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ABSTRACT: Notwithstanding the importance of soil surveys, advances in digital soil 
mapping have mainly focused on mapping soil attributes or properties rather than 
developing digital maps of soil units or soil classes. The purpose of this research was 
to develop digital soil unit maps based on primary soil data collection in areas without 
previously collected soil information. The covariate variability, the random effect across the 
data subset and the map outputs were the focuses of this study. We used five datasets with 
four models (Random Forest - RF, Gradient Boosted Machine - GBM, C5.0, and multinomial 
log-linear model - MLR). The covariates were grouped into five datasets, where four were 
grouped by Region Of Interest per Class (ROIC) and one was not grouped by ROIC. To 
evaluate the random effect to split the dataset, we ran each model 50 times and observed 
the overall accuracy (OA) and kappa index, and uncertainty, majority and variety maps. 
The OA of Dataset01 to 04 was lower than to Dataset05 accuracy. However, map outputs of 
RF and GBM for Dataset01 and Dataset05 had the same majority prediction. It seems that 
RF and GBM produce consistent results in map outputs according to this methodology and 
pedologist expertise. To evaluate the uncertainty and the consistency of soil unit prediction, 
we used the majority maps process. Random Forest, similar to GBM, presented the best 
results. The increase in the number of covariates was not a guarantee of improvement in 
the OA or in the quality of the map output. Geographic position and distance raster did not 
improve the map output according to expert evaluation. Because the variance between 
the ROICs, when the training and validation datasets were split based on it, the subsets 
are quite different in relation to the covariates, and this is the reason for the worse results 
of this model, comparing with the Dataset05. On the other hand, when considering one 
complete dataset not based on ROICs, the variance of training and validation subsets is 
lower and produced more accurate parameters of quality. 
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INTRODUCTION
Soil surveys are an important tool to understand the environment and make better 
decisions on soil management. The methods used to produce soil class maps differ 
between conventional and digital approaches. Digital soil mapping (DSM) has become 
popular for producing maps of soil classes and properties based on spatial data from 
soil inventories and auxiliary landscape spatial data (McBratney et al., 2003), bridging 
gaps between discrete soil maps and the continuous nature of soil cover (Burrough et al., 
1997). Digital soil mapping techniques, in which both soil classification and mapping are 
handled numerically, can represent a formalized alternative to conventional soil mapping.

To develop knowledge regarding the detailed spatial distribution of soils, the employment 
of DSM techniques to add value to traditional soil maps is increasing (McBratney et al., 
2003). This development is based on advances in geographic information systems, 
computer data processing, and available global landscape data. Digital soil mapping 
techniques are analogous to conventional methods modeling the relationship between 
soil properties or classes and environmental variables or covariables (auxiliary landscape 
data) by spatial statistics or geostatistics approaches (Camera et al., 2017). However, 
pedological tacit knowledge remains a key factor in building models that generate both 
statistically and pedologically sound outputs (Kempen et al., 2009) and is included in 
almost all steps of digital soil mapping.

Terrain attributes influence soil genesis and, consequently, soil type distribution 
(Gruber et al., 2017). Furthermore, the set of environmental covariates can be enriched 
by using remotely sensed data from spectral sensors in the DSM approach. The correlation 
between soil information and environmental variables provides the basis for constructing 
the DSM dataset for soil property or soil class studies.

Accordingly, a search in the journals Geoderma, Regional Geoderma, Catena, and 
Pedosphere for the keywords ‘digital soil mapping’ in the last five years shows 229 responses; 
78 % of the articles are about mapping soil properties or attributes, while only 22 % are 
concerned with soil class or soil unit mapping. The majority of articles concerned with 
soil class mapping used secondary data from preexisting soil surveys or disaggregation 
of map unit polygons. None of the articles discuss creating a soil unit map from primary 
data in areas where there is no high-resolution soil information, despite the importance 
of such maps to environmental knowledge and conservation. The lack of this type of 
study supports the idea that more effort must be made to perform digital soil class 
mapping to fill this gap.

Data-driven models require the use of machine learning, which is a datamining process, 
to optimize pattern recognition from large datasets using training models. The process 
of ‘training’ a model is described as a type of ‘learning’, where ‘machine learning’ 
can be defined as the process of identifying the relationships between predictor and 
response variables (the training dataset) by using computer-based statistical approaches 
(Witten and Frank, 2005; Hastie et al., 2009). Digital soil mapping techniques use 
‘machine learning’ processes to identify the relationships between soil information and 
environmental variables.

