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A B S T R A C T

Information regarding the spatial distribution of palm trees in tropical forests is crucial for commercial ex-
ploitation and management. However, spatially continuous knowledge of palms occurrence is scarce and dif-
ficult to obtain with conventional approaches such as field inventories. Here, we developed a new method to
map Amazonian palm species at the individual tree crown (ITC) level using RGB images acquired by a low-cost
unmanned aerial vehicle (UAV). Our approach is based on morphological operations performed in the score
maps of palm species derived from a fully convolutional neural network model. We first constructed a labeled
dataset by dividing the study area (135 ha within an old-growth Amazon forest) into 28 plots of 250 m× 150 m.
Then, we manually outlined all palm trees seen in RGB images with 4 cm pixels. We identified three palm
species: Attalea butyracea, Euterpe precatoria and Iriartea deltoidea. We randomly selected 22 plots (80%) for
training and six plots (20%) for testing. We changed the plots for training and testing to evaluate the variability
in the classification accuracy and assess model generalization. Our method outperformed the average producer’s
accuracy of conventional patch-wise semantic segmentation (CSS) in 4.7%. Moreover, our method correctly
identified, on average, 34.7 percentage points more ITCs than CSS, which tended to merge trees that are close to
each other. The producer’s accuracy of A. butyracea, E. precatoria and I. deltoidea was 78.6 ± 5.5%,
98.6 ± 1.4% and 96.6 ± 3.4%, respectively. Fortunately, one of the most exploited and commercialized palm
species in the Amazon (E. precatoria, a.k.a, Açaí) was mapped with the highest classification accuracy. Maps of E.
precatoria derived from low-cost UAV systems can support management projects and community-based forest
monitoring programs in the Amazon.

1. Introduction

Palms (Arecaceae) are among the most conspicuous and diverse
groups of trees with 181 genera and ca. 2600 species (Baker and
Dransfield, 2016). In the Amazon basin, the palm flora comprises about
35 genera made up of more than 170 species (Alvez-Valles et al., 2018),
from which at least 96 species (Bernal et al., 2011) are managed to
provide a variety of products such as fruits and palm hearts (Euterpe

spp., Astrocaryum spp.), fiber (Iriartea deltoidea, Attalea spp.) and oil
(Attalea butyracea). The majority of palm species are spread out over
large tracts of forests, pastureland, and agricultural fields. A few ex-
ceptions are Mauritia flexuosa and Oenocarpus bataua that form oli-
garchic forests (Peters, 1992).

Information regarding the spatial distribution of palms is crucial for
commercial exploitation and management (Muñiz-Miret et al., 1996).
This information is usually obtained with field inventories that include,
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for example, in situ counting of suitable individuals (Rocha, 2004). Due
to the high costs and effort involved, field inventories cover small areas
(< 1 ha) and are not adequate to obtain spatially continuous knowl-
edge on palms occurrence over large spatial extents. For this purpose, a
combination of remote sensing and field data proved to be effective.
Particularly the use of very-high-resolution (VHR) images (pixel size
1 m) has been hailed as a processing way to identify tree species,

including palms, at the individual tree crown (ITC) level.
In tropical forests, ITC mapping has been performed with hyper-

spectral (Clark et al., 2005; Feret and Asner, 2013; Ferreira et al., 2016)
and multispectral (Cho et al., 2015; Omer et al., 2015; Ferreira et al.,
2019) images acquired by airborne or spaceborne sensors. While con-
ventional aero-photogrammetric surveys in tropical regions are costly
and often operationally prohibitive, images collected by satellite-based
systems are more affordable, but still, show some limitations. For ex-
ample, satellite images of VHR sensors (WorldView, SkySat, and
Ikonos) are not free of charge and usually show clouds that limit their
use.

Aerial images captured by unmanned aerial vehicles (UAVs), al-
though not free of charge, have the potential to discriminate canopy
tree species in tropical environments (Peck et al., 2012; Otero et al.,
2018) and support community-based forest monitoring programs
(Paneque-Gálvez et al., 2014). Unlike satellite images, UAV images are
typically acquired with only three (RGB) channels, thus providing
limited spectral information. However, they usually feature hyperspa-
tial resolutions (pixel size <10 cm), which allows a clear visualization
and extraction of structural characteristics (shape, size, and texture) of
ground objects. Individual tree crowns of palms have distinctive mor-
phological traits. These include pinnate leaves concentrated at the top
of the stem, which may produce peculiar texture patterns or fine-scale
variations in gray image levels. When spectral information is poorly
available, in the case of RGB images, the quantification of texture may
improve the classification accuracy of tree species (Ferreira et al.,
2019).

