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Abstract: Mapping soil properties, using geostatistical methods in support of precision agriculture and
related activities, requires a large number of samples. To reduce soil sampling and measurement time
and cost, a combination of field proximal soil sensors was used to predict and map laboratory-measured
soil properties in a 3.4-ha pasture field in southeastern Brazil. Sensor soil properties were measured
in situ on a 10 × 10-m dense grid (377 samples) using apparent electrical conductivity meters,
apparent magnetic susceptibility meter, gamma-ray spectrometer, water content reflectometer, cone
penetrometer, and portable X-ray fluorescence spectrometer (pXRF). Soil samples were collected on a
20 × 20-m thin grid (105 samples) and analyzed in the laboratory for organic C, sum of bases, cation
exchange capacity, clay content, soil volumetric moisture, and bulk density. Another 25 samples
collected throughout the area were also analyzed for the same soil properties and used for independent
validation of models and maps. To test whether the combination of sensors enhances soil property
predictions, stepwise multiple linear regression (MLR) models of the laboratory soil properties were
derived using individual sensor covariate data versus combined sensor data—except for the pXRF data,
which were evaluated separately. Then, to test whether a denser grid sample boosted by sensor-based
soil property predictions enhances soil property maps, ordinary kriging of the laboratory-measured
soil properties from the thin grid was compared to ordinary kriging of the sensor-based predictions
from the dense grid, and ordinary cokriging of the laboratory properties aided by sensor covariate
data. The combination of multiple soil sensors improved the MLR predictions for all soil properties
relative to single sensors. The pXRF data produced the best MLR predictions for organic C content,
clay content, and bulk density, standing out as the best single sensor for soil property prediction,
whereas the other sensors combined outperformed the pXRF sensor for the sum of bases, cation
exchange capacity, and soil volumetric moisture, based on independent validation. Ordinary kriging
of sensor-based predictions outperformed the other interpolation approaches for all soil properties,
except organic C content, based on validation results. Thus, combining soil sensors, and using
sensor-based soil property predictions to increase the sample size and spatial coverage, leads to more
detailed and accurate soil property maps.
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1. Introduction

Proximal soil sensing is increasingly used for mapping soils with high spatial detail to support
land management and precision agriculture [1,2]. It entails the use of geophysical field and laboratory
sensors to measure soil properties (mechanical, electromagnetic, optical, etc.) to directly or indirectly
predict and map soil properties of interest. Proximal soil sensors include apparent electrical conductivity
(ECa) and magnetic susceptibility (MSa) meters, gamma-ray, X-ray fluorescence and near-infrared
spectrometers, and mechanical resistance meters, among others.

Strong correlations have been reported among soil sensor data and soil properties of interest [3–6].
Usually, these strong correlations are specific to certain soil property-soil sensor combinations.
For example, soil salinity is known to increase (or correlate to) soil ECa, thus soil sensors that measure
the latter have been used to predict the former [7–9]. Going a step further, combining data from
different sensors has been shown to assist or improve soil property predictions [4,10–14]. However,
the choice of soil sensors to use depends on many factors, including the target soil property, whether
they will be used on the field or in the laboratory, the soil and landscape characteristics, cost of the
sensor and available budget, and proficiency. Other sensor characteristics like portability, ease of use,
measurement support, and the capacity to predict multiple soil properties are also considered, as well
as interfering factors and other limitations.

Among the studies that combined proximal sensors for soil property prediction, two in situ ECa
sensors (Geonics EM34 and EM38) were used for soil clay prediction in New South Wales, Australia [10].
Gamma-ray variables and ECa, both measured in situ, were combined with elevation, and aerial photos
to predict topsoil clay in a 22-ha agricultural field in southwest Sweden, finding a clear superiority
of the gamma-ray variables compared to the others [4]. In tropical soils, in situ data from a portable
X-ray fluorescence spectrometer (pXRF), a soil color app on a mobile phone, an ECa sensor, and a
portable two-band (red, and near-infrared) reflectance sensor were combined to predict many soil
chemical and physical properties (K, Mg, Ca, Al, N, C, CEC, particle size fractions, and others) in
central Kenya, finding promise in the combination of pXRF and portable reflectance sensors for in
situ soil assessments [11]. Furthermore, in southeast Brazil, terrain and parent material variables were
combined with magnetic susceptibility and pXRF data, both measured in the laboratory, to predict
sand and clay contents in a 150-ha area, and the proximal sensor variables were included in the best
models for both soil properties [15].