Camera et al. (2017) studied soil class distribution in Cyprus based on a conventional 
preexisting soil survey database, investigating the optimal number of training points by 
using Random Forest (RF) and Multinomial Logistic Regression (MLR) models, and they 
concluded that RF had better performance in topographically and pedologically complex 
regions when compared with regression models. Heung et al. (2016) used a conventional 
soil survey to collect training and validation samples to evaluate a variety of datamining 
models and concluded that different algorithms resulted in drastically different outputs; 
however, RF usage in DSM appears to be more promising than other techniques.
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Teske et al. (2015), by using data from preexisting soil surveys, inferred that the 
sample design and the method of accuracy evaluation can affect the model predictor 
selection. Heung et al. (2017) used a training dataset derived from soil pits and soil 
survey polygons to compare two types of machine learners, concluding that the RF 
model performed the best overall accuracy. Pásztor et al. (2018) used legacy soil 
information to compile a new soil map in Hungary by sequential classification methods 
(segmentation, classification trees, RF, and artificial neural networks) and obtained 
an overall accuracy of 70 %.

Adhikari et al. (2014) constructed a soil map in Denmark by applying a decision tree-
based model, and more than 1170 soil profiles and 17 environmental covariables were 
used as input covariates. A total of 20 % of the dataset was used for validation, and the 
overall accuracy ranged from 60 to 76 % when considering the prediction accuracy of 
similar groups.

The main goals of this study were to evaluate the random effect of data splitting in 
developing digital soil unit maps of hillslope areas based on primary soil data collection 
and to propose a default procedure to reduce the random effect of data splitting. 
Specific objectives of this study were (i) to analyze the covariate variability between 
the Region Of Interest per Class (ROIC) around the ground control points (GCPs) used 
as the input dataset; (ii) to investigate the effect of randomly selecting ROIC samples 
and single samples used as training and validation soil data; and (iii) to evaluate five 
different input dataset combinations based on terrain attributes, geographic position, 
and distance rasters (spatial dependency), as well as four different models of machine 
learning (RF, Gradient Boosted Machine - GBM, C5.0, and MLR) applied in the digital 
mapping of soil units.

MATERIALS AND METHODS

Study area

Bonfim Watershed is located in Rio de Janeiro State, between 22.4–22.5° S and 43.4–43.8° W 
(Figure 1). The total area of the watershed is 3,030 hectares. The watershed is in the 
west side of a wide mountain chain regionally known as Serra do Mar. The altitude ranges 
from 675 to 2,260 m, and the mean elevation is 1,324 m. The average slope is 62 %, 
with a 33 % standard deviation, and the lithology comprises mainly granite and gneiss 
rocks (Silva and Cunha, 2001; Leite et al., 2004). The production of vegetables to supply 
nearby consumer centers is the main agricultural activity. The topographic conditions of 
the watershed make it difficult to access all areas to sample soils.

Soil variability in the region is exceptionally high due to the influence of geomorphology 
(valleys, steep slopes, and high elevation) and parental material (granite and gneiss). 
Rock outcrops are common and were identified from a previously available land use 
land cover (LULC) map. The soil taxonomic classification was based on the SiBCS - 
Brazilian Soil Classification System (Santos et al., 2018) and applied to the ground control 
points (GCPs). In the study area, we observed Cambissolos (Inceptisols - moderately 
developed soils), Latossolos Amarelos and Vermelho-Amarelos (Oxisols - soils with high 
content of kaolinite and oxides), Neossolos Litólicos (Lithicsols - soils that are thin or 
with many coarse fragments) and rocks outcrops (RckO). The soil units are composed 
of these soil classes.

Soil dataset

We used primary soil information from soil profiles of 75 ground control points (GCPs) 
defined by conditioned Latin hypercube sampling (Minasny and McBratney, 2007) taking 
account the elevation, total insolation, slope, and general curvature. These 75 ground 
control points (GCPs) were observed and/or sampled. This dataset allowed the definition 



Carvalho Junior et al. Sample design effects on soil unit prediction with machine: randomness...

4Rev Bras Cienc Solo 2020;44:e0190120

of eight map units based on the second level of SiBCS (Santos et al., 2018) and the 
complexity of each unit. The soil units defined are CXbd (Cambissolos Háplicos Tb 
Distróficos - Inceptisols), LAd (Latossolo Amarelo Distrófico - Oxisols), LVAd [Latossolo 
Vermelho-Amarelo Distrófico, which corresponds to a Rhodic Ferralsol/Oxisols)], RLd 
(Neossolo Litólico Distrófico - Lithicsols) and the units that represent associations between 
RLd and RckO (RLd+RcKO) and RLd, CXbd and RcKO (RLd+CXbd+RckO). The units RckO 
and Urban Areas (Urb) were identified from previously available LULC maps and were 
superimposed on the maps resulting from the applied computational methods.

