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A B S T R A C T

Biomass sorghum has emerged as an alternative crop for biofuel and bioelectricity production. Fresh biomass
yield (FBY) is a quantitative trait highly correlated with the calorific power of energy sorghum cultivars, but also
highly affected by the environment. The main goal of this study was to investigate the genotype-by-environment
interaction (G × E) and the stability of sorghum hybrids evaluated for FBY across different locations and years,
using factor analytic (FA) mixed models and environmental covariates. Pairwise genetic correlations between
environments ranged from -0.21 to 0.99, indicating the existence of null to high G × E. The FA analysis unveiled
that solely three factors explained more than 79% of the genetic variance, and that more than 60% of the
environments were clustered in the first factor. Moderate correlations were found between some environmental
covariates and the loadings of FA models for environments, suggesting the possible factors to explain the high G
× E between environments clustered in a given factor. For example: precipitation, minimum temperature and
speed wind were correlated to the environmental loadings of factor 1; minimum temperature, solar radiation and
altitude to factor 2; and crop growth cycle to factor 3. The latent regression analysis was used to identify hybrids
more responsive to a set of environments, as well as hybrids specifically adapted to a given environment. Finally,
FA models can be successfully used to identify the main environmental factors affecting G× E, such as minimum
temperature, precipitation, solar radiation, crop growth cycle and altitude.

1. Introduction

Biomass sorghum [Sorghum bicolor (L.) Moench] can be used as an
alternative feedstock for bioelectricity (Demirbas et al., 2009), biogas
(Mahmood et al., 2015) and second-generation ethanol production
(Reis et al., 2016). For these purposes, one of the most important traits
is dry biomass yield (DBY) (de Oliveira et al., 2018), which is highly
correlated with the calorific power of sorghum cultivars and,

consequently, with the potential to generate energy and heat during the
burning process. Because of the large number of required processes for
measuring DBY, fresh biomass yield (FBY) can be used as a proxy to
perform indirect cultivar selections, due to the reported high genetic
correlation between FBY and DBY (de Almeida et al., 2019). Besides the
high FBY, other attributes are also attractive for using biomass sorghum
as an energy crop in Brazil, such as drought and heat tolerance, water
use efficiency, short crop growth cycle (160 to 180 days) (Brenton
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et al., 2016; Parrella et al., 2011), and high adaptability to tropical and
subtropical soil and climate conditions.

Annually, the Embrapa’s sorghum breeding program performs late-
stage trials, denominated value for cultivation and use (VCU) trials, in
which the best biomass hybrids, previously selected in preliminary and/
or late-stage breeding trials, are evaluated across different locations
from distinct Brazilian regions. In these VCU trials, some commercial
cultivars and/or parental lines are included as common checks, since
different sets of hybrids are often tested across years and/or locations.
The set of connected trials across multiple years and locations are called
multi-environment trials (MET). The joint analysis of MET data can
provide useful information about genotype-by-environment interaction
(G × E), stability and adaptability of hybrids across distinct environ-
ments. This information is critical for the release of new cultivars
showing yield stability across a set of environments, or that are speci-
fically adapted to a given environment (Bornhofen et al., 2018;
Burgueño et al., 2008; Dias et al., 2018b).

FBY is a quantitative trait highly affected by the environment.
Therefore, the lack of information about G × E can lead to a reduction
in the genetic gains, reinforcing the usefulness of MET studies (Quintero
et al., 2018). Although late-stage trials are often balanced between lo-
cations within a harvest year, they are highly unbalanced between
years, since low-performance hybrids are usually replaced by newly
developed elite materials through the seasons of a breeding program.
Another reason of unbalance in MET data sets is the occurrence of
missing plots, due to biotic or abiotic stresses during the crop growth
cycle. For these reasons, joint analysis of unbalanced experiments
cannot be performed with the traditional statistical methods used to
study G × E, adaptability and stability of hybrids across environments.
In MET datasets, these studies require the use of more flexible ap-
proaches, such as linear mixed models (Kelly et al., 2007; Resende and
Thompson, 2004; Smith et al., 2005).

Within the linear mixed models’ framework, different variance and
covariance (VCOV) structures can be considered for random effects,
allowing for complex modeling of genetic correlations across environ-
ments, in addition to heterogeneity of variances between environments.
The unstructured (UN) is the most complex VCOV structure, which
considers heterogeneity of variances across environments and all pos-
sible specific covariances between pairs of environments. However, due
to the high number of parameters (i.e. variance-covariance compo-
nents) to estimate when several environments are analyzed simulta-
neously, fitting an UN structures is often a complex task (Smith et al.,

2005), which may lead to unstable model fits, with high standard errors
for the variance components, and/or frequently to a lack of model
convergence.

