations were single threaded and performed on an 

Intel Core i7-3770 processor (3.40 GHz) with 8 GB of 

memory. 

Since the degree of genetic relationships between training 

and test sets can impact accuracy of the predictions, the 

relationships of both populations were investigated using 

principal components analysis (PCA) and Fst. 

In our experiments, we also investigated the effect of 

number of included SNPs on the predictive ability. To this 

end, we considered two approaches to selecting SNPs: (i) 

guided subsets, and (ii) random subsets. To construct the 

“guided” SNP subsets, we selected 10 SNPs within windows 
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of the same length (in base-pairs) in each C. canephora 
chromosome. To construct SNP subsets of different sizes, 

we considered different window sizes, ranging from 5 to 900 

Kb, by increments of 100 Kb. Following Spindel et al. 

(2015), we selected the SNPs with highest minor allele 

frequencies (MAF) and best call rates within each window. 

This resulted in SNP subsets with the following numbers of 

SNPs: 35,427 (smallest windows), 20,450, 13,690, 10 ,189, 

7989, 6577, 5559, 4780, and 4240 (largest windows). For 

the Premature population the number of SNPs in each subset 

was 40,767, 21,433, 13,969, 10,283, 8019, 6587 , 5560, 

4780, and 4240. To construct random SNP subsets, we used 

exactly the same number of SNPs as in the “guided” subsets; 

however, SNPs were randomly sampled in each window 

instead of selecting them based on MAF and call rate. 

Results 

Phenotypic data 

Figure 2 summarizes the phenotypic variation in both 

populations and at both locations. On average, FES location 

was more productive than FEM location, and showed higher 

incidence of rust. We observed a lack of annual production 

stability in coffee bean production over different years in 

both populations. This instability was quantified in the 

mixed model analysis, with better goodness-of-fit values 

(lower AIC and BIC) when heterogeneity of residual and 

genetic variance were taken into account ( Supplementary 

Table S3). Further, the boxplots in Fig. 2 highlight this 

cyclical production, interleaving years of high (2008, 2010) 

and low bean production (2009, 2011). 

Table 2 Broad-sense heritability of production (weight of mature coffee 

fruit in the cherries stage, in kg), incidence coffee leaf rust (1–9 scale) 

and yield of green beans (weight, in g, in samples of 2 kilograms of 

coffee fruit in the cherries stage) across two locations (FEM and FES) 

and two recurrent selection populations of Coffea canephora 
(Intermediate and Premature) 

 

Production 0.70 0.81 0.74 0.85 

Rust 0.61 0.86 0.56 0.89 

Green 0.52 0.86 0.72 0.92 

 

Heritability estimates of the three traits, in different 

environments, ranged from 0.56 to 0.92 (Table 2). Incidence 

of rust and yield of green beans showed the highest 

heritability values (0.89 and 0.92, respectively). On average, 

traits evaluated in the FES location and in the Premature 

population showed higher heritabilities than the FEM 

location and Intermediate population. Genotyping-by-
Sequencing in C. canephora 

After following the quality-control steps (see 'Materials and 

methods'), a total of 45,748 (on average, 64.4 SNPs per Mb) 

and 59,332 (on average, 83.5 SNPs per Mb) molecular 

markers (SNPs) were retained in the Intermediate and 

Premature populations, respectively. Among these, 38,106 

SNPs (on average, 53.7 SNPs per Mb) were identified in 

both populations (Fig. 3b). GBS yielded good coverage of 

SNPs for most of the C. canephora genome in both 

populations (Fig. 3b). 

Genetic similarity between training and test populations 

is an important factor affecting prediction accuracy (de Los 

Campos et al. 2013; Daetwyler et al. 2013). Based on the 

GBS genotypes, the Intermediate and Premature population 

are very similar; the Fst measure is 0.0158, and both 

populations strongly overlap in the projection of the samples 

onto their first two principal components (Fig. 3a). 

Comparison of methods for genomic prediction 

For phenotype prediction within the same environment, we 

evaluated prediction accuracy using 13 previously 

developed genomic prediction methods for three traits. 