Simultaneously, in the fieldwork, using the pedologist expertise, were defined 75 irregular 
polygons (areas) around the GCPs that represent the observed soil unit. These polygons, 
called ROICs, help to improve and enlarge the soil dataset based on 75 profiles. The 
ROICs are regions chosen to represent a class. These 75 ROICs allowed us to obtain a 
total of surrounding 1,844 individual samples to train and validate the models based on 
a 10 m spatial resolution grid. Table 1 shows the distribution of the ROICs and individual 
samples per soil unit. To avoid an imbalance of samples, approximately 300 samples 
were established per soil unit.

The ROIC definitions are pedologically dependent and defined through fieldwork, and 
it is very important step to begin the data-driven process. It was done by the team of 
pedologists who worked in the area. The implementation of the ROICs was through 
geoprocessing in SagaGIS (Conrad et al., 2015) with the help of the orthophoto and 
covariates (elevation, slope, and curvature) observed around the GCPs and defining the 
region that represents each GCP (Figure 2) to compose the dataset.
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Figure 1. The location of Bonfim watershed and Ground Control Points over an orthophoto and 
its location in South America, Brazil, and Rio de Janeiro State.
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Environmental covariates

Thirty-one environmental variables (Table 2) were derived from an acquired 10 m spatial 
resolution digital elevation model (DEM) to create the dataset using SagaGIS software 
(Conrad et al., 2015). The covariates derived from the DEM are those most commonly used 
by DSM users (Calderano Filho et al., 2014; Carvalho Junior et al., 2014; Bhering et al., 
2016; Chagas et al., 2016; Camera et al., 2017; Gruber et al., 2017; Heung et al., 2017).

Covariates also included were point coordinates X and Y (in meters), as well as 16 rasters 
of distance calculated from 16 different points, spread regularly over the study area. 
These 16 rasters were named ‘dist_xn’, where ‘n’ varies from 1 to 16 (Table 2) and, 
together with the X and Y positions, represent a test to verify whether there were spatial 
dependencies in the soil dataset.
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Figure 2. Spatial distribution of point samples in ROICs around the GCPs over the DEM hillshade, 
in which CXbd: Inceptisols; LAd and LVAd: Oxisols; RLd and RLdh: Lithicsols. 

Table 1. Distribution of ROICs and samples by soil unit

Soil Unit Number of ROICs(1) Number of single samples
CXbd (Cambisols) 15 317
LAd (Xanthic Ferralsol) 10 307
LVAd (Rhodic Ferralsol) 23 300
RLd (Dystric Leptosols) 09 312
RLd+RckO(2) 10 303
RLd+CXbd+RckO 08 305

(1) ROICs: regions of interest per class. (2) RckO: rock outcrops
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Thus, the covariates were organized into five different datasets combining the DEM derived, 
the position and distance covariates, with the 1,844 samples composed of i) Dataset01 – 
the 27 DEM-derived attributes grouped by ROICs; ii) Dataset02 – Dataset01 plus the Y 
coordinate with 28 covariates grouped by ROICs; iii) Dataset03 – Dataset01 plus 11 distance 
rasters with 38 covariates grouped by ROICs; iv) Dataset04 – all the covariates with 
39 covariates grouped by ROICs; and v) Dataset05 – Dataset01 with a single dataset 
for each soil unit (the default in the majority of studies), aggregating all the ROICs 
with 1,844 samples, but without grouping by ROIC with the 27 DEM-derived attributes 
(Table 1 in the single samples).

Computational operation and methods

The five datasets were run through models in R (www.r-project.org) to apply the 
computational procedures of machine learning. The packages and models used were 
randomForest (Liaw and Wiener, 2018), generalized boosted model – ‘gbm’ (Ridgeway, 
2017), C5.0 (Kuhn, 2017), and nnet (Ripley and Venables, 2016) to a multinomial log-linear 
model called ‘multinom’, and these are referred to as RF, GBM, C50, and MLR, respectively. 
The first three models are based on decision trees, and all models were tested for 
all datasets.

The RF is a classifier consisting of a collection of tree structured classifiers in which the 
random vector is independent identically distributed and each tree casts a unit vote for 
the most popular class at input x. In addition, it is very user-friendly in the sense that it 
has only two parameters (the number of variables in the random subset at each node 
and the number of trees in the forest), and is usually not very sensitive to their values 
(Liaw and Wiener, 2002).

Friedman (2001) developed a new approach called gradient boosting (GBM). The 
performance of such method is improved, and the overfitting is reduced by the introduction 
of randomness and by stochastic gradient boosting, and each decision tree is constructed 
by taking a random subsample of the training dataset (Friedman, 2002). The aim of the 
GBM is to improve the model performance by combining a large number of simple trees, 
i.e., the final outcome is a collection of weak learners. The model fit over different trees 
is improved by considering the previous learners and by emphasizing those observations 
incorrectly classified. 