Multiplicative factor analytic (FA) structures have been proposed as
a more parsimonious approach, allowing the estimation of a smaller
number of parameters compared to UN structures (Kelly et al., 2007;
Piepho, 1997, 1998; Smith et al., 2001b). In addition, graphical tools,
such as latent regression plots (Smith et al., 2015; Thompson et al.,
2003) and heatmaps of estimated genetic correlation matrices across
environments (Cullis et al., 2014; Smith et al., 2015), can be explored to
infer about G × E, adaptability and stability of hybrids. In addition, the
environmental loadings of FA models can also be correlated to en-
vironmental covariates, such as geographic, soil and climatic covari-
ates, in order to observe trends in the genotype performance across
environments according to environmental conditions (Sae-Lim et al.,
2014). In this context, the main goals of this study were: i) to under-
stand G × E interaction, and adaptability and stability of Embrapa’s
biomass sorghum hybrids across the measured environments; ii) to se-
lect stable hybrids across a set of environments or specifically adapted
hybrids to a given environment; and iii) to identify the main environ-
mental covariates that explain G × E interaction.

2. Material and Methods

2.1. Genetic Material and Experimental Design

A total of 55 sorghum genotypes were evaluated, corresponding to
51 experimental hybrids and four checks, i.e., two commercial biomass
sorghum hybrids and two commercial forage sorghum hybrids. These
55 genotypes were evaluated across 29 VCU trials, comprising 13 dif-
ferent locations from nine Brazilian states, geographically distributed as
shown in Fig. 1, over five years (2013 to 2017). Some of the 55 hybrids
were evaluated in all 29 VCU trials, while others were evaluated only
across locations on a given year. Hybrids were obtained from crossing
five R-lines (restorer) to 26 A-lines (cytoplasmic male-sterile), be-
longing to the breeding program. Trials were named according to the
initials of each location followed by the last two digits of its respective
year.

For each year between five and eight trials were established. Table 1
shows the year and location of each trial evaluated in this study. The
number of evaluated trials and genotypes per year varied. In addition,
on average each location was evaluated twice, ranging from one to five

Fig. 1. (A) Geographic positions of the loca-
tions in which VCU trials were conducted; and
(B) Locations evaluated in each year, from
2013 to 2017. Years were coded as 13 to 17.
Locations were coded as: Cac, Cáceres-MT; CG,
Campos dos Goytacazes-RJ; Dou, Dourados-
MS; Dra, Dracena-SP; Goi, Goiânia-GO; Lav,
Lavras-MG; NP, Nova Porteirinha-MG; Pel,
Pelotas-RS; Pla, Planaltina-DF; SV, Santa
Vitória-MG; SL, Sete Lagoas-MG; Sin, Sinop-
MT; and Vil, Vilhena-RO.
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years of evaluation.
Each trial was arranged as a lattice design with three replicates.

Plots consisted of two rows of 5 m spaced by 0.7 m, consisting on an
initial density of 140,000 plants ha-1. The number of genotypes eval-
uated in each year of VCU trials ranged from 16 (2013) to 36 (2014),
with an average of 25 per trial. Seven to 21 genotypes, with an average
of 12, were common across years (Table 2). Two to four checks were
added to each trial. Nevertheless, BRS716 and BRS655, biomass and
forage Embrapa’s commercial hybrids, respectively, were included as
common checks across all VCU trials. Although the MET dataset used in
this study is highly unbalanced across years, it is balanced across lo-
cations within the same year.

Fertilizer management weed and pest control, and other agricultural
practices were performed as recommended for sorghum cultivation in
each Brazilian region. In all VCU trials, FBY (t ha-1) was evaluated at
grain physiological maturity. At harvest, all plants in a given plot, i.e.
two rows of 5 m, were cut at ground level by hand and weighed using a
digital suspension scale. Subsequently, the weights were converted into
tons per hectare.

2.2. Environmental covariates

In order to identify potential climatic covariates that affect biomass
sorghum productivity, maximum, mean and minimum temperature
(°C), solar radiation (MJ m-2 day-1), precipitation (mm day-1), relative
humidity (%), wind speed (m s-1) and altitude (m) were collected for
the whole crop growth cycle, i.e. from planting to harvest of each trial.
The climatic covariates were obtained from the database of the National
Aeronautics and Space Administration Prediction of Worldwide Energy
Resource (NASA POWER) project (https://power.larc.nasa.gov/data-
access-viewer/) according to the coordinates of each location and the
crop growth cycle duration of each trial.

2.3. Phenotypic Data Analyses

2.3.1. Single-trial Analyses
Linear mixed models were fitted using the statistical package

ASReml-R v.3 (Butler et al., 2009), available for the R software (R Core
Team, 2018). Phenotypic data quality, experimental accuracy, coeffi-
cient of variation and generalized heritability were calculated by single-
trial analyses using the following linear mixed model:

= + + + +y Xr Z b r Z g eμ1 .n 1 2

where y is the vector (n × 1) of phenotypic values, in which n is the
number of observations; μ is the overall mean; r is the vector (j × 1) of
fixed effects of j replicates; g is the vector (i × 1) of the random effects
of i genotypes, with ∼g IN σ(0, )ig

2 , in which σg
2 is the total genetic

variance; b r. is the vector (jk × 1) of random k block effects within j
replicates, with ∼b r IN σ. (0, )jkb

2 , in which σb
2 is the variance of

blocks; and e is the vector of residual effects, with ∼e IN σ(0, )ne
2 , in

which σe
2 is the residual variance. X , Z1 and Z2 represent the incidence

matrices for their respective effects of replicates, genotypes and blocks
within replicates, 1n is a vector of ones, and Ii, Ijk and In are identity
matrices with their corresponding orders.

