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ABSTRACT: Establishing sufficiency ranges and critical levels of nutrients are important for a correct 
evaluation of plant nutrition through leaf diagnosis. This study aimed to propose critical levels and 
sufficiency ranges of macro and micronutrients based on leaf diagnosis of soybean plants. The 
database used was generated from 86 samples of the third trifoliate leaf without petiole, collected 
during the flowering stage from soybean plants of the main cultivars used in the states of Piauí and 
Maranhão, Northeast region of Brazil. The results of macro and micronutrients and grain yield were 
used to calculate the critical level by the reduced normal distribution and boundary line methods, 
the latter was also used to generate the sufficiency ranges. Nutrient levels for 90 % maximum grain 
yield were considered for the critical level by the reduced normal distribution, and nutrient levels 
at the upper line of a dispersion diagram were considered for the boundary line method, using the 
relation between grain yield and nutrient concentration to generate sufficiency ranges for 95 and 
99 % maximum grain yields. The critical levels generated by the boundary line method presented a 
larger number of deficient samples than the reduced normal distribution method, except for boron. 
The sufficiency ranges generated by the boundary line with 95 % of the maximum grain yield 
could not diagnose nutrient deficiency, except for copper. The critical levels by the reduced normal 
distribution and boundary line methods for leaf diagnosis of soybean were 40.2 and 42.1 g kg-1,  
3.2 and 3.4 g kg-1, 17.6 and 19.5 g kg-1, 8.7 and 10.3 g kg-1, 4.7 and 4.9 g kg-1, 2.1 and 2.4 g kg-1, 
44 and 44 mg kg-1, 5 and 12 mg kg-1, 125 and 145 mg kg-1, 33 and 34 mg kg-1, and 48 and 63 mg kg-1 
for N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn, respectively. The critical levels by boundary line showed 
better distribution for leaf diagnosis for excess, deficiency, and adequate nutrient levels. The 
sufficiency ranges by the boundary line method for N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn were 
38.6-45.7 g kg-1, 3.1-3.7 g kg-1, 18.3-20.7 g kg-1, 9.4-11.3 g kg-1, 4.4-5.3 g kg-1, 2.1-2.7 g kg-1, 35-53 mg kg-1,  
10-14 mg kg-1, 131-159 mg kg-1, 23-46 mg kg-1, and 58-68 mg kg-1, respectively. The reduced normal 
distribution and boundary line methods allowed the generation of critical levels and sufficiency 
ranges for leaf diagnosis of soybean. The sufficiency range generated by the boundary line with 95 % 
maximum grain yield showed no prevalence of diagnosis of nutrient deficiency, except for copper. 
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INTRODUCTION
Soybean crops have significant participation in Brazilian farming, with potential for further 
expansion in agricultural frontier areas such as those in the Cerrado biome, especially 
in the states of Piauí and Maranhão, Northeast region of Brazil (Hirakuri et al., 2018).

Agricultural frontier areas are usually subjected to intensive application of fertilizers to 
correct the chemical limitations of the soil and replace nutrients to maintain acceptable 
productivity levels (Horvat et al., 2015). Therefore, monitoring plant nutrition is essential 
for proper fertilization management (Withers et al., 2018).

Soybean farmers in the Northeast region of Brazil use different crop nutrition techniques, 
such as traditional soil fertilizers, leaf nutrients, and slow-release fertilizer formulation 
applications, with monitoring of nutritional status by tissue analysis or leaf diagnosis. 
However, in some situations, the critical levels or sufficiency ranges of nutrients used 
were determined for other regions with different edaphoclimatic conditions and soybean 
varieties (Embrapa Soja, 2013; Kurihara et al., 2013).

Some tools to assist the generation of critical levels and sufficiency ranges of nutrients based 
on databases compiled from crop grain yields and experiments are available. However, 
the generation of classes for interpretation of regional nutrient sufficiency is more reliable, 
with less variability due to soil and climate conditions and plant productive potential, 
as long as this is supported by a sufficiently large volume of data (Camacho et al., 2012).