Although the methods differ in assumptions of the marker 

effects, most methods yield predictions at comparable levels 

of accuracy (Fig. 4). The one exception is the fixedMLR 

approach that consistently yielded poor predictions. 

Aside from the fixedMLR method, average predictive 

ability in different traits and environments ranged from 0.17 

to 0.69 (Supplementary Table S4). On average, Bayesian 

methods were slightly more accurate than methods labeled 

as “machine learning” (0.47 versus 0.45). Differences in 

predictive ability were statistically significant (P < 0.05) for 

different traits, locations and populations (Supplementary 

Table S2). Average predictive ability was slightly higher for 

incidence of leaf rust and yield of green beans (0.50 and 

0.49, respectively) than production (0.38), in accordance 

with the heritability results (Table 2). Average prediction 

accuracy was slightly higher at the FEM location than FES 

(0.47 vs. 0.45), and predictions in the Premature population 

were on average more accurate than in the Intermediate 

population (0.54 vs. 0.39). Accordingly, similar 

performance across the competing models was observed for 

the slope and MSPE values (Supplementary Tables S5 and 

S6). 

Although Bayesian approaches tend to yield higher 

predictive values, they typically come with a much greater 

computational cost than the alternatives methods (Fig. 5). Of 

Trait Intermediate Premature 

FEM FES FEM FES  
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the 13 methods compared, we found that the RR-BLUP and 

BSLMM methods achieved the best combination of high 

accuracy and low computational cost. Based on this result, 

in subsequent experiments we focused on the RRBLUP 

method. 

In order to check the impact of the SNP density on the 

predictive ability, we sampled SNPs across the 

chromosomes (i) guided by MAF and genotyping call rate 

value; and (ii) randomly sampled. Regardless to the 

approach taken, we observed a similar predictive ability 

across different SNP densities (Supplementary Figure S1). 

For several traits, predictive ability improved modestly as 

more SNPs were used, but for other traits we observed little 

to no improvement from using a larger number of SNPs 

(~35,000) versus a small subset of SNPs drawn from across 

the genome (e.g., ~4000 SNPs). 

In Fig. 6, we summarize the prediction accuracy in 

different environments (Scenarios 1–12) using the RR-

BLUP method. In most cases, positive prediction values 

were obtained (Fig. 6). When making predictions across 

locations (Scenarios 1–4), the predictive ability remained 

high for all traits. The incidence of rust and yield of green 

beans were consistently predicted with greater accuracy than 

production trait. These results suggest the potential for using 

GS models to make predictions in different locations. 

Acrosspopulation (Scenarios 5–8) analyses also yielded 

some positive values, but, on average, at lower magnitude 

than across-location predictions. Our results also indicated 

that production of grain beans was more impacted in 

acrosspopulation predictions and negative values were 

observed in Scenarios 6 and 8, respectively. Rust incidence 

and the yield of green beans yielded higher correlation 

values. Models trained in the Premature population and 

tested in the Intermediate population had lower prediction 

accuracy. This could be explained by the fact that the 

Premature population size was smaller than the Intermediate 

population. 

Fig. 3 a Principal component analysis (PCA) of the two Coffea 
canephora breeding populations; b Venn diagram is showing common 

and distinct SNPs to both population (k = 103 SNPs) c SNP density 
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(number of SNPs per 400,000 Mb) across the 11 C. canephora 
chromosomes in Premature, Intermediate, and common to both 

populations 

In the last set of scenarios, we evaluated prediction 

accuracy when both locations and populations differed 

between the training and test sets (Scenarios 9–12). As 

expected, overall lower predictive accuracy among all 

comparison were observed. This fact was more evidence for 

production traits that, once again, yielded negative values of 

predictive accuracy. 

Discussion 

The benefits of GS compared with traditional phenotypic 

evaluations are well documented, and increasingly widely 

appreciated (Hayes et al. 2009; de Los Campos et al. 2013). 