Diagnostic plots were used to detect outliers and to verify residuals
assumptions using the fitted models from each trial. Generalized her-
itability (H2) (Cullis et al., 2006), and experimental accuracy (A c)
(Mrode, 2014), were estimated for each trial using the following
equations: = − ×H PEV σ1 [ ¯ /(2 ˆ )]g

2 2 and = −Ac PEV σ1 ( ¯ / ˆ )g
2 ; in

which PEV¯ is the average of the prediction error variance, and σ̂g
2 is the

estimated genetic variance. The coefficient of variation was calculated
using the formula = ×CV σ μ% ( ˆ / ˆ) 100e , in which σ̂e is the estimated
residual standard deviation, and μ̂ is the overall mean of each trial.

2.3.2. Joint Analysis of Multiple Trials
The combined analysis of all trials was carried out in two stages.

First, the adjusted means of genotypes (yadj) and the environmental
residuals were obtained by the single-trial analyses (i.e., by environ-
ment), but considering the effect of the genotypes as a fixed effect. At
this stage, the means of genotypes were corrected for the other ex-
perimental design related effects.

In the second stage, linear mixed models were fitted across en-
vironments, using the adjusted means of genotypes from the first stage
and associated weights:

= + + +y Xs Zg s eμ1 .nadj

where yadj is the vector (il × 1) of adjusted means, from the first stage,
of i treatments (genotypes) in each environment l; μ is the overall mean;
s is the vector (l × 1) of fixed effects of environments; g s. is the vector
(il × 1) of random genetic effects of i genotypes within l environments,
with ∼ ⨂g s G PN. (0, ); and e is the vector (il × 1) of residual effects,
with ∼e N Σ(0, ). Here, G is the (l × l) genetic VCOV matrix for the
effect of genotypes within environments, P is the (i × i) pedigree‐based
relationship matrix estimated by the Henderson’s recursive method
(Amadeu et al. 2016), and Σ is a (l × l) diagonal matrix, in which its
elements are given by the inverse of the residual variance of the

Table 1
Embrapa’s trials evaluated over 13 locations and five years.

Location* Years Location Average˟

Cáceres – MT 2014 Cac.14 71.25
C. dos Goytacazes - RJ 2016 CG.16 79.12
Dourados – MS 2014 Dou.14 85.16
Dourados – MS 2015 Dou.15 102.97
Dracena – SP 2014 Dra.14 53.51
Goiânia – GO 2015 Goi.15 73.06
Goiânia – GO 2017 Goi.17 65.51
Lavras – MG 2013 Lav.13 74.93
Lavras – MG 2015 Lav.15 68.11
Lavras – MG 2016 Lav.16 64.54
Lavras – MG 2017 Lav.17 50.73
Nova Porteirinha – MG 2013 NP.13 74.45
Nova Porteirinha – MG 2014 NP.14 70.50
Nova Porteirinha – MG 2015 NP.15 102.23
Nova Porteirinha – MG 2016 NP.16 93.79
Pelotas – RS 2016 Pel.16 52.25
Planaltina – DF 2016 Pla.16 60.91
Planaltina – DF 2017 Pla.17 54.50
Sinop – MT 2013 Sin.13 82.06
Sinop – MT 2014 Sin.14 68.70
Sinop – MT 2015 Sin.15 74.16
Sinop – MT 2016 Sin.16 71.29
Sinop – MT 2017 Sin.17 70.99
Sete Lagoas – MG 2013 SL.13 64.12
Sete Lagoas – MG 2015 SL.15 66.03
Sete Lagoas – MG 2016 SL.16 75.09
Sete Lagoas – MG 2017 SL.17 81.09
Santa Vitória – MG 2013 SV.13 60.69
Vilhena – RO 2016 Vil.16 72.38

* DF: Distrito Federal; GO: Goiás; MG: Minas Gerais; MT: Mato Grosso; RJ:
Rio de Janeiro; RS: Rio Grande do Sul; RO: Rondônia; SP: São Paulo; ˟
Phenotypic average of each evaluated location.

Table 2
Number of genotypes within each year (diagonal), and the number of common
genotypes between years (upper diagonal) of the VCU trials and the percentage
of common genotypes between the years (lower diagonal).

Year 2013 2014 2015 2016 2017

2013 16(5*) 12 7 6 6
2014 75% 36(5*) 17 16 14
2015 44% 46% 25(6*) 12 11
2016 38% 43% 48% 25(8*) 21
2017 38% 38% 44% 84% 25(5*)

* number of locations evaluated each year.

I.C.M. Oliveira, et al. Field Crops Research 257 (2020) 107929

3

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/


adjusted means of genotypes in each environment (Smith et al., 2001a).
A factor analytic structure of order k (FAk), in which k is the number of
multiplicative components, was considered to model the G matrix. X
and Z are the incidence matrices for their respective effects; 1n is a
vector of ones; and Iil is identity matrices with their corresponding
orders.