One of the criteria used is the reduced normal distribution, in which the critical level is 
obtained for each nutrient, considering 90 % maximum grain yield (Maia et al., 2001; 
Maia and Morais, 2015). Another used method is the boundary line, which involves 
plotting the production as a function of leaf nutrient levels, removing some points, leaving 
only the boundary line of the data, and fitting them to polynomial models to obtain an 
optimum value or sufficiency range (Webb, 1972). Sufficiency ranges for melon (Maia 
and Moraes, 2016), mango (Ali, 2018), and dragon fruit (Almeida et al., 2016) crops have 
been obtained by using the boundary line method.

Depending on the method used, the results show positive or negative characteristics for 
the generation of critical levels or ranges; the easy calculation is an advantage of the 
reduced normal distribution method (Maia et al., 2001; Maia and Morais, 2015), despite 
the relative grain yield proportion (90 %) cannot be changed. The boundary line gives 
the choice for relative grain yield proportion, but the calculation has some particularities, 
such as the restriction to only boundary points in the dispersion graph (Vizcayno-Soto 
and Côté, 2004; Quesnel et al., 2006; Myburgh and Howell, 2014). The choice of points 
is necessary to create a curve for the model (Webb, 1972; Blanco-Macías et al., 2009).

Both methods are independent, and good options to generate optimal points or ranges 
for a dataset (nutritional status, soil, and salinity as a function of fruit yield, quality, and 
other variables), mainly for regional datasets (Camacho et al., 2012); these methods have 
the advantage of working with datasets (Webb, 1972; Walworth et al., 1986; Maia and 
Morais, 2015). Therefore, regional data of leaf nutrient and grain yield levels can be used 
to estimate critical levels and sufficiency ranges by different methods, and for evaluating 
the nutritional status of plants, since there are little studies on leaf diagnosis for agricultural 
frontier areas. The objective of this study was to propose critical levels and sufficiency ranges 
of macro and micronutrients for soybean plants grown in the Northeast region of Brazil.

MATERIALS AND METHODS
Data of content for analysis of macronutrients (nitrogen, phosphorus, potassium, calcium, 
magnesium, and sulfur) and micronutrients (boron, copper, iron, manganese, and zinc) 
were obtained from commercial crops grown in the municipalities of Uruçuí, Bom Jesus, 
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Nova Santa Rosa, and Regeneração in the state of Piauí (PI), and Brejo, Caxias, and São 
Raimundo das Mangabeiras in the state of Maranhão (MA), Brazil, in the 2016-2017 and 
2017-2018 cropping seasons. 

These municipalities are in the microregions Gerais de Balsas, Chapadas das Mangabeiras, 
Chapadinha, Caxias, Médio Parnaíba Piauiense, and Alto Parnaíba Piauiense. These 
microregions showed expansion of soybean crops using RR2 Intacta PRO cultivars, which 
are resistant to glyphosate and the main defoliating caterpillars, and have cycles of 115 to 
120 days. However, the microregion Chapadinha has predominance of RR1 cultivars, 
resistance to glyphosate, with a tendency for adoption of RR2 Intacta PRO cultivars 
(Hirakuri et al., 2018). 

The microregion Alto Parnaíba Piauiense presents predominance of clay soils (0.00-0.20 m 
layer), which contain clay content of 250 to 350 g kg-1 in 70 % of the areas; the microregion 
Gerais de Balsas presents 250 to 350 g kg-1 of clay in 40 % of the area, 150 to 250 g kg-1 
in 30 %, above 350 g kg-1 in 25 %, and below 150 g kg-1 in 5 % of the producing areas 
(Hirakuri et al., 2018). The most common clay contents found in soils (0.00-0.20 m layer) 
of the microregions Chapadinha and Caxias are 150 to 250 g kg-1; and most soils in the 
microregions Caxias and Médio Parnaíba Piauiense present clay contents of 250 and 
350 g kg-1 (0.00-0.20 m layer), with 150 to 250 g kg-1 in 20 %, above 350 g kg-1 in 25 %, 
and below 150 g kg-1 in 10 % of the areas (Hirakuri et al., 2018). Thus, most soils in these 
regions are Oxisol and Ultisol classes.