Table 2. Covariates derived from a 10 m DEM, from the distances calculation and the geographic 
position and its representation

Covariate Representation

Elevation; aspect; slope; plan curvature; profile curvature; 
curvature classification; general curvature; maximal curvature; 
minimal curvature; standardized height; tangential curvature; 
total curvature; cross sectional curvature; longitudinal curvature

Local scale morphometry

Multi-resolution ridge top flatness index; multi-resolution 
valley bottom flatness index; mid slope position; normalized 
height; slope height; valley depth; euclidian distance to rivers; 
topographic position index

Landscape scale 
morphometry

slope length factor; flow accumulation; flow direction; flow line 
curvature; topographic wetness index; terrain ruggedness index Hydrologic characteristics

Diffuse insolation; total insolation; direct insolation Landscape exposure

dist_x1 to dist_x16 Spatial dependence

UTM coordinates X and Y Geographic position

http://www.r-project.org
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C5.0 is a decision tree algorithm, and it is the improved version of the C4.5 algorithm. The 
boosting feature of C5.0 helps improve the accuracy of the model (Emre et al., 2019). The 
C50 is a large decision tree and gives the acknowledge of noise and missing data. The 
C50 algorithm solves the problem of over fitting and error pruning. In the classification 
technique, the C50 classifier can anticipate which attributes are relevant and which are 
not relevant in classification (Pandya and Pandya, 2015).

The MLR is a multinomial log-linear model that was an improved version of logistic 
regression that incorporates an artificial neural network approach for parameter 
optimization (Sim et al., 2018).

Covariates with high correlation (Pearson correlation > +0.95 or < -0.95) were excluded 
from the dataset to decrease multicollinearity between them. Between two high correlated 
covariates, we used to exclude the one with bigger sum of Pearson correlations. These 
constraints reduced the number of covariates and facilitated the routine in R.

The operational methods included splitting the samples between training (60 %) and 
validation (40 %) subsets grouping by ROIC identifiers, where all the samples from 
one ROIC could be used for validation or training purposes with Dataset01, Dataset02, 
Dataset03, and Dataset04. This allowed us to analyze the variance between and 
within the ROICs to verify whether the variance was greater. Considering that the 
ROICs do not have the same area and consequently different numbers of cells, the 
validation and training datasets varied the number of total samples when a random 
routine session was performed. On the other hand, in Dataset05, the default method 
without grouping by ROICs (a single dataset) the amount of samples for training 
and validation (60 and 40 %, respectively) was constant, respectively 1,106 and 
738 samples. To evaluate the random effect of splitting the data into validation and 
training, and calculate the uncertainty, the models were performed 50 times with 
50 random subsets for training and validation, and the statistical results and output 
maps were recorded.

The evaluation of the models was based on the mean overall accuracy (OA) and mean 
kappa index (kappa) (Rossiter, 2008; Rossiter et al., 2017) of the 50 repetitions. The OA 
was obtained from the confusion matrix and represents the total success classification 
of the model when applied to the validation subset. Kappa is an association measure 
used to describe the concordance level of the map unit prediction (Wolski et al., 2017) 
over the validation subset.

Each random repetition of the models generated a map. The 50 maps for each model 
and dataset were layer stacked, and cell statistics were calculated using ArcGIS (ESRI). 
To examine the map results from each model, the ‘Composite Bands’ tool was used to 
perform the layer stack of the maps, followed by a local analysis tool ‘Cell Statistics’ to 
obtain the variety (how many classes were predicted by pixel) and majority (the prediction 
that occurred most often by pixel). We calculated the frequency of the majority class 
prediction (‘Equal Frequency’ tool) and the uncertainty of the prediction by the formula 
in ‘Raster Calculator’:

U = 1 – MAJFREQ / n

in which U is the uncertainty; MAJFREQ is the frequency of the prediction that occurs 
most often; and n is the number of repetitions.

The uncertainty ranges from 0 to 1 and represents a synthesis of the variability of cell 
prediction, with higher values identify points that require more sampling and the prediction 
is less reliable. The uncertainty was classified as low (≤0.2), medium (0.2< uncertainty 
≤0.4), high (0.4< uncertainty ≤0.6), and very high (>0.6) and was quantified by the 
number of cells. To improve the evaluation of the output maps, we used the mean value 
of the uncertainty for all areas. The majority map led to the creation of a digital soil unit 
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map that represents the most frequently predicted soil unit distribution according to the 
50 repetitions of the models.

The maps of the majority soil unit distribution were used to represent the soil distribution 
of the area (for each model and dataset) and were evaluated statistically and by 
pedologist expertise.