The overall percentage (v ) of the genetic variance explained by the
k factors from the FA structure was calculated using:

= × +ΛΛ ΛΛ ψv tr tr100 ( )/ ( )T T

where Λ is the matrix (l× k) of factor loadings, λ{ }lk , in which λlk is the
k factor loading ( = …k K1,2, , ) for the environment 1; ψ it is a diagonal
matrix (l× l) with the specific variances for each environment; and tr is
the trace function. FA models of different orders can be compared based
on the overall percentage of the genetic variance explained by the
factors in the model, or on their AIC (Akaike Information Criterion)
(Bozdogan, 1987) and BIC (Bayesian Information Criterion) (Schwarz,
1978) values. In this study, models from the first (FA1) to sixth orders
(FA6) were compared. Here, the best FA model was selected based on
the AIC values.

The VCOV matrix for the effect of genotypes within environments,
defined by the FAk model is:

= + ⊗G ΛΛ ψ I( ) l
T

where Λ is the matrix l× k of factor loadings λ{ }lk , in which λlk is the kth

factor loading of the ( = …k k1, 2, , ) for the environment l; ψ is a di-
agonal matrix (l × l) with specific variances for each environment; Il is
an identity (l × l) matrix. The genetic correlations between pairs of
environments (ρll′) was calculated via the FA model using the terms of

the above G matrix as = ′ρ COV σ σ/ll ll ll ll
2 2′ ′ , where COVll′ is the genetic

covariance among trials l and ′l ; and σll
2 and σ

l l
2
′ ′ are the genetic var-

iances for the trials l and ′l , respectively. The genetic correlations be-
tween environments were used to infer about the presence or the ab-
sence of G × E. Thus, a high correlation between two environments
correspond to a low G × E, i.e. the genotypes have similar genetic
responses in both environments.

After estimating the variance components and solving the equation
of mixed models, the factor scores for genotypes

∼f( ), i.e. the genotype
effects for each factor, and the factor loadings for environments

∼δ( ), i.e.
the environmental effects for each factor, were obtained as described by
Resende and Thompson (2004).

2.3.3. Yield Stability Analysis Across Environments
Latent regression plots were built for a selected group of 10 geno-

types that expressed the best yield performance in the joint analysis.
These plots can be used to investigate yield adaptability and stability of
genotypes across different environments (Smith and Cullis, 2018). The
predicted breeding values reflect the genotype responses to a factor
loading of a given environment. According to Cullis et al. (2010), for a
meaningful interpretation, environmental factor loadings must be ro-
tated to a principal components solution, maximizing the proportion of
the genetic covariance accounted by for the first rotated factor loading,
while the second rotated factor loading accounts for the next largest
proportion and is orthogonal to the first factor, and so on. For this, the
rotation of the factors was performed via Varimax (Kaiser, 1958).

2.3.4. Correlations with Environmental Covariates
Pearson’s correlation coefficients were estimated between each en-

vironmental covariate and the factor loadings for environments ex-
tracted from the FA analysis. This information is useful to understand
the effect that each covariate has over the genotype performance across
environments, allowing to identify the most likely factors affecting G ×
E in a given set of environments.

3. Results

3.1. Data Description and Single-trial Analyses

The average FBY across trials ranged from 50.73 (Lav.17) to 102.97
t ha-1 (Dou.15), with an overall mean of 71.87 t ha-1 (Table 1). Genetic
variances ranged from 43.06 (SV.13) to 524.54 (Sin.13) across trials
and differed significantly from zero (p<0.05), based on the Likelihood
ratio test (LRT). Considerable heterogeneity of residual variances (σ̂e

2)
was observed, with values ranging from 16.61 (Pla.17) to 217.43
(Sin.13) across trials. Generalized heritability values were high, ranging
from 0.69 (Pel.16) to 0.95 (Pla.16 e Pla.17), while experimental accu-
racy values ranged from medium (0.61, Pel.16) to very high (0.95,
Pla.16 e Pla.17). By contrast, the coefficients of variation (CV%) ranged
from 7.45 (Pla.17) to 17.97% (Sin.13), showing high experimental
precision. Additional information of the individual analyses per trial are
presented in Supplementary Table S1.

3.2. Joint Analysis of Multiple Trials

The results from the MET analysis based on a factor analytic
structure, together with the total number of parameters (NP) and the
values of AIC and REML log-likelihood (logREML) of the fitted models,
considering distinct VCOV structures for the estimated G matrix, are
presented in Table 3. Here, the lowest AIC value was observed for FA(3),
with a total of 99 parameters.

Genetic correlations between environments (Fig. 2) ranged from
-0.21 (Goi.17 and Pel.16) to 0.99 (Lav.13 and Lav.15; Lav.13 and
Pel.16; Lav.15 and Pel.16), indicating the existence of null to high G ×
E between environments. Goiânia in the year 2017 (Goi.17) was the
environment that presented the highest G × E with correlations close to
zero or negative with other locations (Fig. 2), such as CG.16 (-0.07),
NP.15 (-0.11), Pel.16 (-0.21), Pla.16 (-0.01) and Sin.15 (-0.03). The pair
Dou.15 and Sin.14 (-0.02) also presented a negative correlation close to
zero. More than 95% of the genetic correlations between environments
were positive. In this study, genetic correlations above 0.60 were con-
sidered high, indicating the occurrence of low G × E, i.e. the genotypes
exhibited similar FBY between environments. By contrast, pairs of en-
vironments showing low correlation (bellow 0.30), suggest the occur-
rence of high G × E, i.e. the performance of genotypes changed across
environments. Additionally, the genetic correlation between environ-
ments can be used to define mega-environments.