Leaf diagnosis was carried out using the third recently expanded trifoliate leaves from 
the apex, without petiole, at the flowering stage (R2), with 20 trifoliate leaves per 
field. The leaves were collected and taken to the laboratory for washing and drying 
(Miyazawa et al., 2009).

Crop grain (13 % moisture) yield was measured after harvesting, and the data presented in 
kg ha-1. The samples were from the 2016-2017 (48 samples) and 2017-2018 (38 samples) 
cropping seasons, totaling 86 samples from eight commercial farms, one of each 
municipality, except Bom Jesus, which considered two farms. The leaves were collected 
in different plots of each farm, but not necessarily the same plots were used in both 
cropping seasons. Macro and micronutrients (P, K, Ca, Mg, S, Cu, Fe, Mn, and Zn) were 
quantified according to Bataglia et al. (1983), after nitroperchloric digestion; P was 
determined by colorimetry; K by flame photometry; S by turbidimetry; Ca, Mg, Cu, Fe, 
Mn, and Zn by atomic absorption spectrophotometry; nitrogen by the Kjeldahl method; 
and boron by calcination.

Critical level in the leaf analysis interpretation was based on grain yield data and the 
continuous probability distribution, according to Maia et al. (2001), using grain yield data 
and the ratio (Q) between grain yield (Y) and the leaf level of each nutrient for maximum 
grain yield of 90 % (ni), according to equation 1.

Q = Y
ni

              Eq. 1

The reduced normal distribution has mean zero and variance one. When Y shows a normal 
distribution of mean and variance for the variable, it has normal distribution with mean 
zero and variance one (Maia et al., 2001). The data of a variable is reduced to its mean 
to transform its mean to zero. Each data of a variable must be divided by the standard 
deviation to transform its standard deviation into 1. Therefore, equation 2 was used to 
transform any normal dataset into a reduced normal distribution dataset.
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Z = X – μ
σ

             Eq. 2

in which Z is the value of the variable in the reduced normal distribution, µ is the mean 
of the dataset, and σ is the standard deviation of the dataset (Maia et al., 2001).

Thus, considering the value that represents 90 % of the maximum grain yield, the 
values will be: Y(90)= critical value of the grain yield above the expected one under 
the normality hypothesis, in which only 10 % of the grain yields are considered; and 
Q(90)= critical value of the quotient Q above the expected one under normality with only 
10 % of the Q values are considered (Maia et al., 2001). The normal distribution table 
shows: Y(90) (Z≤1.281552) = 0.90, as found by equation 3.

Pr (90) – µ
σ

= 1.281552 → Y(90) = 1.1281552σ + µ        Eq. 3

Q(90) was determined similarly, using equations 4, 5, and 6; equation 4 with Y and Q 
with normal distribution; equation 5 with Y with normal distribution but Q transformed 
into square root; and equation 6 with Y with normal distribution and Q transformed into 
natural logarithm (Maia et al., 2001).

CLi =
(1.281552 s1) + m1
(1.281552 s2) + m2

          Eq. 4

CLi =
(1.281552 s1) + m1

[(1.281552 s2) + m2]2
          Eq. 5

CLi =
(1.281552 s1) + m1
e(1.281552 s2) + m2

          Eq. 6

In all equations, m1 and s1 are the arithmetic mean and standard deviation of Y, and m2 
and s2 are the arithmetic mean and standard deviation of Q, respectively. The tabulated 
value 1.281552 was used as the standard distribution (Maia et al., 2001).

The basic assumption to find the critical level by the continuous probability function 
is that the variables Y and Q are normally distributed. Thus, the data were tested for 
normality by the Shapiro-Wilk test (p>0.05), and transformed into square root or natural 
logarithm when not normally distributed. Data that were not normally distributed after 
these transformations were subjected to exclusion of discrepant cases from the respective 
ratio between grain yield and nutrient (Q), using the boxplot tool, verifying the posterior 
normality of grain yield (Y), and grain yield to nutrient ratio (Q). Therefore, in some cases, 
the number of individuals may be different from the original (n = 86).