Workflow

Pedological expertise remains a key factor in building DSM models (Kempen et al., 2009). 
The workflow diagram (Figure 3) highlights the importance of pedologists in conducting 
the analysis. Only the machine learning model step does not require pedological expertise. 
The entire process, except the machine learning process described above, is dependent 
on pedological expertise. We can verify that part of the process is data-driven (machine 
learning) and part is knowledge-driven (dependent on pedological expertise).

Pedology expertise is needed to assemble legacy data. Planning the sample design 
is the first step, followed by fieldwork to collect primary soil information and define 
the ROICs. After the analytical results and final soil classification of the GCPs, the soil 
map units were defined, and the ROIC database was created in the GIS environment 
through polygons/regions around the GCPs that represent each soil map unit. The 
covariates created for the entire area were extracted to the ROICs, and a database was 
built and transformed into a data frame in the R environment to apply the machine 
learning models.

The machine learning step is a routine that does not depend on pedologist expertise, 
wherein all the procedures are automatically performed by a script that performs the 
random selection of training and validation subsets, executes the training over the subset 
to four models, applies the models over the validation subset, and finally calculates the 
OA, kappa, and the predicted map at every loop (50 iterations).

The evaluation of statistics and output maps considers the mean OA and kappa of 
the models, the predicted map statistics of variety, the majority and uncertainty, and 
pedological expertise.

RESULTS 
The urban areas and rock outcrops (units Urb and RckO, respectively) obtained from 
the previously available LULC map were superimposed on the soil unit maps achieved 
from the applied computational methods and represented 1.8 and 33 % of the total 
area, respectively.

• Assemble Legal data
• Sample Design
• Primary data collection

Definition of:
• Covariates
• Soil map units

• Statistics
• Models
• Random subsets for
validation and training

Office and
field work

ROIC database
creation/adjustment

Machine learning with
50 repetitions by

model and dataset

Pedology expertise needed
No pedologist expertise needed

Evaluation of
statistics and
output maps

Final maps
and

report

Figure 3. Flow chart summarizing the methodology used in the study.
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In the process of reducing the covariates with high correlation, ten covariates 
were discarded remaining in the final dataset 39 covariates. Figure 4 shows these 
correlations and the eliminated covariates. Dataset01 and Dataset05 used 27 covariates, 
Dataset02 used 28, Dataset03 used 38, and Dataset04 remains with 39 covariates.

The input Dataset01 to Dataset04 were split into training (60 %) and validation (40 %)
sets grouped by ROICs because we realized that in each ROIC, the variance of the 
covariate was lower than between ROICs. In figure 5, the boxplot of covariates ‘aspect’ 
and ‘elevation’ to soil units CXbd, RLd+RckO, and RLd+CXbd+RckO shows the differences 
between ROICs and the single dataset (Dataset05). It is possible to verify the variability 
of the covariates to the same soil unit in the function of the ROICs.

The OA presents mean values between 0.34 and 0.62 when the dataset is grouped by 
ROIC and between 0.69 and 0.97 for Dataset05 (Figure 6a). Although the OA values are 
greater when using Dataset05, we can compare its majority map output against the 
majority map produced by Dataset01 because the covariates are the same; however, 
the method of splitting into training and validation subsets is different.

To investigate the effect of selected sample subsets used as training and validation, we 
ran 50 repetitions across the datasets and models and recorded the values of OA and 
kappa as well as the map output from each loop. The general mean results of OA are 
shown in figure 6a. 

Considering Dataset04, we can see in figure 6b the OA variation for each loop and 
model. The OA standard deviation for these models was 0.09, which represents 15 % 
of the mean value. In general, for Dataset04, the OA values range from 0.29 (MLR) to 
0.82 (RF). For the RF model with this dataset, the values of OA range from 0.40 to 0.82. 

The results of OA to Dataset05 (Figure 6c) are greater than the other datasets and varies 
from 0.65 to MLR and 0.99 to C5.0 and GBM.
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Figure 4. The high correlation covariates, considering all covariates. The Y-axis shows the eliminated covariates.
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Figure 5. Boxplot of Aspect and Elevation ROICs and the single dataset (green color) of three soil units.
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Figure 6. Mean overall accuracy considering four models and five datasets (a); the OA behavior 
of the random repetitions of the models to Dataset04 (b); and mean, maximum, and minimum 
OA of the models with Dataset05 (c).
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According to the workflow approach (Figure 3), the output maps need to be evaluated 
by a pedologist and by statistical parameters. First, we took all 50 maps generated by 
running the models and accounted for the variety (how many classes were predicted 
by pixel) and the majority maps, followed by an uncertainty calculation (Table 3) and 
statistics (maximum, mean, minimum, and standard deviation).