The three factors of the FA(3) model jointly explained 79.03% of the
observed genetic variance. The first factor of this structure captured
35.42% of the genetic variability. The environments Cac.14, CG.16,
Dou.14, Dra.14, Lav.13, Lav.15, NP.15, NP.16, Pel.16, Sin.13, Sin.14,
Sin.15, Sin.16, Sin.17, SL.13, SL.15 and Vil.16 showed the highest
loadings for this first factor (identified marked in bold on Table 4). The
second factor explained 24.07% of the genetic variability, representing
the highest loadings for Dou.15, Lav.16, Lav.17, NP.13, NP.14, Pla.16,
Pla.17 and SL.16. And the third factor explained 19.55% of the genetic
variability, and the environments Goi.15, Goi.17, SL.17 and SV.13 were

Table 3
Total number of parameters (NP), Akaike Information Criterion (AIC) and
REML log-likelihood (logREML) of the variance and covariance (VCOV) models
examined for the estimated G matrix in the combined analysis of environments.

Structure NP AIC logREML

FA(1) 58 3956.56 −1920.28
FA(2) 81 3918.99 −1878.50
FA(3) 99 3910.49 -1856.25
FA(4) 121 3918.62 −1838.31
FA(5) 144 3937.89 −1824.95
FA(6) 165 3945.53 −1807.77

FA(k): factor analytic model of order k.
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represented by this factor.
The location Sinop was mostly described by the first factor for all

experimental years. A similar tendency was noted for Planaltina and
Goiânia, that had all years allocated in the second and third factors,
respectively. A slight tendency was also observed to group locations
evaluated in 2014 in the first factor, which represented four of the five
locations tested in this year.

3.3. Yield Stability Analysis Across Environments

The latent regression plots were built for 10 genotypes that were
evaluated in at least 50% of the locations. These were selected ac-
cording to the highest overall predicted means based on the FA(3)

model, such as proposed by Smith and Cullis (2018). First, latent re-
gressions plots were built for the first factor, regressing the predicted
breeding values on the rotated environmental loadings of factor 1
(Fig. 3.A). Then, for the second factor, the predicted breeding values
were adjusted for the first factor and then regressed on the rotated
environmental loadings of factor 2 (Fig. 3.B), and for the third factor,

the predicted breeding values were adjusted for the second factor and
then regressed on the rotated environmental loadings of factor 3
(Fig. 3.C). In each latent regression plot, the solid circles and hollow
circles correspond to the predicted breeding values of genotypes in
tested and untested locations, respectively. The overall predicted means
obtained by the FA(3) structure ranged from 37.71 t ha-1 (T_03, which
corresponds to the check BRS655) to 84.38 t ha-1 (H_30, hybrid), with
an overall mean of 72.00 t ha-1. Additionally, the overall predicted
means for the 10 highest and 10 smallest yielding genotypes, and their
respective factor scores from the FA(3) structure, are presented in the
supplementary Tables S2 and S3, respectively.

In the latent regression plots for the factors 1, 2 and 3 (Fig. 3), the
slope of the regression line (β₁) corresponds to the genotype score of the
respective factor. Thus, genotypes showing high and positive slopes are
more responsive to environmental improvements, i.e. exhibited higher
predicted breeding values in environments having higher factor load-
ings, meaning that they were more adapted to these environments. For
example, among all environments, NP.15 (15.40), Lav.15 (13.45),
Sin.13 (13.00), Sin.16 (12.26), Sin.17 (11.99) and Sin.15 (11.60)

Fig. 2. Estimated pairwise genetic correlations for FBY between 13 environments: Cac: Cáceres-MT; CG: Campos dos Goytacazes-RJ; Dou: Dourados-MS; Dra:
Dracena-SP; Goi: Goiânia-GO; Lav: Lavras-MG; NP: Nova Porteirinha-MG; Pel: Pelotas-RS; Pla: Planaltina-DF; SV: Santa Vitória-MG; SL: Sete Lagoas-MG; Sin: Sinop-
MT; Vil: Vilhena-RO. Evaluated in the years 2013 to 2017, which were coded as 13 to 17. The size and color of the circles are related to the magnitude and direction
of the genetic correlations between environments, respectively.
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presented the highest loadings for the first factor (Table 4 and Fig. 3).
Thus, the hybrids H_07 (β₁ = 2.10) and H_09 (β₁ = 1.72) can be
identified as the more responsive genotypes for these environments,
because they present a higher angular coefficient. On the other hand,
slopes close to zero are observed for genotypes with yield stability
across the set of environments, i.e. even with an improvement of the
environment the genotype presents yield stability. For example, the
hybrids H_26 and H_28 did not respond to the environmental changes,
i.e. showed stable performance across environments.