Regarding the original dataset, with 86 values for B, Cu, Fe, Mn, and Zn, discrepant 
(not normally distributed) data after the transformation (logarithm or square root) were 
also removed, and again tested for normality. Then, the data that were not normally 
distributed were verified with transformation by square root or natural logarithm of the 
grain yield to the nutrient ratio (Q).

The same data used to calculate the critical level by the reduced normal distribution 
was used to calculate the boundary line (Quesnel et al., 2006; Blanco-Macías et al., 
2009; Lafond, 2013). The data of the nutrient content and the respective grain yield 
was separated into classes or intervals, after choosing the maximum value within the 
range (nutrient content). This procedure can be done in spreadsheets or point diagram.

The first step consisted of plotting the data on nutrient content as a function of grain yield. 
The second step was to select the points at the upper limit of the dispersion diagram, 
and verify the maximum and minimum contents, and dividing the difference between 
them by 15 classes, and consequently selecting the highest point (content) within each 



Souza et al. Critical levels and sufficiency ranges for leaf nutrient diagnosis by two...

5Rev Bras Cienc Solo 2020;44:e0190125

interval (Blanco-Macías et al., 2009). Fifteen classes/intervals were used, representing 
the use of up to 15 data to generate the quadratic model, which is equivalent to less 
than 25 % of the data.

The use of 15 classes was based on the use of fewer than 25 % of the observations to 
develop the model, thus limiting the selection of points to those at the upper limit of 
the dispersion, and maximizing the probability of developing statistically significant 
models, by increasing the number of observations (Vizcayno-Soto and Côté, 2004). 
Some studies have indicated that the number of classes should be between 10 and 
20 (Blanco-Macías et al., 2009). 

Considering that this approach led to the selection of samples at adjacent intervals with 
large differences in grain yield, indicating that samples with lower grain yield have no 
optimal conditions for the nutrition level (Vizcayno-Soto and Côté, 2004; Quesnel et al., 
2006), the classes representing the production as a concave quadratic model, i.e., the 
curve that was ascending until the maximum point and descending thereafter, were 
excluded. The production of the sample selected was divided into the respective class 
by the mean grain yield to facilitate possible exclusion of classes and identify the highest 
relative grain yield point, using equation 7 (Lafond, 2009):

PR (%) = × 100Ysample

Ymean

           Eq. 7

in which Y is the relative grain yield; Ysample is the highest grain yield in the interval of a 
determined class; and Ymean is the mean grain yield.

Therefore, classes were excluded using the procedure described by Vizcayno-Soto and 
Côté (2004) and Quesnel et al. (2006), with adaptations. When the relative outputs prior 
to the highest relative production among the classes selected did not satisfy the following 
criterion, they were excluded, considering the point of highest relative production as 
the cutoff (Equation 8): 

PR > PR-1              Eq. 8

After the point of highest relative production, it was necessary to satisfy the following 
criterion (Equation 9):

PR > PR+1             Eq. 9

in which PR, PR-1, and PR+1 are the relative production levels and the adjacent points 
(lower and upper, respectively).

When these criteria were not satisfied, the sample of the considered class was excluded 
(Vizcayno-Soto and Côté, 2004; Quesnel et al., 2006). Furthermore, the production of the 
sample selected from the initial class cannot be higher than the second class, otherwise, 
the first class is dropped and the selection is begun from the points of the boundary line 
of the second class, i.e., there must be a rising order until reaching the highest relative 
production. Similar reasoning applies to the last class selected, with its exclusion when 
the relative production is higher than that of the previous class, i.e., the order must 
be decreasing after the point of highest relative production. After the exclusion of the 
classes with not satisfying values for the assumptions, a second-degree polynomial 
function was generated.

The optimal content or critical level (CL) was determined by taking the first derivative 
of the following quadratic equation (Equation 10): 

NC = –b
–2a

           Eq. 10
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in which a and b are the coefficients of the quadratic equation.

Thus, two sufficiency ranges were generated, with values corresponding to 95 and 99 % 
maximum grain yield by 0.95 or 0.99 × maximum grain yield, and subsequent substitution 
in equation 11 (Quesnel et al., 2006; Blanco-Macías et al., 2009):

x =
2a

-b±√b2 – 4ac            Eq. 11

in which a, b, and c are the coefficients of the quadratic equation, and x is the value 
corresponding to the level of the nutrient to generate the sufficiency range.