Table 3 shows the variety in % of the area of each model and dataset, and a variety value 
of 1 means that all 50 random repetitions of the model predicted the same soil unit in 
the cells and that the uncertainty is zero. On the other hand, a variety of 6 identifies 
the cells that showed a prediction of all six soil units in 50 random repetitions and the 
uncertainty is bigger. Considering low values of variety of 1 and 2, the GBM, RF, and 
C50 models, in that order, showed the best performance in Dataset01. The MLR model 
showed a worse result compared to the others. 

Considering the mean value of uncertainty, RF had the lowest uncertainty value for all 
the datasets, ranging from 0.091 to 0.286. Uncertainty values for GBM and C50 ranged 
from 0.105 to 0.363. The MLR showed a larger variation range from 0.096 to 0.516. 

The uncertainty of the maps results was also classified and computed based on the 
number of cells for each defined class (Figure 7). It can be observed to Dataset01 that low 
uncertainty class is bigger to C5.0, GBM, and RF, and RLM is the lower and significantly 
different. To Dataset05, all the models present a greater area with low uncertainty, showing 

Table 3. Variety in % of area and Uncertainty basic statistics to the models and datasets

Model
Variety (% of area) Uncertainty

1 2 3 4 5 6 MIN MEAN MAX SD
Dataset01

C50 7.45 12.02 26.40 36.34 17.27 0.52 0 0.317 0.78 0.188
RF 3.68 18.60 32.36 30.89 14.02 0.46 0 0.286 0.78 0.180
GBM 4.35 21.41 32.78 28.10 12.52 0.84 0 0.297 0.78 0.179
MLR 0.16 2.79 42.17 28.04 21.86 4.99 0 0.435 0.78 0.151

Dataset02
C50 4.76 14.18 29.47 40.65 10.54 0.40 0 0.317 0.74 0.177
RF 7.02 24.04 33.71 28.06 7.07 0.10 0 0.237 0.76 0.186
GBM 2.23 20.37 34.34 33.89 8.62 0.56 0 0.328 0.78 0.177
MLR 0.15 0.81 7.76 57.35 27.88 6.05 0 0.515 0.80 0.120

Dataset03
C50 2.46 16.79 27.15 33.66 18.35 1.57 0 0.363 0.74 0.169
RF 8.29 36.61 33.35 18.72 2.92 0.10 0 0.217 0.74 0.181
GBM 3.01 24.57 37.52 24.76 9.84 0.29 0 0.299 0.76 0.189
MLR 0.07 0.28 3.27 11.41 24.32 60.65 0 0.496 0.80 0.154

Dataset04
C50 2.34 13.47 28.82 35.14 17.42 2.80 0 0.363 0.74 0.172
RF 5.39 36.05 37.69 17.61 3.26 0.00 0 0.229 0.76 0.175
GBM 2.61 19.15 44.37 24.27 9.50 0.11 0 0.295 0.76 0.177
MLR 0.09 0.31 1.64 7.30 32.10 58.56 0 0.516 0.80 0.135

Dataset05
C50 35.23 33.04 23.17 6.72 1.84 0.01 0 0.152 0.76 0.177
RF 44.23 39.92 13.67 2.02 0.15 0.00 0 0.091 0.74 0.141
GBM 49.28 34.47 12.69 3.22 0.33 0.01 0 0.105 0.74 0.155
MLR 46.56 36.94 14.06 2.37 0.07 0.00 0 0.096 0.72 0.147
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the significative difference in using or not the ROICs to split the data into validation and 
training datasets.

The evaluation of the output maps used the RF and GBM models for all datasets, considering 
their better values for OA, variety, and uncertainty. For these two models, an expert 
evaluation regarding the soil unit distribution (visual interpretation) in the majority 
map was performed. Figure 8 shows the majority of soil map units to these models for 
Dataset01 to 04.

For Dataset02, the geographic position was included in the covariates, a pedologist 
identified straight lines separating the LAd (yellow color) soil unit in both models. The 
pedologist noted the artefact effect produced by the geographic position and deal 

Figure 7. Graphical distribution of uncertainty classes by dataset and model, where Low (≤0.2); Medium (>0.2 to ≤0.4); High 
(>0.4 to ≤0.6) and Very High (>0.6).
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Figure 8. Map output by RF and GBM using the four datasets with ROICs.
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with caution the maps produced by the Dataser02. Actually, this does not occur in the 
environment because soil unit distribution is mainly due to geomorphologic aspects, and 
these maps do not represent natural soil unit distribution. 

The output maps produced by the models with Dataset05 are presented in figure 9. The 
values of mean overall accuracy (Figure 6) and kappa index were greater than those 
achieved by the other datasets. 