Convolutional Neural Networks (CNNs), a type of deep learning
method, automatically extract texture patterns of images and has been
producing outstanding results for remote sensing image classification
(Zhang et al., 2016). CNNs constitute a class of deep Artificial Neural
Network (ANN) that rely on convolutions (local linear operations) fol-
lowed by non-linear transformations, creating different input data re-
presentations. The convolutional layers act as feature extractors of the
input images. CNNs were initially developed to recognize the presence
of objects in images and produce outputs without any spatial dimen-
sion. A comprehensive overview of CNNs and deep learning can be
found in Ponti et al. (2017).

In many forestry applications, it is essential to retrieve the location
of ITCs in an image. Object detection methods based on deep learning
proved useful for this task. Li et al. (2017) developed a framework for
oil palm tree detection and counting with VHR images (pixel = 0.6-m)
from the QuickBird satellite, achieving 96% of accuracy. Weinstein
et al. (2019) proposed a semi-supervised deep learning pipeline for
detecting tree crowns based on RGB and Light Detection and Ranging
(LiDAR) data and obtained 69% and 60% of recall (producer’s accu-
racy) and precision (user’s accuracy), respectively. The methods em-
ployed in these studies produced a bounding box that enclosed the ITCs,
thus neither delineating its shape nor identifying the species.

Of great interest in the context of tree species mapping is to retrieve
the location of pixels encompassing ITCs. Semantic segmentation is the
procedure of assigning a label to each pixel of an image. Fully con-
volutional networks are one of the first approaches that successfully
employed deep networks for semantic segmentation. It is based on the
transformation of fully connected layers into upsampling or transposed
convolutional layers that perform dense pixel predictions. The pio-
neering work of Long et al. (2015) adapted well-known CNNs models
such as AlexNet (Krizhevsky et al., 2012) and VGG (Simonyan and
Zisserman, 2014) for semantic segmentation tasks. More recently, Chen

et al. (2018) proposed a model called DeepLabv3+ that uses encoder-
decoder (Badrinarayanan et al., 2017) and spatial pyramid pooling
(Lazebnik et al., 2006) structures to capture contextual information at
multiple scales while preserving object boundaries.

The potential of fully convolutional networks to map tree species in
tropical environments with remote sensing images is poorly known. A
few pioneering studies successfully employed the U-net architecture
(Ronneberger et al., 2015). Wagner et al. (2019) used U-net to map the
spatial distribution of Cecropia hololeuca, an indicator species of tropical
forest disturbance, in WorldView-2 images with an overall accuracy of
97%. Kattenborn et al. (2019) performed fine-grained segmentation of
vegetation species and communities on UAV imagery with U-net and
obtained at least 84% of accuracy. Morales et al. (2018) used a CNN
with the DeepLabv3+ architecture to perform semantic level segmen-
tation of Mauritia flexuosa in UAV images and achieved an accuracy of
98%. It is important to note that these studies did not perform species
identification at the ITC level; that is, they mapped tree patches be-
longing to a single species.

Recently, a novel approach called Mask R-CNN combined object
detection and semantic segmentation to perform instance segmentation
tasks (He et al., 2017). Instance segmentation aims to classify an object
at the pixel level and outline its exact shape. The Mask R-CNN first uses
a CNN to fit a bounding box that encapsulates the object and then a
fully convolutional network to determine the pixels belonging to it.
Because the Mask R-CNN is composed of two deep neural networks, it is
more complex than semantic segmentation architectures. The extra
complexity leads to longer computational time for training and in-
ference (Kulikov et al., 2018).

Moreover, the Mask R-CNN is designed to outline the precise con-
tour of objects, which is challenging in tropical forests. The crown size
and shape of a tropical tree can vary widely, and depends, among other
factors, on the position of the tree in the forest canopy and neighboring
individuals (Hallé et al., 2012). Thus, even trees of the same species can
feature distinct crown architectures, and it is usually unlikely to define
a crown shape that characterizes a single species.

Fully convolutional networks for semantic segmentation provide the
opportunity to simultaneously detect and classify ITCs in a more reli-
able manner and at less computational cost than instance segmentation
methods, such as Mask R-CNN. However, these networks tend to blur
object boundaries, when applied to high-resolution remote sensing
images (Marmanis et al., 2018). The blurring of boundaries is particu-
larly problematic for the detection of ITCs. For example, if two or more
trees are close to each other, they will likely be classified as a single tree
covered by one segment, limiting our ability to estimate the number of
ITCs over an image.