The critical levels obtained by the reduced normal distribution and boundary line 
methods for each nutrient were used to calculate the frequency that the values of each 
nutrient could be considered deficient (below critical level). The same procedure was 
applied to the sufficiency ranges, i.e., verifying the samples where each nutrient was 
considered excessive, sufficient or deficient, considering the ranges of 95 and 99 % 
maximum grain yield and in relation to the reference values found in the literature 
(Kurihara et al., 2013).

RESULTS
The average grain yield found was 3,374 kg ha-1, similar to the Brazilian average in the 
2017-2018 cropping season (3,394 kg ha-1) (Conab, 2019), with maximum and minimum 
grain yield of 4,400 and 2,457 kg ha-1, respectively. The parameters evaluated showed 
the decreasing order of variability of the data, according to the coefficient of variation: 
Cu>Mn>B>Zn>S>Fe>Mg>Ca>P>N>K. Grain yield and grain yield to nutrient ratio 
presented normal distribution with and without transformation. Thus the critical levels 
were calculated by the reduced normal distribution, which were 40.2, 3.2, 17.6, 8.7, 4.7, 
2.1, 44, 5, 125, 33, and 48 for N, P, K, Ca, Mg, and S (g kg-1), and B, Cu, Fe, Mn, and Zn 
(mg kg-1), respectively (Table 1), for grain yields of 4,005 kg ha-1 for macronutrients (N, P, 
K, Ca, Mg, and S), 4,052 kg ha-1 for boron, 3,898 kg ha-1 for copper, 4,021 kg ha-1 for iron, 
4,067 kg ha-1 for manganese, and 4,022 kg ha-1 for zinc. The critical level was generated 
for a grain yield of 4,020 kg ha-1, except for Cu (3,240 kg ha-1). Regarding the boundary 
line method, the classes 7, 13, 8, 11, 9, and 10 were used for the macronutrients N, P, 

Table 1. Mean values, standard deviations, maximum, minimum level of nutrients, coefficient of variation (CV), grain yield for 90 % 
of the maximum (P), the ratio between grain yield and nutrient content (Q), and critical level (CL) by the reduced normal distribution 
method (RNDM) for leaf samples of soybean plants grown in the Northeast region of Brazil

Parameters (RNDM) N P K Ca Mg S B Cu Fe Mn Zn
g kg-1 mg kg-1

Mean 45.4 3.7 19.2 10.2 5.6 2.5 57 8.4 147 48 57
Standard deviation 6.9 0.6 2.6 2.0 1.1 0.6 16 4.4 33 17 13
Maximum 57.9 5.4 25.5 14.6 9.5 4.0 98 25.6 86 96 82
Minimum 26 2.3 14.3 6.7 3.0 1.2 30 2.2 236 19 30
CV (%) 15.2 16.3 13.5 19.5 19.6 23.3 27.1 51.8 22.4 34.7 23.5
n 86 86 86 86 86 86 77 71 73 70 80
P(1) 4005 4005 4005 4005 4005 4005 4052 3898 4021 4067 4022
Q 99.7(2) 1233.0 228.0 460.3 854.7(2) 1938.8(2) 92.9 815.5(3) 32.2 122.6(2) 83.3(3)

CL 40.2 3.2 17.6 8.7 4.7 2.1 44 5 125 33 48
n = number of samples with normal distribution with or without transformation. (1) 90 % maximum grain yield, according to the number of samples of 
each nutrient, in kg ha-1. (2) Means and standard deviations transformed into square root. (3) Means and standard deviations transformed into natural 
logarithm. The mineral nutrients were analyzed using the methodology described by Bataglia et al. (1983).
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K, Ca, Mg, and S, respectively (Figures 1a, 1b, 1c, 1d, 1e, and 1f), and the classes 10, 
11, 10, 9, and 10 were used for the micronutrients B, Cu, Fe, Mn, and Zn, respectively 
(Figures 2a, 2b, 2c, 2d, and 2e).
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Figure 1. Ratio between macronutrient contents and grain yield plotted by the boundary line method for soybean plants grown in 
the Northeast region of Brazil.