For the second factor, SL.16 (12.18), NP.13 (10.43), NP.15 (9.80),
Dou.15 (9.43) and Lav.16 (9.25) showed the highest environmental
loadings (Table 4 and Fig. 3). The latent regression plots on the second
factor highlighted the hybrids H_07 (β₁ = 1.92), H_26 (β₁ = 2.10),
H_29 (β₁ = 2.41) and H_38 (β₁ = 2.39) as more responsive genotypes
to these environments.

For the third factor, the environments SL.17 (-9.50), Goi.17 (-7.91)
and Sin.14 (-7.10) showed the highest loadings, but with negative va-
lues (Table 4 and Fig. 3). The latent regression plots highlighted the
hybrid H_26 (β₁ = -2.76), H_28 (β₁ = -2.96), and T_04 (β₁ = -1.87) as
the genotypes of higher score, but in an opposite sense, i.e. a decrease in
genotype performance with an increase in the environmental loadings.
Only hybrid H_07 (β₁ = 0.40) showed a positive value for this factor,
but in a low degree, indicating that it is the most stable genotype across
environments clustered in the factor 3. Additionally, Figs. 3B and 3C
also show changes from downward to upward direction for the geno-
types H_26, H_28 and T_04 indicating a positive response of these hy-
brids to the environmental loadings of the second factor, and from
upward to downward showing a negative response of these hybrids to
third factor environmental loadings.

Table 5 presents the 10 hybrids exhibiting the highest overall pre-
dicted means, which were evaluated in at least 50% of the locations.
The hybrid H_30 showed the highest predicted breeding value among
all the evaluated genotypes for all environments. Among the most

productive materials, the hybrid H_07 can be highlighted as a highly
adapted genotype across environments represented by the first and the
second factors, and as a stable genotype across the environments re-
presented by the third factor.

3.4. Correlation with environmental covariates

In Table 6, the Pearson’s correlation coefficients between the en-
vironmental loadings and the environmental covariates are presented
for the three factors of the FA(3) structure. This information is useful to
understand the effect of each environmental covariate in the genotype’s
performance across environments, allowing to identify the most likely
factors affecting G × E in a given set of environments. Based on these
correlations, we can identify that the covariates of precipitation,
minimum temperature and wind speed affected the genotypes perfor-
mance in the environments clustered by factor 1 (highlighted in bold in
Table 6). On the other hand, the main covariates affecting FBY in the
environments clustered by factor 2 were altitude, minimum tempera-
ture and solar radiation. Finally, the environments clustered by the
third factor were mostly affected by crop growth cycle duration, ex-
pressed here as the number of days from planting to harvesting.

4. Discussion

The Embrapa’s biomass sorghum breeding program constantly seeks
for more productivity, adaptability and stability for a wide range of
environments. In this sense, multi-environment trials (MET) are an-
nually executed to evaluate yield performance of genotypes in different
environments, distributed across Brazil, to cover distinct regions and
edaphoclimatic conditions of interest. The release of new cultivars only
occurs when they present specific features that prove their desirable
performance for a given geographic region, highlighting the importance
of MET studies in breeding programs.

Factor analytic (FA) structures fitted within the linear mixed model
framework have emerged as a flexible and robust approach for mod-
eling genetic variance-covariance matrices, being more parsimonious
for MET analyses than unstructured models (Smith et al., 2001a). Ad-
ditionally, mixed models show great flexibility to deal with unbalanced
data, which is extremely important for breeding programs since low-
performance genotypes are often replaced by newly developed mate-
rials over the years. G × E studies have been widely implemented using
FA structures to understand the adaptability and stability of genotypes
across environments (Dias et al., 2018a; Li et al., 2017; Peixouto et al.,
2016), and also to define mega-environments in plant breeding pro-
grams (Monteverde et al., 2018; Smith et al., 2015; Smith and Cullis,
2018). However, few studies have used FA models to infer about the
main factors affecting G × E in crop species, as done here. Additionally,
to our knowledge, this is the first study that explores the correlations
between environmental covariates and FA loadings to investigate the
potential factors affecting G × E for FBY in biomass sorghum. This
information can help breeders to recommend genotypes for a given set
of environments based on historical series of climatic data, as well as to
optimize the number of environments tested in late-stage trials, prior-
itizing environments with different edaphoclimatic conditions and,
consequently, expected genotypes response.

Smith et al. (2015) proposed the use of latent regression plots to
study yield stability and adaptability of genotypes across environments.
In their approach, the predicted breeding values of genotypes are re-
gressed on the environmental factor loadings of the FA model. In the
present study, factor analysis and latent regression plots allowed
identifying genotypes adapted to different environments, such as the
hybrid H_48 that presented better performance according to the en-
vironmental improvements, i.e. higher adaptability (1.75, 1.41 and
1.21 for factor 1, 2 and 3, respectively, data not shown). However, the
predicted breeding values of this genotype was close to the average
genotype performance within environments. By contrast, the hybrid

Table 4
Environmental loadings for the factor analytic model of order three, i.e. three
factors [FA(3)].