Nonetheless we believe this potential remains under 

exploited in coffee crops. Possible reasons include: (i) 

limited genomic resources available; (ii) difficulty in 

maintaining field experimentation given the long generation 

cycle, late expression of target traits and requirement of 

large areas for cultivation; and (iii) physiological makeup 

(low genetic diversity, ploidy barrier in C. arabica, and 

selfincompatibility in C. canephora. Herein, we have 

presented the potential to implement GS in conventional 

coffee breeding schemes. To this end, accurate phenotypic 

metrics, high-throughput genotyping and appropriate whole-

genome statistical models are important requirements. 

For studying coffee crops, complex quantitative traits are 

typically evaluated across multiple locations and harvests, 

which are collectively referred to as Multi-Environments 

Trials (MET) (Smith et al. 2005). Several statistical models 

have been proposed specifically for MET analyses, since the 

data collected in these setting typically violate basic 
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Fig. 4 Evaluation of 13 statistical methods for predicting three coffee 

traits—production of coffee beans, incidence of coffee leaf rust and 

yield of green beans—in two Coffea canephora populations 

(Intermediate and Premature) evaluated in two locations (FEM and 

FES). Refer to the “Genomic prediction methods” section for an 

overview of the methods compared. Prediction accuracy was computed 

as the Pearson correlation between the predicted and adjusted 

phenotype in test samples. Cross-validation were performed using a 

Replicated Training-Testing. In each replication, 80% of the data were 
assigned to train the model and 20% remaining to validate the model. 

The procedure was replicated 30 times 

assumptions of conventional ANOVA models (e.g., 

homogeneity and independence of variances). As a 

consequence, bias can be introduced in estimation of genetic 

values, which may ultimately affect the predictive ability in 

GS studies. Guided by this previous work, we used a mixed 

model framework with appropriate covariance structures to 

account for genetic and non-genetic effects on the 

phenotypes. The flexibility to fit the residual and genetic 

variances showed better goodness-of-fit values than 

traditional ANOVA results. 

High-throughput genotyping capacity has been increased 

by rapid progress in next-generation DNA sequencing 

(NGS). Genotyping-by-sequencing (GBS) is a product of 

this advance. Using GBS, we identified a total of 45,748 and 

59,332 SNPs in the Intermediate and Premature populations, 

respectively. We emphasize that this total number of SNPs 

is larger than the set identified in a recent study on C. arabica 
that used a similar approach (DArT methodology) (Del 

Moncada et al. 2015). This difference in SNP identification 

could be explained by the fact that C. canephora possesses 

higher genetic diversity due to its origin, reproduction 

method and dissemination (Ferrão et al. 2015). 

For predictive analysis, we initially compared 13 

predictive models on within-environment predictions. 

Assuming that GS models are align with the true genetic 

architecture of the phenotype, we were expecting a 

dependence between predictive ability and trait. For 

example, bayesRR models assumes that marker effects are 

normally distributed with fixed variance, similar to the 

Fisher’s infinitesimal model proposes (Fisher 1919; 

Meuwissen et al. 2001). In contrast, bayesB assumes that 

most loci have no effect on the phenotypic variation, that is, 

traits controlled by relatively few loci whose effects vary in 

size ( Meuwissen et al. 2001). Although conceptually 

different, we observed similar predicative performances of 

the competition models, evidencing a somewhat difference 

of our empirical results with previous simulation studies 

(Meuwissen et al. 2001; Coster et al. 2010). 

Recently, several empirical evaluations have been 

published comparing predictive models and, like ours, 

reporting similar results across models (Moser et al. 2009; 

Heffner et al. 2011; Riedelsheimer et al. 2012; Resende et 

al. 2012b; Daetwyler et al. 2013; Wang et al. 2015). Some 

aspects of this similarity might be associated to statistical 

and biological properties. Statistically, the high discrepancy 

between number of observation and parameters can restrict 

the process of statistical learning resulting in similar 

predictive performances among methods (de Los Campos et 

al. 2013; Gianola 2013). Biologically, this similarity can be 

associated with the complex nature of traits. For real data, 

distribution of QTLs effects for most traits is perhaps less 

extreme than has been hypothesized in simulation studies 

(Hayes et al. 2009; de Los Campos et al. 2013; Daetwyler et 

al. 2013). 
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Fig. 5 Total runtimes, in minutes, for fitting the 13 genomic prediction 

models in all cross-validation runs. Runtimes are shown separately for 

the three coffee traits—production of coffee beans, incidence of coffee 

leaf rust and yield of green beans—in the two Coffea canephora 
populations (Intermediate and Premature). Cross-validation were 

performed using a Replicated Training-Testing. In each replication, 80 

% of the data were assigned to train the model and 20% remaining to 
validate the model. The procedure was replicated 30 times 