Souza et al. Critical levels and sufficiency ranges for leaf nutrient diagnosis by two...

8Rev Bras Cienc Solo 2020;44:e0190125

The quadratic regression model made possible to generate the optimal value for each 
nutrient and sufficiency ranges at 95 and 99 % maximum grain yield (Table 2). The 
critical level estimated by the boundary line method was higher than that estimated 
by the reduced normal distribution criterion (Table 2), except for boron, whose values 
were similar.
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Figure 2. Ratio between micronutrient contents and grain yield of soybean plotted by the boundary line method for soybean plants 
grown in the Northeast region of Brazil.
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The sufficiency ranges generated for the 95 % maximum grain yield had higher amplitude 
than that generated with 99 % maximum grain yield (Table 2).

The critical level values calculated by the two methods (reduced normal distribution and 
boundary line) showed that the percentage of data was deficient, or below the optimal 
point. According to the boundary line, the critical level had higher percentages in the 
deficient classification for all the nutrients, except for boron, for which the frequency 
was the same by both methods, 20.8 % (Table 3).

Based on the sufficiency ranges by the boundary line method, the samples were classified 
as limited by deficiency (LD), not limited (NL), and limited by excess (LE) of nutrients, and 
the nutrient levels were compared to reference values in the literature (Kurihara et al., 
2013). Kurihara et al. (2013) used similar leaf diagnosis, with samples of the third trifoliate 
leaf collected during flowering without petiole (Table 4).

The classification percentage for each nutrient followed a decreasing order, considering 
the sufficiency ranges with 95 and 99 % maximum grain yield for the boundary line 
(BL 95 % and BL 99 %) and the data reported by Kurihara et al. (2013): BL 95 % for 
N, not limited (NL)>limited by excess (LE)>limited by deficiency (LD); BL 99 % for 
N, LE>NL>LD; and Kurihara et al. (2013) for N, LD>NL>LE. This order indicates the 
proportion of population in each classification in different interpretations (deficiency, 
excess, and inadequate). In other words, each sufficiency range for nitrogen had distinct 
classifications for the population studied due to the different sufficiency classes generated 
by the boundary line and the literature used for comparison. The same reasoning was 
used for the other nutrients, whose orders were: for phosphorous, boundary line with 
95 % maximum grain yield (BL 95 %), NL>LE>LD; boundary line with 99 % maximum 
grain yield (BL 99 %), LE>NL>LD; and Kurihara et al. (2013), LD>NL>LE; for potassium, 
BL 95 %, NL>LE>LD, LD 99 %, NL>LD>LE, and Kurihara et al. (2013), LE>NL>LD; 
for calcium, BL 95 %, NL>LD>LE, BL 99 %, LD>LE>NL, and Kurihara et al. (2013), 
LE>NL>LD (LD = 0); for magnesium, BL 95 %, NL>LE>LD, BL 99 %, LE>NL>LD, and 
Kurihara et al. (2013), LE>NL>LD (LD = 0); for sulfur, BL 95 %, NL>LE>LD, BL 99 %, 
LE>NL>LD, and Kurihara et al. (2013), LD>NL>LE; for boron, BL 95 %, NL>LE>LD 
(LD = 0), BL 99 %, LE>NL>LD, and Kurihara et al. (2013), LE>NL>LD; for copper BL 
95 %, LD>NL>LE, BL 99 %, LD>NL>LE, and Kurihara et al. (2013), LD>LE>NL; for 
iron, BL 95 %, LE>NL>LD, BL 99 %, NL>LD>LE, and Kurihara et al. (2013), LE>NL>LD 

Table 2. Critical levels and sufficiency ranges of nutrients in leaf samples by the reduced normal distribution method (RNDM), 
boundary line (BL), and literature methods for soybean plants grown in the Northeast region of Brazil