In this study, to avoid the blurring of boundaries effect that is
common to semantic segmentation networks, we developed a new
method to detect and retrieve the species of ITCs. More specifically, our
method is based on morphological operations that are performed on
score maps derived from a fully convolutional neural network model.
We tested our approach to mapping palm tree species on RGB images
acquired by a low-cost UAV over a Brazilian Amazon forest.

2. Materials

2.1. Study area

The study area is an experimental forest of the Brazilian Agricultural
Research Company (Embrapa) located in the municipality of Rio
Branco, Acre state, southeast Amazon (10°01′22″S, 67°40′3″W)
(Fig. 1a). It is a highly diverse old-growth rain forest area of 1600 ha
about 200 m a.s.l. The ortho-image mosaic used in this study comprises
135 ha in the shape of a rectangle of size 600 m × 2250 m (Fig. 1b). The
area annually receives 1950 mm of rain, and the annual average tem-
perature is 24.8(± 0.8)°C (Ramos et al., 2009). The vegetation of the
domain is classified as open rain forest with palms and bamboos; thus
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highly representative of southeast Amazonian forests (Veloso et al.,
1991).

2.2. UAV images

The UAV images were collected in March 2017 with the UAV DJI
Phantom 4 Professional, which is equipped with an RGB camera of 20-
megapixel resolution and a 24 mm autofocus lens. The camera is at-
tached to a three-axis electronic gimbal stabilization system to ensure a
nadir view during image collection. The UAV flew 120 m above the
forest canopy with a cruising speed of 13ms−1. A total of 1423 images
with endlap of 86% and sidelap of 86.36% were taken in eight con-
secutive flights (Fig. 1b) that lasted about two hours and were per-
formed between 10:00–12:00 am. Before the flights, three ground
control points (GCPs) that form a triangular shape were established in
the edges of the forest reserve. At each GCP, a dual-frequency GNSS
receiver was installed and collected GPS and GLONASS data for
241 min. After post-processing procedures, the average horizontal and
vertical precision of the GCPs was 10 cm and 3 cm. Finally, the scale-
invariant features algorithm (SIFT, Lowe (2004)) that is available in the
PiX4D software was used to generate an orthomosaic with a ground
sampling distance (GSD) of 4 cm of the study area (Fig. 2a).

3. Methods

3.1. Individual tree crown dataset

We divided the study area into a grid of 36 plots of approximately
250 m × 150 m (Fig. 2a). An initial visual inspection revealed that 28
plots had a significant number of palms (Fig. 2b). Within each plot,
using a true color composition of the UAV orthomosaic on a scale of

1:150, we outlined all palm trees using the QGIS software (QGIS
Development Team, 2019) and generated a shapefile of ITCs (Fig. 2b).
Each ITC was analyzed by five photo-interpreters with expert knowl-
edge in recognizing palms. Before photointerpretation, a fieldwork was
performed to establish a botanical identification key that permitted
recognition of species-specific characteristics in the UAV images. We
retrieve the species of each tree after a consensus of the photo-inter-
preters. Their decision regarding the species was based mainly on the
characteristics of the crown leaves (Fig. 3). Usually, we followed the
arrangement of the branches to outline palm ITCs throughout the
image. However, for E. precatoria, we described a circular shape around
the trunk. A precise delineation of E. precatoria ITCs is very time-con-
suming because this species features a small crown (<5.1 m in diameter
on average, Table 1) and a high number of leaves (>10).

Three species were identified: Attalea butyracea, Euterpe precatoria
and Iriartea deltoidea. Palms within the plots that did not belong to the
species mentioned above were labeled as the class “non-identified
palm”. Thus this class contains only trees other than the three target
species. Table 1 shows the number of ITCs and the crown diameter of
each species, which was estimated by computing the smallest circle that
encloses the ITC.

3.2. Pixel label dataset

To obtain a pixel label dataset of palm trees, we first performed a
vector-to-raster conversion of the shapefile of ITCs. This dataset con-
tains information regarding the class of each UAV image pixel, that is,
the three palm species in addition to “non-identified palm” and the
background with other types of trees, totaling five classes. Second, both
the orthomosaic and the labeled images were cropped to the extent of
the plots, thus generating 28 images with their respective labels. Fig. 4

Fig. 1. (a) Location of the study area in the Acre state, northwestern Brazil. A Grid of 36 plots of 250 m × 150 m were established within an old-growth rain forest
with palms and bamboos. (b) Unmanned aerial vehicle (UAV) flight lines for collecting 1423 RGB images that covered the study area.
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shows an example of the orthomosaic and corresponding labeled image
used to train the fully convolutional network model.