One method that consistently performed worse than the 

others was the fixed regression method (denoted by 

“fixedMLR” in the results). Fixed regression has been useful 

to detect genome-wide associations. However, these 

associations typically explain only a small fraction of the 

genetic variance of quantitative traits (Manolio et al. 2009). 

By contrast, methods that simultaneously fit effects for all 

markers are able to account for a much greater proportion of 

the genetic variation and, consequently, these approaches 

are more appropriate to predictive purposes (Meuwissen et 

al. 2001; Moser et al. 2009). 

Contrasting to the predictive results, computational 

requirements significantly differ across the models. 

Consistent with previous studies, we found that Bayesian 

methods typically involved greater computational demand 

(Moser et al. 2009; Heslot et al. 2012; Neves et al. 2012). 

Particularly, computational cost is an important 

consideration since frequent re-estimation of marker effects 

is necessary in breeding programs (Moser et al. 2009). 

Judged by the overall performance, we found that RR-BLUP 

method presented important attributes for GS 

implementation, including straightforward implementation 

using existing mixed models software, relative simplicity, 

good performance, and limited computing time. 

In a GS context, the possibility to predict phenotypic 

performance within and across environments is an 

outstanding question that has not been fully explored in 

coffee. As expected, within-environment predictions 

(Scenarios A–D) yielded higher correlation values than 

crosspredictions (Scenarios 1–12). It has long been 

recognized that expression of genotypes are affected by 

environmental conditions and, as a consequence, across-

location predictions (Scenarios 1–4) exhibited lower 

predictive performance than within-environment predictions 

( Scenarios A–D). In particular, this suggests that genotype-

by-location (G×L) interactions are important, even 

considering that both locations are within the same breeding 

zone. In theory, G×L interactions occur because the capture 

and conversion abilities of a plant are determined by its 

particular ensemble of genes, which are expressed 

conditionally to the amount and quality of inputs received in 

each environment (Malosetti et al. 2013). This differential 

expression is captured by the estimate of marker effects and 

ultimately influences the predictions. Decaying accuracy 

across locations has been observed in GS studies in trees 

(Resende et al. 2012a; Beaulieu et al. 2014; Gamal El-Dien 

et al. 2015), cassava (Ly et al. 2013), and maize 

(Windhausen et al. 2012a, b). 

For predictions in different populations (Scenarios 5–8) , 

lower accuracy values can be explained by quantitative 

genetic concepts, which supports allele substitution effects 

varying between populations due to differences in allele 

frequency and LD pattern between SNPs and QTLs ( Asoro 

et al. 2011; Windhausen et al. 2012a, b; Lehermeier et al. 

2015). Similar results are presented in Neves et al. (2012) in 

mice populations and by Hayes et al. (2009) in dairy cattle. 

Scenarios 9–12 represented the most challenging condition 
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Fig. 6 Predictive ability of cross-environment genomic predictions 

using the RR-BLUP method. “Environment” refers to a combination of 

location (FEM, FES) and population (Intermediate, Premature). As 

explained in Fig. 1, Scenarios 1–4 are used to evaluate GS performance 

across locations; Scenarios 5–8 assess GS performance across 

populations; and Scenarios 9–12 evaluate prediction accuracy when 

both the location and population differ between the training and tests 

sets. Predictive ability was recorded for three coffee traits: production 

of coffee beans, incidence of coffee leaf rust, and yield of green beans 

for GS as these scenarios combine predictions across 

locations and populations simultaneously. In most cases, 

models yielded poor prediction accuracy, with predictive 

abilities near to zero for the production trait. 

Our results suggest the feasibility of incorporating GS 

into recurrent selection programs so long as predictive 

models are used to make predictions within the same 

environment, or within the same breeding zone. 