Methods N P K Ca Mg S B Cu Fe Mn Zn
g kg-1 mg kg-1

CLRNDM 40.2 3.3 17.6 8.7 4.7 2.0 44 5 125 33 48
CLBL 42.1 3.4 19.5 10.3 4.9 2.4 44 12 145 34 63
95 % BL Range 34.2-50.2 2.8-4.0 16.9-22.2 8.2-12.5 3.9-5.9 1.7-3.1 24-64 9-17 115-145 8-60 52-73
99 % BL Range 38.6-45.7 3.1-3.7 18.3-20.7 9.4-11.3 4.4-5.3 2.1-2.7 35-53 10-14 131-159 23-46 58-68
Literature(1) 50.6-56.5 2.8-3.3 14.4-17.2 6.2-8.9 3.0-3.8 2.4-2.9 37-46 7-9 77-111 38-63 41-56

(1) Kurihara et al. (2013). The mineral nutrients were analyzed using the methodology described by Bataglia et al. (1983).

Table 3. Frequency of nutrient contents of leaf samples below the critical level by the CLRNDM and CLBL methods for soybean plants 
grown in the Northeast region of Brazil

Methods N P K Ca Mg S B Cu Fe Mn Zn
%

CLNCRIz 20.5 20.5 23.9 30.4 21.6 22.7 20.8 21.1 26.0 10.0 28.8
CLBL 31.4 30.2 52.3 49.4 25.6 40.7 20.8 84.5 54.8 19.6 60.0
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(LD = 0); for manganese, BL 95 %, NL>LE>LD (LD = 0), BL 99 %, NL>LE>LD, and 
Kurihara et al. (2013), NL>LD>LE; and for zinc, BL 95 %, NL>LD>LE, BL 99 %, LD>NL>LE, 
and Kurihara et al. (2013), LE>NL>LD (Table 4).

The interpretations carried out with the sufficiency ranges indicated different proportions of 
the categories not limited, limited by excess, and limited by deficiency for the 11 nutrients 
evaluated. However, when the range proposed was calculated by the boundary line with 
95 % maximum grain yield, the limited by deficiency was not predominant for most 
nutrients, except for copper.

DISCUSSION
The establishment of critical levels of nutrients for soybean crops grown in the Northeast 
region of Brazil is possible through the reduced normal distribution. Critical levels with 
this method have also been proposed for sugarcane (Santos et al., 2013) and orange 
(Camacho et al., 2012) crops.

Table 4. Frequency of nutrient contents of leaf samples limited by deficiency (LD), not limited (NL) and limited by excess (LE), 
according to the sufficiency ranges proposed by the boundary line method at 95 and 99 % of maximum grain yield, and the literature 
for soybean plants grown in the Northeast region of Brazil

Nutritional status N P
95 % BL Range 99 % BL Range Literature(1) 95 % BL Range 99 % BL Range Literature

LD (%) 7.0 12.8 81.4 7.0 15.1 7.0
NL (%) 74.4 33.7 16.3 65.1 37.2 16.3
LE (%) 18.6 53.5 2.3 27.9 47.7 76.7

K Ca
95 % BL Range 99 % BL Range Literature 95 % BL Range 99 % BL Range Literature

LD (%) 19.8 32.6 3.5 17.7 40.5 0.0
NL (%) 68.6 39.5 17.4 72.2 21.5 30.4
LE (%) 11.6 27.9 79.1 10.1 38.0 69.6

Mg S
95 % BL Range 99 % BL Range Literature 95 % BL Range 99 % BL Range Literature

LD (%) 3.5 12.8 0.0 8.1 23.3 40.7
NL (%) 59.3 30.2 2.3 77.9 37.2 33.7
LE (%) 37.2 57.0 97.7 14.0 39.5 25.6

B Cu
95 % BL Range 99 % BL Range Literature 95 % BL Range 99 % BL Range Literature

LD (%) 0.0 6.5 7.8 66.2 70.4 47.9
NL (%) 71.4 41.6 16.9 28.2 19.7 18.3
LE (%) 28.6 51.9 75.3 5.6 9.9 33.8

Fe Mn
95 % BL Range 99 % BL Range Literature 95 % BL Range 99 % BL Range Literature