3.2.1. CNN architecture
Research on deep networks (e.g., Simonyan and Zisserman, 2014;

Shimodaira, 2000) revealed that the number of layers (depth) is di-
rectly related to the ability of the network to learn features from data,
which reduces the classification errors. This fact motivated researchers
to increase network depth in the hope of improving results. However,
some experiments (e.g., Simonyan and Zisserman, 2014) showed that
adding more layers to deep networks leads to an increase in the training
error.

To overcome the problem, He et al. (2016) proposed a deep residual
learning framework called Residual Network (ResNet). A ResNet ar-
chitecture is composed of several residual blocks that perform skip
connections; that is, they forward the activations (feature maps) of a
given layer to a deeper layer. For more implementation details, the
reader is referred to as He et al. (2016). Common variations of ResNet
include ResNet-18, ResNet-50, and ResNet-101 that differ from each
other by the number of residual layers. In this study, we used the Re-
sNet-18 architecture (Fig. 5) that provided a reasonable trade-off be-
tween processing time and accuracy in preliminary tests.

For semantic segmentation, we incorporated ResNet-18 in the
DeepLabv3+ architecture, which is considered a state-of-the-art deep

learning model for semantic image segmentation. DeepLabv3+ was
proposed by Chen et al. (2018) and consists basically of an encoder and
a decoder block, as shown in Fig. 5. The encoder module gradually
reduces the spatial dimension of the input patch and captures high-level
semantic information. The decoder module recovers the size of the
patch, retrieving spatial information to produce sharp segmentation
results. DeepLabv3+ uses the encoder-decoder structure with atrous
convolution (Chen et al., 2017). This powerful technique allows cap-
turing multi-level features of the input image by controlling the re-
solution of the output of convolutional layers. Atrous convolutions are
applied in a parallel fashion with different rates forming a block called
Atrous Spatial Pyramid Pooling (ASPP, Fig. 5). More information re-
garding the DeepLabv3+ architecture, including the stride rate of the
pooling layers or implementation details, can be found in Chen et al.
(2018).

The output generated by ResNet-18 with DeepLabv3+ are score
maps for each class. The transposed convolutional layer performs up-
sampling with five filters (one per category, Section 3.2) of size 8×8 and
stride 4. Then, the softmax classifier is applied to produce score maps in
which each pixel contains class membership probabilities.

3.2.2. ITC detection method
Information regarding the number of palm trees within a given

forest area is crucial for management purposes. The architecture of the

Fig. 2. True color compositions of the UAV orthomosaic (pixel = 4cm). (a) Original orthomosaic overlaid with a grid of 36 plots with dimensions 250 m × 150 m. (b)
Twenty-eight plots selected for manual individual tree crown (ITC) delineation. All palm ITCs within each plot were manually outlined.

M.P. Ferreira, et al. Forest Ecology and Management 475 (2020) 118397

4



network employed in this study is designed to perform patch level se-
mantic segmentation, meaning that if two palm trees are close to each
other, they will likely be classified as a single palm tree covered by one
segment. To overcoming this issue, we propose a new method to detect
palm ITCs and identify their corresponding species. The process is based

on morphological operations that are performed at the score maps of
each species.

In a morphological operation, the neighborhood of each pixel is
considered to adjust its value. Let be a score map of size x×y in which
the pixels contain class membership probabilities for the species i.

Fig. 3. Description of the palm species characteristics used to recognize them in UAV images. Ground view photos: Evandro Ferreira. ∗DBH = Diameter at breast
height.

Table 1
List of palm trees with crowns manually delineated in the UAV orthomosaic and identified to the species level: species names, number of individual tree crowns
(ITCs), mean crown diameter (meters), minimum crown diameter (meters) and maximum crown diameter (meters).

Palm species (popular names) ITCs Mean crown diameter Min crown diameter Max crown diameter

Attalea butyracea (Jací) 84 10.5 4.8 16.7
Euterpe precatoria (Açaí) 403 5.1 2.6 7.7
Iriartea deltoidea (Paxiubão) 263 6.4 2.2 9.9
Non-identified palm 265 8.4 2.6 17.7
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First, we define regions of interests (ROIs) in the P x y( , )i image by
selecting only the pixels with class membership probabilities that are
higher than 0.8. The threshold of 0.8 was effective in removing spurious
pixels while preserving pixels of the target palm species. Second, within
the ROIs, we perform an erosion operation using a disk-shaped struc-
turing element S p q( , ) of radius r, which depended on the mean crown
diameter of the species (Table 1). For E. precatoria and I. deltoidea r
equals to seven pixels, while for A. butyracea and the class non-identi-
fied palm r was set to 20 pixels. The main objective of erosion is to
identify high-class membership values that are related to treetops. It is
defined as:

= + +P S min P x p y q S p q p q D{ ( , ) ( , )|( , ) }p q s, (1)

in which DS is the domain of the structuring element S. Third, to
identify connected blobs of pixels within the ROIs, we perform the
morphological opening, which is an erosion followed by dilation with
S p q( , ) for both operations. Dilation is the opposite of erosion:

= + +P S max P x p y q S p q p q D{ ( , ) ( , )|( , ) }p q s, (2)

Mathematically, the morphological opening is defined as:

=P S P S S( ) (3)

Fourth, we performed another dilation operation with the struc-
turing element S p q( , ) to increase the size of the objects detected in the
previous step. Finally, we identify regional maxima locations, that is, a
set of pixels with similar values, surrounded by pixels with lower va-
lues. For the sake of clarity, Fig. 6 shows the morphological operations
described above applied in a synthetic image. The score map of each
species is processed individually and merged to obtain a species map of
the testing images.

3.3. Experimental set-up

First, we partitioned the plots following the proportion of 80% (22
plots) for training and 20% (6 plots) for testing. The partition procedure
was repeated 30 times. At each realization, different plots were ran-
domly chosen to train and test the fully convolutional network model,
which allowed us to compute the variability in the classification

Fig. 4. (a) A true color composition of the UAV orthomosaic overlaid with manual outlined individual tree crowns (ITCs) (b) labeled image obtained after a vector-to-
raster conversion of (a).

Fig. 5. ResNet-18 incorporated into the DeepLabv3+ (Chen et al., 2017) architecture. The encoder module gradually reduces the spatial dimension of the input
image patch by up to 16, while the decoder module recovers the spatial dimension. The numbers in brackets highlighted in bold refer to the number of feature maps
(filters) of each convolutional block. Atrous Spatial Pyramid Pooling (ASPP) is applied to capture multi-level features of the input image. A transposed convolution
operation upsamples the original spatial dimension of the patch. Then, the softmax classifier is applied to generate score maps for the classes. These maps contain
class membership probabilities for each pixel of the patch.
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accuracy, depending on the data used in the classification process.
After selecting the training plots, we concatenated them into a

single image. We extracted randomly positioned patches of size
512×512 pixels from both the orthomosaic and the labeled images to
feed the network. The images did not contain border pixels (zero value
pixels). Thus, the model was trained with five classes (Fig. 4), that is,
four palm classes and the background. The inclusion of the background
class in the training process was necessary for the network to learn how
to distinguish palms from other types of trees.

The mini-batch size was eight, and the maximum number of epochs
was 15. A mini-batch is a subset of the training data that is used by the
stochastic gradient descent with momentum (SGDM) algorithm
(Murphy, 2012) to update the network parameters (weights and
biases). An epoch is a full pass over the entire training set, composed of
2000 random patches. At each epoch, a different set of 2000 patches
were extracted from the images. Random reflection and rotation aug-
mentation of the patches were used during training. Data augmentation
is a common practice to prevent the network from overfitting and
consists of random rotations and flips of the input images.

To avoid biased training of the network due to class imbalance, we
used class weighting to balance the classes. We calculated the class
weights by the ratio between the median frequency of all classes to the
frequency of each class. The weights of the ResNet-18 model were in-
itialized with pre-trained values of the ImageNet database (Deng et al.,
2009), and the learning rate was 0.001. The score maps of all species in
the testing phase were produced patches-wise on patches of size
2000×2000 pixels.

Training and inference were performed on a desktop workstation
with an Intel Core i7-8700 3.2 GHz CPU, 24 GB of main memory, and
an NVIDIA® GeForce Titan V GPU with 12 GB of dedicated memory and
5120 CUDA® cores. All image processing procedures were performed in
MATLAB® environment.

3.4. Accuracy assessment

The accuracy assessment was performed with the test images, which
were not used for training, and their respective labels. The results are
presented by confusion matrices that show the percentage of correctly

classified pixels per species and the misclassification rate between all
pairwise combinations of species. An example of a confusion matrix for
a 4-class classification problem is shown in (Table 2).

In the confusion matrix, TPii is the percentage of true positives of
species (i), and Mij is the number of pixels that truly belong to species (i)
but were classified as species (j). The producer’s accuracy (PA), also
known as recall, represents the probability that the pixels of a particular
species in the reference are correctly classified. PA is computed as the
ratio between the number of correctly identified pixels of a given spe-
cies divided by the number of pixels of that species:

=
+

PA TP
TP M

i
i

i
j

ij
(4)

The user’s accuracy (UA), also known as precision, represents the
probability that a pixel classified as a given species represents that
species in the reference. UA is computed as the ratio between the
number of correctly identified pixels of a given species to the number of
pixels that have been predicted by the classifier as a that species:

=
+

UA TP
TP M

i
i

i
j

i j
(5)

Finally, we computed the percentage of correctly detected ITCs per
species at each realization, which allowed us to assess the performance
of the ITC detection method (Section 3.2.2). The ITC of a given species
was considered to be correctly detected if it intersects a single reference
ITC. For the sake of comparison, we computed the classification accu-
racy, and the ITC detection rate obtained using conventional patch-wise
semantic segmentation (from now on referred to as CSS).