Traditionally, one cycle of phenotypic recurrent selection in 

coffee is divided into three phases: (i) progenies are obtained 

from a base population; (ii) field trials are conducted in 

multiple environments and harvests; and (iii) a new base 

population is generated via selection and recombination of 

the best individuals. In coffee, due to the long juvenile 

period associated with multiple evaluations across harvests, 

5–6 years are required on average to complete a breeding 

cycle. Another challenge is that evaluating and maintaining 

multiple field trials is expensive and laborious. Therefore, 

incorporating GS prediction models can potentially reduce 

the time and expense of recurrent selection. We suggest 

applying GS methods in the second and third stages of 

recurrent selection programs by coupling prediction and 

selection during the seedling phase inside of greenhouses. 

Rapid-cycle recurrent selection supported by GS has 

potential to accelerate the increase of favorable alleles in the 

population and reduce both monetary and time costs 

associated with phenotyping (Windhausen et al. 2012a, b; 

Grenier et al. 2015). In a modern breeding scheme, 

phenotypic trials in multiple environments might be 

considered in advanced phases (e.g., third recurrent cycle), 

in order to re-estimate marker effects. 

Outside the main topic of genomic prediction models, 

several other aspects of our study may be of interest to the 

development of GS in coffee. For some traits, we found that 

prediction accuracy did not greatly improve as we included 

more SNPs in the models. In particular, we noted high 

predictive values for models trained with ~10,000 SNPs. 

Other studies have reported similar results (Vazquez et al. 

2010; Spindel et al. 2015). According to de Los Campos et 

al. (2013), the point at which adding SNPs does not yield 

any improvement depends, mainly, on the span of LD in the 

genome and sample size. In both coffee populations, we 

expected large LD blocks since the populations were 

originated from only one cycle of recombination between a 

finite number of selected candidates. Regarding that 

resources need to be allocated to genotyping, 10,000 

markers might be considered as a reference to design a SNP 

array as an alternative to reduce genotyping cost and 

popularize the use of genomic resources in coffee. 

Additional recommendations are given in Ferrão et al. 

(2017) , including the possibility of exploiting the genomic 

information generated in GS investigations to guide parental 

selection. 

Finally, we view this work as an initial investigation of 

genomic prediction in the coffee breeding, and there are 

additional questions that remain unanswered. In particular, 

we primarily focused on additive models for GS. 

Considering that C. canephora is a clonally propagated 

species, predictive models designed to explore the total 

genetic per se value of an individual is also a relevant 

question. Our option to predict additive effects was 

motivated by the breeding context, which includes the 

accumulation of favorable alleles through early and short 

cycles of recurrent selection. We believe that our results are 

sufficiently promising to justify further research, including 

the extension to modelling non-additive effects and 

incorporation of genotype-by-environment (G×E) 
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interactions by considering benefit from genetic correlations 

between locations (Lopez-Cruz et al. 2015; Cuevas et al. 

2016, 2017). We also emphasize that one of the main 

difficulties in conducting coffee studies is the lack of 

information about genetic architecture of complex traits 

(Tran et al. 2016). Therefore, advances in our basic 

understanding of the genetic architecture, which include 

studies at genomic and phenotypic level, will lead to further 

improvements in GS. 

Conclusions 

In this research, we explored the potential for genomic 

prediction in C. canephora, a perennial species for which GS 

concepts are appealing, but the basis for its implementation 

is still in its infancy. To this end, we investigated GS in 

multiple recurrent selection populations that were evaluated 

for three agronomic traits. In addition, we explored different 

models for accurate prediction of these traits within and 

across environments. 

Some of our key findings include: (i) similar predictive 

abilities were obtained in most of the models that were 

compared, consistent with previous studies using real data; 

(ii) the predictive models exhibited very different 

computational costs; (iii) the RR-BLUP method achieved a 

good balance of predictive ability and computational cost; 

(iv) diversity and genetic relationship between training and 

testing data sets are important requirements; and (v) positive 

predictive ability supports the idea of implementing GS in 

conventional schemes of recurrent selection in coffee. 

Compared to traditional phenotypic methods, we expect that 

GS implementation can accelerate breeding cycles in coffee. 
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