LD (%) 15.1 35.6 0.0 0.0 1.4 30.0
NL (%) 39.7 41.1 13.7 78.6 57.1 51.4
LE (%) 45.2 23.3 86.3 21.4 41.4 18.6

Zn
95 % BL Range 99 % BL Range Literature

LD (%) 38.8 46.3 15.0
NL (%) 48.8 33.8 26.3
LE (%) 12.5 20.0 58.8

(1) Kurihara et al. (2013).
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The correction of the number of classes to apply the boundary line method allows 
the generation of quadratic regression models with high coefficient of determination 
(Vizcayno-Soto and Côté, 2004). The R2 values ranged from 0.72 to 0.89 for macronutrients, 
and from 0.68 to 0.91 for micronutrients. The use of the boundary line method has 
shown high coefficients of variation for other crops, such as Opuntia ficus-indica, as 
reported by Blanco-Macías et al. (2009). They used 18, 17, 11, 14, and 11 intervals, 
from the 20 classes initially proposed, for N, P, K, Ca, and Mg, respectively, for the 
boundary line. However, Iheshiulo et al. (2019) evaluated Lonicera caerulea with 5 to 
7 intervals for the macronutrients N, P, K, Ca, and Mg, with R2 values of 0.67 to 0.89.

Quadratic equations generated by the boundary line for data of mango crops presented 
models with coefficients of determination (R2) of 0.50 to 0.85 (Ali, 2018); and Opuntia 
ficus-indica crops showed R2 values between 0.48 and 0.90 for macronutrients 
(Blanco-Macías et al., 2009).

The range proposed by the boundary line with 99 % maximum grain yield showed 
no predominance of any limitation category (NL, LD, or LE). However, Kurihara et al. 
(2013) found no limitation by deficiency (LD) for the nutrients Ca, Mg, and Fe. The 
interval reported by Kurihara et al. (2013) was developed with samples of soybean crops 
grown in the states of Mato Grosso, and Mato Grosso do Sul, which are older soybeans 
producing regions been grown than the states of Piauí and Maranhão, with a perspective 
of increasing use of fertilizers to restore soil fertility to assure high levels of compensatory 
yield (Donagemma et al., 2016; Withers et al., 2018).

The sufficiency range generated with 99 % maximum grain yield was related to its 
smaller amplitude and the diagnoses distributed to the classes not limited, limited by 
deficiency, and limited by excess; thus, these ranges were more sensitive. Therefore, the 
use of this sufficiency interval is indicated for the Northeast region of Brazil. Embrapa 
Soja (2013) presented also another study for the Central-West region of Brazil comparing 
the sufficiency range, but the intervals for P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn showed 
greater amplitude than those in the present study, except for N, where the sufficiency 
range was lower than that found by Embrapa Soja (2013).

These results are important for nutrient management; for example, N, P, and K uptake 
of current soybean varieties are higher than those in the 1970s, 1980s, 1990s, and 
2000s due to genetic modifications of cultivars to meet the demands of the production 
systems (Bortolon et al., 2018).

Other techniques are used to generate sufficiency ranges or optimal points, such as 
mathematical chance or evaluation of nutrient balance by the correlation between nutrient 
concentrations and Diagnosis and Recommendation Integrated System (DRIS) or Composition 
Nutritional Diagnosis (CND) indices (Camacho et al., 2012; Matos et al., 2016; Ali, 2018).

Studies using diagnoses generated by the nutrient balance methods (DRIS × CND) have 
shown that CND is more accurate than DRIS (Parent et al., 2013); and sufficiency ranges 
by the boundary line method are closer to those by the CND methods (Vizcayno-Soto 
and Côté, 2004; Blanco-Macías et al., 2010). Studies have reported that the boundary 
line is a promising tool to understand soil properties and evaluate the nutritional status 
of agricultural crops (Guedes Filho et al., 2019; Iheshiulo et al., 2019).

CONCLUSION
The reduced normal distribution and boundary line methods allowed the generation of 
critical levels and sufficiency ranges for leaf diagnosis of soybean.

The critical level generated by the boundary line indicated a larger number of deficient 
samples than the reduced normal distribution method, except for boron.
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The sufficiency range generated by the boundary line with 95 % maximum grain yield 
showed no prevalence of diagnosis of nutrient deficiency, except for copper. 
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