4. Results

The mean of the producer’s accuracy and misclassification rates of
each palm species, obtained after training and testing the model 30
times with different plots, are shown in Fig. 7. At each realization, the
computation time to train the network was 45±3 min, while the pro-
duction of score maps of the species and application of the ITC

Fig. 6. Illustration of the morphological operations of the individual tree crown (ITC) detection method performed in a synthetic image. (a) score map of a given
species showing two ITCs that are close to each other. In this image, each pixel contains the probability of species occurrence. (b) result of an erosion operation (Eq.
1) performed within a region of interest (ROI) that contains only the pixels with class membership probabilities that are higher than 0.8. (c) result of the mor-
phological opening (Eq. 3) of (b). (d) Dilation (Eq. 2) of (c). (e) Regional maxima of (d) showing two ITCs of a given species apart from each other.

Table 2
Example of a confusion matrix showing the percentage of correctly classified pixels in the diagonal cells (highlighted in bold) and the misclassification rate between
the species in the off-diagonal cells.

True class

E. precatoria (E) A. butyracea (A) I. deltoidea (I) Non-identified palm (N) Producer’s accuracy

Predicted class E. precatoria (E) TPEE MEA MEI MEN TPEE+MEA+MEI+MEN
A. butyracea (A) MAE TPAA MAI MAN TPAA+MAE+MAI+MAN
I. deltoidea (I) MIE MIA TPII MIN TPII+MIE+MIA+MIN
Non-identified palm (N) MNE MNA MNI TPNN TPNN+MNE+MNA+MNI

User’s accuracy TPEE+MAE+MIE+MNE TPAA+MEA+MIA+MNA TPII+MEI+MAI+MNI TPNN+MEN+MAN+MIN
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detection method lasted 15±3 min. The mean of the producer’s accu-
racy was 83.1% and 87.8% for the CSS and the prosed ITC detection
method. The main difference between the two approaches was related
to A. butyracea that was classified with 69.1% of accuracy by CSS and
78.6% by the proposed method. Non-identified palms showed the
lowest classification success, given the misclassification rate concerning
A. butyracea (16.3% for CSS and 15.2% for the ITC detection method).
E. precatoria and I. deltoidea were classified with more than 97% of
accuracy for both approaches.

On average, the pixel-wise classification accuracy, for both the CSS
and the proposed approach, did not differ significantly. For example,
the difference between the average producer’s accuracy of CSS and the
proposed method was 4.7%, and in terms of average user’s accuracy,
this difference reached 5.3% (Table 3). However, the proposed method
was able to detect, on average correctly, 34.7 percentage points more
ITCs than CSS. Specifically, the ITC detection rate for A. butyracea, E.
precatoroa, I. deltoidea and non-identified palms were, respectively,
37.3, 31, 43.5, and 27.1 percentage points superior to the proposed
method.

A comparison between the CSS and the proposed approach is de-
picted in Fig. 8. In the first example (Fig. 8a), it is shown the ITC de-
tection and species classification of E. precatoria and A. butyracea. The
steps of the proposed approach are illustrated in the central portion of
the figure. One can note how the method gradually detects palm trees
through morphological operations performed in areas of high-class

membership (>0.8) within the score maps of each species. The last
column of Fig. 8a shows that the proposed approach successfully se-
parated each palm tree present in the image, while the CSS merged the
ITC of A. butyracea with those from non-identified palms (depicted in
green). Another example is presented in Fig. 8b that shows three in-
dividuals of E. precatoria that are close to each other. It is noteworthy
that the CSS merged the three ITCs into one segment, while the pro-
posed approach separated them.

5. Discussion

We developed a new method based on fully convolutional neural
networks to simultaneously detect and classify Amazonian palm species
using RGB images acquired by a low-cost UAV platform. Previous works
demonstrated the potential of deep learning methods to identify palm
trees in monoculture plantations (Li et al., 2019; Zheng et al., 2019) or
oligarchic tropical forest formations (Morales et al., 2018). However, to
the best of our knowledge, this is the first study demonstrating the
potential of UAV-borne images and deep learning to classify multiple
palm species at the ITC level in Amazonian forests.