A comparison between the majority maps from RF and GBM to Dataset01 and 
Dataset05 shows the cell coincidence prediction in percent of the area (Table 4), varying 
between 78.1 to 90.6 %. 

DISCUSSION

Depending on whether the dataset is grouped by ROIC or not, the results are quite 
different. We observed that the values of the mean, range, and standard deviation of 

RF Dataset05 MAJORITY MAP
Mean Overall Accuracy – 0.96
Mean Kappa Index – 0.95

GBM Dataset05 MAJORITY MAP
Mean Overall Accuracy – 0.97
Mean Kappa Index – 0.96

(a) (b)
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Mean Kappa Index – 0.62

(c) (d)

Legend

Hydrography
URBAN

RckO
RLd+RckO

RLd
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RLd+CXbd+RckO
LVAd

CXbd

Figure 9. Output maps produced by Dataset05, with mean overall accuracy and kappa index.

Table 4. Coincidence of majority cells prediction of soil units by RF and GBM with Dataset01 and 
05 in percentage of area

RF Dataset01 GBM Dataset01 RF Dataset05 GBM Dataset05
RF Dataset01
GBM Dataset01 79.9
RF Dataset05 90.6 78.1
GBM Dataset05 79.6 88.7 78.9
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each ROIC for the covariates to one soil unit were very different from each other, even 
for the values for ROICs belonging to the same soil unit. This is probably the main aspect 
to explain the differences in the results from Dataset01 to Dataset04 and the Dataset05.

When the training and validation datasets were split based on ROICs, the subsets are 
quite different because of the variance between ROICs of the same covariate and soil 
unit (Figure 5). This is the reason for the worse results of these models, comparing with 
the Dataset05.

On the other hand, when used one complete dataset not based on ROICs, the variance 
of training and validation subsets to one covariate and one soil unit is lower, because 
the random split takes account to subdivide one ROIC into samples to both subsets. The 
lower variance produces more accurate parameters of models quality. 

Camera et al. (2017) achieved an OOB error of 8.6 %, which is comparable to the RF 
results in Dataset05. The results of OA are in the same range as those obtained by 
Taghizadeh-Mehrjardi et al. (2012), Heung et al. (2017), Wolski et al. (2017), Pásztor et al. 
(2018), and Afshar et al. (2018), even though they used different approaches to build 
the dataset and process the data.

The RF is the model with the highest OA for datasets 01 to 04 and the same OA as GBM 
and C50 for Dataset05. Other studies have also identified RF as the best model for 
digital soil unit mapping (Camera et al., 2017; Heung et al., 2017; Mosleh et al., 2017).

The best OA result was for Dataset05, followed by Dataset02, Dataset03, and Dataset04. 
Dataset01 presented the worst response in the OA index compared with the others that 
used the ROICs, but this dataset is related to geomorphological conditions; thus, the map 
outputs were considered by pedological experts by a visual interpretation to evaluate 
the models. The OA behavior in relation to all 50 random repetitions considering the 
datasets showed the same trend, where MLR had the lowest OA and RF had the best 
performance for all datasets.

The relationship between OA and the number of covariates was not verified. The method 
based on the ROICs for Dataset02, 03, and 04 did not show significant differences in OA, 
although each dataset had a different number of covariates. The smallest datasets by 
number of covariates, Dataset01 and Dataset05 with 27 covariates, showed extreme 
responses: Dataset01 had the lowest OA, and Dataset05 had the highest.

These results show the influence of the split method grouped by ROICs (Figure 6a). 
Figure 6c shows the mean, maximum, and minimum OA for Dataset05, which achieved 
the greatest values for this index.

Dataset02, 03, and 04 showed the same trend, and the model with the best response 
was RF, followed by GBM, C50, and MLR. For Dataset05, the best responses were from 
RF and GBM, followed by C50 and MLR.

There was no significant difference between the variety results for RF, GBM, and 
C50 for Dataset01. For Dataset02, 03, and 04, RF showed a better performance that 
was significantly different from the others. For Dataset05, RF, GBM, and MLR showed 
the best performance in variety and lower uncertainty maps.

The MLR model showed the worse performance in all datasets, but in the Dataset05, 
it was improved enough to be the third best model.

In this sense, the RF and GBM models can be considered more efficient than the others 
based on mean uncertainty by this approach to all datasets.
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Dataset02, Dataset03, and Dataset04 with low values for variety (1 or 2) showed that RF 
had the best performance, followed by GBM, C50, and MLR. The results of MLR variety 
were significantly different from the results of the other models.