Environments Factors

Factor 1 Factor 2 Factor 3

Cac.14 4.95 −0.90 −2.32
CG.16 7.71 2.00 0.17
Dou.14 8.83 3.10 −6.81
Dou.15 1.87 9.44 −0.37
Dra.14 7.21 1.75 −1.39
Goi.15 4.40 5.13 -5.32
Goi.17 −0.75 0.65 -7.91
Lav.13 8.70 2.56 −1.97
Lav.15 13.45 3.07 −3.67
Lav.16 0.05 9.23 −3.53
Lav.17 4.02 7.32 −0.97
NP.13 3.04 10.40 −6.37
NP.14 4.34 6.23 −4.11
NP.15 15.40 9.80 2.10
NP.16 7.96 6.23 −6.04
Pel.16 5.23 2.71 1.49
Pla.16 5.75 7.51 0.21
Pla.17 4.40 7.33 −0.11
Sin.13 13.00 5.78 −4.29
Sin.14 8.26 −2.11 −7.10
Sin.15 11.60 4.56 −0.17
Sin.16 12.27 3.31 −3.02
Sin.17 11.99 3.15 −1.69
SL.13 8.23 6.74 −1.55
SL.15 8.89 6.36 −5.18
SL.16 1.16 12.18 −5.85
SL.17 2.96 7.82 -9.50
SV.13 1.58 2.91 -6.13
Vil.16 6.70 6.11 −0.24
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Fig. 3. Latent regression plots for the best 10 genotypes grown in at least 50% of the locations using: A) First factor; B) Second factor; and C) Third factor. The solid
circles correspond to predicted breeding values of genotypes in tested locations, and the hollow circles to predicted breeding values of genotypes in untested
locations. The solid red line and the gray shade correspond to the latent regression line and to the confidence interval of 95%, respectively. The values within
parenthesis in the label of x axis correspond to the proportion of the genetic variance explained by each factor.
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H_07 presented a high and positive response to the environments
clustered in the first and the second factors, with a slight stability over
the environments clustered in the third factor, besides presenting one of
the highest predicted means for all environments. In breeding pro-
grams, high-yielding stable hybrids are very desired. Additionally, la-
tent regression plots also allowed selecting, among the best 10 geno-
types, those specifically adapted to a given set of environments.
Moreover, it was also possible to select genotypes showing yield sta-
bility across some environments, such as the hybrids H_26 and H_28 to
the environments allocated in the first factor, and H_65 to all other
environments.

Moreover, based on the latent regression plots, the hybrids H_20,
H_30, and T_04 were the most responsive high-yielding genotypes to the
environmental loadings for all factors. Interestingly, the T_04 is an
Embrapa’s biomass sorghum commercial hybrid, BRS716, released in
2014. This hybrid is recommended for cultivation in a wide range of
Brazilian regions, mainly in the Southeast and Central-West regions,
being able to reach FBY of up to 150 t ha-1, much higher than the
Brazilian overall average of 70 t ha-1 for biomass sorghum.

Overall low productivities were observed for the checks T_01 and
T_02 (Table S3), which correspond to cultivars commercially released
in Brazil by two distinct private companies as biomass and forage hy-
brids, respectively. Another of Embrapa’s check, the hybrid T_03 (BRS
655), also presented an overall low FBY. However, BRS 655 is a pho-
toperiod insensitive forage sorghum cultivar, explaining this low FBY
(approximately 55.00 t ha-1). The above-mentioned genotypes ex-
hibited the three lowest overall predicted means (Table S3). Moreover,
these hybrids did not show adaptability to any of the environments,
except T_03 that showed adaptability to the environments clustered by
the third factor.

Although factor analysis allowed for an efficient identification of
hybrids exhibiting adaptability to a given environment, as well as hy-
brids showing yield stability across a set of environments, no clear

patterns were observed to cluster locations in mega-environments.
However, high genetic correlations were observed among some en-
vironments, suggesting that the evaluated hybrids exhibited very si-
milar genetic responses across them. For example, Campos dos
Goytacazes (CG), Dracena (Dra), Nova Porteirinha (NP), Pelotas (Pel),
Santa Vitória (SV) and Vilhena (Vil) exhibited higher pairwise genetic
correlations to most of the other environments, mainly to the en-
vironments clustered in the same factor. These locations can be dropped
from future evaluations, optimizing the resources to evaluate other
untested (or poorly tested) geographic regions in Brazil.

Furthermore, the FA structures considered in the present study can
be easily extended to incorporate genomic relationship matrices, which
are used to predict the performance of untested genotypes across en-
vironments via MET genomic selection (MET-GS) models. This is an
interesting approach to accelerate the genetic gains in biomass sorghum
breeding programs in the future. Several studies have been focused on
the prediction of untested genotypes, such as Burgueño et al. (2012),
Dias et al. (2018b) and Dias et al. (2020). These authors presented in-
teresting results about the accuracy of MET-GS models to predict un-
tested genotypes across all environments, or genotypes tested in some
locations but not in others, based on the genetic relationship among
tested and untested genotypes. MET-GS models provided better ac-
curacies when predicting the performance of genotypes within corre-
lated environments.