Our results show that E. precatoria and I. deltoidea can be mapped
with high accuracy rates (>97%). This classification success is attrib-
uted to species-specific crown architectures -the leaflets of E. precatoria
are dropping, and the leaf rachis is usually long (>3 m), attributing to
the crown a peculiar starry pattern in UAV images (Fig. 3, Fig. 2b). The

Fig. 7. Confusion matrices that show the classification accuracy of Amazonian palm species in UAV images. The producer’s accuracy of each species is distributed
along with the diagonal cells (highlighted in red). The percentage of misclassification between a pairwise combination of species is shown in the off-diagonal cells.
Each cell contains absolute values (pixels) and relative percentages. (a) Refers to the conventional patch-wise semantic segmentation and (b) to the ITC detection
method (Section 3.2.2). The classification was performed using the ResNet-18 model adapted for semantic segmentation by the DeepLabv3+ architecture (Fig. 5).
The model was trained and tested with UAV images and their respective labeled images (Fig. 4). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 3
Producer’s accuracy, user’s accuracy, and individual tree crown (ITC) detection rate for the conventional patch-wise semantic segmentation (CCS) and the proposed
approach (Section 3.2.2).

Species (popular names) Producer’s accuracy (mean±SD,%) User’s accuracy (mean±SD,%) ITC detection rate (mean±SD,%)

CSS∗ Proposed approach CSS* Proposed approach CSS* Proposed approach

Attalea butyracea (Jací) 69.1±7.7 78.6±5.5 66.7±6.9 73.2±5.3 34.1±8 71.4±6.1
Euterpe precatoria (Açaí) 97.5±1.4 98.6±1.4 94.4±4.1 96.5±3.5 64.6±7.8 95.6±4.4
Iriartea deltoidea (Paxiubão) 95.3±4.3 96.6±3.4 82.3±5.6 87.8±4.7 44.2±8.9 87.7±4.3
Non-identified palm 70.3±6 77.4±6.2 82.2±5.8 86.3±4.3 41.3±7.5 68.5±5.1
Average 83.1±4.9 87.8±4.4 81.4±5.6 86.0±4.5 46.1±8.1 80.8±5.0

[∗]Conventional patch-wise semantic segmentation
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crown of I. deltoidea are likewise very characteristic. The leaflets are
broad and divided into several segments that confer a feathery ap-
pearance to the leaves. Moreover, the crown radius is small (< 6 m),
and the leaves are regularly arranged at the top of the stem (Fig. 3). The
CNN model was able to learn the above-mentioned species-specific
characteristics in UAV images. Such ability of CNNs is explained by the
fact that they are inspired by the human visual cortex (Cadieu et al.,
2014). It is worth noting that the photo-interpreters easily identified
ITCs of E. precatoria and I. deltoidea during the construction of the ITC
dataset (Section 3.1). However, both CNNs and photo-interpreters are
prone to errors. For example, we observed relatively high rates (>18%)
of misclassification between A. butyracea and non-identified palms. The
classification errors between these classes may arise from the similarity
of their canopy structures. Moreover, the number A. butyracea in-
dividuals in our dataset were small if compared to the other species
(Table 1), which limited the extraction of its species-specific char-
acteristics by the network.

Given the data-driven nature of deep learning, large amounts of
data are required to successfully train a model. In the case of tree
species, ground truth information needed to construct pixel label da-
tasets to train a model is difficult and costly to obtain, particularly in
tropical forests. Here, we used expert knowledge of photo-interpreters
to outline ITCs of target palm species manually in the UAV orthomosaic.
The visual interpretation was only possible given the hyperspatial re-
solution, which allowed clear visualization of palm crowns and iden-
tification of species-specific characteristics. The ground sampling dis-
tance (pixel = 4 cm) of the UAV orthomosaic played an essential role in
the accurate identification and fine-grained segmentation of palm
species. The transferability of our approach to different data sets,
composed of images acquired with varying flight altitudes or other
cameras, for example, requires further investigation.

Regarding the performance of the fully convolutional network
model (ResNet-18 and DeepLabv3+ architecture) combined with the
ITC detection method in our study proved to be effective. In this realm,
our results agree with Morales et al. (2018) who used the DeepLabv3+
architecture to perform accurate semantic level segmentation of the
Mauritia flexuosa palm in swamps of the Peruvian Amazon with 98.1%
of classification accuracy. It is worth noting that Morales et al. (2018)
performed conventional patch-wise semantic segmentation, thus not

detecting individual trees. Tagle Casapia et al. (2020) developed an
object-based classification scheme for the identification and quantifi-
cation of Amazonian palms using UAV images. From the confusion
matrix provided by the authors, the producer’s accuracies for A. bu-
tyracea and E. precatoria were of 74.6% and 90.4%, respectively. The
method developed by Tagle Casapia et al. (2020) was based on image
segmentation (region growing) to outline ITCs before the classification
step. The delineation of ITCs in tropical forests is challenging due to the
high degree of crown overlapping between neighboring trees. The
choice of the segmentation parameters is usually arbitrary, limiting the
reproducibility of the approach to other areas.