The evaluation of the model performance by uncertainty showed the same trend as the 
other indices (variety and OA), in which RF and GBM produced maps with greater areas 
with low uncertainty. On the other hand, MLR had more cells in the High and Very High 
uncertainty classes, except for Dataset05, which did not have a significant difference 
from the RF and GBM models. The RF model showed a decrease in the number of High 
and Very High uncertainty cells when the analysis included all datasets, while the other 
models did not present this trend. All the datasets presented RF with the best performance, 
followed by GBM, C50, and MLR. The tree learners are ensemble models that average 
across multiple trees and produced better results than the RLM.

The MLR presented the worst results in uncertainty for all datasets, except Dataset05, 
which used the method of splitting the data into training and validation by a single dataset. 
When a single dataset was used (Dataset05), all the model performances improved, mainly 
MLR, as a consequence of the inherited model type that improved when all samples were 
used together. The tree-based models also show the same trend, but on a smaller scale.

The map outputs to Dataset02 were considered a poor map result, even if the statistical 
results were not, and the inclusion of geographic UTM position Y did not improve the 
final result.

For Dataset03 and 04, which included distance rasters, the map outputs showed a large 
area with LVAd (red color) in the southwest, which is not consistent with pedologist 
expectations. The LAd unit (yellow color) was spread in the central area of the watershed, 
and this is also not consistent with pedologist expectations. These expert considerations 
for the four datasets conclude that the better map outputs are the ones produced by 
Dataset01, which can be compared with the ones produced by Dataset05 (Figure 9) 
because they have the same covariates.

The highest OA values were achieved by the GBM, C50, and RF models to Dataset05, 
following the same trend of the models with the other datasets.

Considering the qualitative evaluation of the MLR output map for Dataset05, the shape of 
the unit RLd+RckO (blue color) was spread over the entire area, which was not expected 
according to the team of pedologist experts who work in primary soil data collection. 
Thus, the MLR output map was put away. For Dataset05, the best output maps are 
represented by the models RF, GBM, and C50, and the same results were obtained by 
Camera et al. (2017), Heung et al. (2017), and Mosleh et al. (2017).

The greater values of coincidence are between the same model considering both 
Dataset01 and Dataset05. Despite this, the coincidence of cell prediction by the models 
is high, over 78 % for the RF and GBM models with Dataset01 and 05.

Based on the results, it is possible to conclude that the performance of RF and GBM 
models are equivalent to all datasets, and the final maps output may be decided on by 
pedologist experts, corroborating with Kempen et al. (2009), where pedological tacit 
knowledge remains a key factor in building a model that achieves both statistically and 
pedologically accurate mapped outputs.

CONCLUSIONS
The geomorphologic covariates are the most important for use in this case because the 
soil distribution is relief-dependent and has a greater relation with these covariates. When 
the geographic position and distance raster were included in the covariate dataset, the 
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statistical parameters were improved, but the quality of the map outputs did not present 
the expected distribution according to the expert visual evaluation. The variability of the 
covariates within the ROICs is lower than the variability between the ROICs.

The ROIC methodology to split the dataset between training and validation subsets 
(Dataset01 to 04) showed worse performance, considering statistical parameters, 
compared to the single dataset (Dataset05). The use of a grouped sample selection 
showed lower OA and kappa than the single dataset; using the single dataset was the 
better procedure for developing digital soil unit maps.

Even so, the map outputs of RF and GBM for Dataset01 and Dataset05, with the same 
covariates, presented the same majority predictions for at least 78 % of the area. 
It seems that both methods produce consistent results in map outputs according to this 
methodology and pedologist expertise. The application of majority maps made possible 
to evaluate the uncertainty and support a consistent soil unit prediction.

In general, RF was the best model for classifying soil units, and GBM was similar but with 
slightly lower statistical values. The OA, kappa index, variety, majority, and uncertainty 
values can contribute to choosing the best model combined with pedologist expert 
evaluation about some artefact effects that can be produced by the models with particulars 
covariates addition.

Although the OA of the models for Dataset01 and Dataset05 is quite different, both 
models produced a good map output in a qualitative assessment by the pedologist. 
Additionally, the use of ROICs or not with this methodology produces very similar map 
outputs when using the RF or GBM model. 

The increase in the number of covariates is not a guarantee in improvement in OA or kappa 
or in the quality of the map output, and the particular sampling design with conditioned 
Latin hypercube sampling may have an impact on the subsequent modeling and the 
linear model (MLR) might be disadvantaged compared to the machine learning models.

The geographic position and distance raster do not improve the quality of the map output 
for Dataset01 to Dataset04, representing no spatial dependency of soil units, according 
to a visual interpretation.

The results suggest that more studies need to be done to predict soil classes/units in 
tropical areas with a complex degree of soil distribution based on lithology, climate, 
topography, and vegetation cover.
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