Latent regression plots allowed studying genotype performance
across different environments, showing their responses to varying en-
vironmental covariates. According to Smith et al. (2015), environ-
mental loadings are difficult to interpret, being more consistent when
environmental covariates are included with the FA structure. Thus, the
FA structure considered in the present study were extended to include
some edaphoclimatic covariates, and showed that minimum tempera-
ture, solar radiation, precipitation, wind speed, crop growth cycle
duration and altitude were affecting the genotypes response within
environments clustered by different factors. Habyarimana (2004) and
Olson et al. (2012), report that the accumulation of biomass in sorghum
is directly influenced by the availability of water, crop growth cycle
duration, temperatures and photoperiod, which is an indication of the
importance of these environmental covariates for the biomass sorghum.

In this study, the correlations between some environmental cov-
ariates and the environmental loadings extracted from the factor ana-
lysis were used to explain the possible factors affecting G × E, such as
proposed by Sae-Lim et al. (2014). The correlations between the en-
vironmental loadings and the environmental covariates were con-
sidered low (0.01) to moderate (0.45). In general, the minimum tem-
perature was the environmental covariate that explained the most
genetic variability of FBY across environments. It is also important to
highlight that minimum temperature presented high correlations to
factors 1 and 2, but in opposite directions, affecting the adaptability
and stability of genotypes across the environments clustered by these
factors. These results are in agreement with the findings of previous
studies in sorghum. For example, House (1985) and Bantilan et al.
(2004) showed that low temperatures reduce the growth rate in sor-
ghum, increasing the crop growth cycle duration and, consequently,
decreasing biomass yield. Moreover, Reddy and Patil (2015) reported
an increase in tillering when sorghum genotypes are exposed to low
temperatures, which is valued by breeders since these are directly
linked to the increased biomass production (Murray et al., 2008). On
the other hand, the maximum temperature presented low correlations
with all factors, showing less influence on the genotypes performance
across environments. Additionally, precipitation was the covariate that
affected the most the classification of environments by the first factor,
showing a low correlation with the other factors. The same was ob-
served for solar radiation in the second factor, and for crop growth
cycle duration in the third factor.

These results suggest that genotypes adapted to the majority of
environments, such as H_07, presented a high genetic response to

Table 5
Rank of the best 10 genotypes evaluated in at least 50% of the environments,
based on their overall predicted means (Means); the slope (genotype score) of
the latent regression lines for the first (Factor 1), the second (Factor 2) and the
third (Factor 3) factors.

Hybrids Means Factor 1 Factor 2 Factor 3

H_07 80.32 2.10 1.92 0.40
H_09 80.19 1.72 0.98 −1.10
H_20 80.59 1.39 1.40 −1.40
H_26 80.72 0.10 2.10 −2.76
H_28 82.38 0.25 1.96 −2.96
H_29 79.57 0.63 2.41 −1.39
H_30 84.38 1.46 1.61 −1.26
H_38 80.95 1.15 2.39 −1.10
H_51 79.93 1.54 1.36 −1.03
T_04 81.11 1.28 1.34 −1.87

Table 6
Pearson’s correlation coefficient between the environmental covariates and the
environmental loadings extracted from the factor analysis. The highest corre-
lations between environmental covariates and the environmental loadings of
FA(3) model are highlighted in bold.

Covariate Factor 1 Factor 2 Factor 3

Precipitation 0.362 0.094 −0.009
Maximum Temperature 0.083 0.044 −0.012
Minimum Temperature 0.353 -0.391 0.199
Average Temperature 0.252 −0.193 0.102
Solar Radiation 0.024 0.305 −0.107
Crop’s Growth Cycle 0.130 0.069 -0.221
Humidity 0.175 −0.279 0.076
Wind Speed -0.390 0.250 0.051
Altitude −0.237 0.454 −0.254
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environments clustered by factors 1 and 2 (i.e. 25 environments) and,
consequently, were more affected by changes in minimum temperature.
By contrast, H_26 and H_28 presented high scores for factors 2 and 3,
suggesting that they were more responsive to changes in minimum
temperature, solar radiation, altitude, and crop growth cycle duration.
In addition to the minimum temperature, genotypes more adapted to
the environments clustered by factor 1 should also be more sensitive to
changes in other covariates also expressing moderate correlation to the
environmental loadings of factor 1, such as, precipitation and wind
speed. In this sense, genotypes adapted to a given set of environments
are more affected by variations in the environmental covariates
showing moderate to high correlations to factors exhibiting high
loadings for these environments.

Therefore, this study shows that the edaphoclimatic covariates can
be used successfully to investigate the environmental factors that affect
the genotypes response across distinct environments, helping breeders
to identify the most suitable hybrids according to the environmental
features, as well as stable hybrids to some adverse environmental
conditions.

5. Conclusion

Despite the presence of high G × E, high genetic correlations were
found between some environments, suggesting that some locations can
be dropped and, in order to optimize resources, replaced by new sites
representing geographic regions not yet tested in late-stage trials. The
hybrids H_07, H_20, H_26 and H_29 stood out for their high FBY and for
the best response to the environmental improvements, showing
adaptability across the evaluated environments, and stability to some
specific environments. The use of environmental covariates, such as
minimum temperature, altitude and solar radiation, can help breeders
in the study and selection of genotypes showing high adaptability and
stability across environments, considering the information of current
environmental features, without the need of extensive field evaluations.
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