The commercial exploitation and management of palm species in
the Amazon region are usually based on in situ counting of individual
trees (e.g., Lopes et al., 2019; Muñiz-Miret et al., 1996). Thus, deli-
neating the exact border/shape of the ITCs is less critical than detecting
its location in the image. For this reason, we avoided using standard
instance segmentation methods such as the Mask R-CNN (He et al.,
2017). Moreover, the crown shape of a given species depends on how it
was manually delineated. In the majority of cases, we followed the
arrangement of the branches to outline palm ITCs throughout the
image, except for E. precatoria in which we described a circular shape
around the trunk. Trees of E. precatoria feature small crowns ( 5 m,
Table 1) and usually more than ten leaves (Fig. 3), which require
considerable effort and time to perform a precise ITC delineation. Thus,
we decided to describe a circular shape around the trunk to outline ITCs
of E. precatoria. It is important to note that our choice did not impact
model performance because E. precatoria reached the highest classifi-
cation accuracy (> 97.5%).

The training process of a CNN involves the use of image patches of
predefined size. In our work, we extracted randomly positioned patches
from the UAV orthomosaic and corresponding pixel label images to feed
the networks with training data (see Section 3.3). The application of
such a random patch extraction procedure was possible because we
carefully performed the manual delineation of all palm ITCs within
each 250 m × 150 m plots (Fig. 1b). The suitability of random patch
extraction to train CNNs for tree species mapping in highly diverse sites
such as tropical forests still requires further investigation, given the
difficulty to ensure that the target species is not present in a patch that
is labeled as “background”.

Fig. 8. Two illustration examples of individual tree crown (ITC) detection and species classification of Amazonian palms using conventional patch-wise semantic
segmentation (CSS) and the proposed approach (Section 3.2.2). Both approaches are based on the score maps of the palm species (Table 1) obtained by the ResNet-18
model incorporated in the DeepLabv3+ architecture (Fig. 5). The results of the steps of the proposed approach are illustrated in the central portion of (a) and (b).
One can note how the method gradually detects the palm trees through morphological operations performed in areas of high-class membership (score >0.8) within
the score maps of each species. The last columns of (a) and (b) show a comparison between CSS results and the proposed approach. It is worth noting that CSS merged
into single segments the trees that were close to each other, while the proposed method separated them.

M.P. Ferreira, et al. Forest Ecology and Management 475 (2020) 118397

9



Our study was based on UAV images acquired with only three (RGB)
channels. It is worth noting that overlapping RGB images from UAVs
provide the opportunity to derive point clouds for three-dimensional
(3D) characterization. The inclusion of 3D information in the classifi-
cation process of palm species is an exciting research opportunity,
considering that each species features a unique crown architecture.

The high accuracy rates (> 95%) achieved for some palm species
suggest that spectral information played a secondary role in the clas-
sification process, which contradicts results from previous studies
showing that the classification success usually depends on high spectral
resolutions (Fassnacht et al., 2016). However, recent technological
advancements enabled the manufacture of UAV hyperspectral sensors
(Sankey et al., 2017), thus allowing both hyperspatial and hyperspec-
tral resolution. Further research is needed to assess the potential of such
sensors for palm species mapping in tropical environments.

6. Conclusions

Our study shows the potential of RGB images acquired by a low-cost
UAV and deep learning to map the spatial distribution of palm species
in Amazonian forests. We developed a method based on the score maps
derived from a fully convolutional network model to detect and classify
ITCs of three palm species (Attalea butyracea, Euterpe precatoria and
Iriartea deltoidea). Euterpe precatoria (popularly known as Açaí) and
Iriartea deltoidea (commonly known as Paxiubão) were detected, re-
spectively, with 98.6±1.4% and 96.6± 3.4% of accuracy. Moreover,
our method outperformed conventional patch-wise semantic segmen-
tation since it successfully detected trees that were close to each other,
producing accurate maps of palms occurrence in Amazonian forests.
Maps of the spatial distribution of Euterpe precatoria can significantly
assist management projects in the Amazon, providing a valuable tool to
aid decision making and community-based forest monitoring programs.
Finally, the approach developed in this study can be applied to other
forest areas where high-resolution UAV images (with at least 4 cm
pixels) are available.
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