Albeit previous research has shown the potential of proximal soil sensor combination (fusion) to
predict soil properties, a recent review showed that most proximal sensor fusion studies have been done
in temperate soils, and that most studies have combined only two or three sensors for soil property
prediction and other aims [2]. Thus, the relations among proximally-sensed and laboratory-measured
soil properties are still little known when multiple sensors are used in combination, especially when
they are used in tropical soils, where only a few proximal soil sensor fusion studies have been
done [11,13,15,16], two of which on Amazonian Dark Earths [13,16]. Thus, this study focus on tropical
soils and in situ proximal soil sensor fusion aiming to identify which proximal sensors contribute
to predict and map chemical and physical soil properties, and how the sensors can be combined to
improve the predictions and maps of these properties. The motivation of the study lies in the potential
of proximal soil sensors to complement or replace soil sampling and laboratory analyses of these
properties, which are costly, time- and energy-consuming, and possibly polluting.

For soil property mapping, ordinary kriging (OK) and its extensions have been widely used in
both temperate and tropical regions [17–28]. In southeast Brazil, where this study is conducted, OK
was used to map ECa measured by a Veris 3100 sensor, as well as corn yield, cost, and profit in a
19-ha irrigated farm [29]. In another study in a 5.7 ha area, OK was compared to inverse distance
weighting (IDW) for mapping soil penetration resistance (PR), bulk density (BD), and moisture, using
two sampling grids [30]. The best interpolation method varied by soil property and sampling grid.
Soil moisture was kriged across a 3.42-ha no-till field (sorghum and soybean) from 102 samples on a
10 × 20 m grid in Reference [31]. However, no cokriging (COK) studies were found in Brazil, which also
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lacks in situ proximal soil sensing studies relative to other countries [32]. In Brazil, laboratory-based
visible and near-infrared reflectance spectroscopy is the most used proximal soil sensing technology,
according to Reference [32].

Under this framework, it is hypothesized that: (a) The combination of different proximal soil
sensors outperforms individual sensors for soil property prediction. It is assumed that different sensors
complement each other in the prediction models, and otherwise, that redundant or useless sensors are
not selected in the models; and (b) sensors efficiently improve soil property mapping by indirectly
increasing the sample size providing better spatial coverage via soil property prediction. The improved
efficiency is achieved by taking sensor measurements directly in situ on a denser sampling grid without
collecting, transporting, preparing, and analyzing soil samples in the laboratory.

From the above, the objectives of the study were to:

1. Predict six laboratory-measured soil properties from in situ proximal soil sensor covariate data;
2. Compare the quality of predictions obtained from individual versus combined proximal soil

sensor data;
3. Map the six laboratory-measured soil properties using different interpolation approaches;
4. Compare the quality of maps derived directly from the observations (raw data) versus those

derived from a denser grid of sensor-based predictions.

The six soil properties included three chemical properties—organic C content, sum of bases,
and cation exchange capacity—and three physical ones—clay content, volumetric moisture, and bulk
density. They encompass a range of soil properties that are important for soil-landscape characterization,
understanding soil formation, and guiding land use and management in tropical agriculture.

2. Material and Methods

2.1. Study Area and Soil Sampling

The study was conducted in a 3.4-ha area located in Seropédica, Rio de Janeiro state, southeast
Brazil, with central latitude −22.7571 and longitude −43.6630 (Figure 1). The area has a rectangular
shape of about 300 m oriented along a toposequence of soils representative of the region, by 140 m
across. The toposequence includes Acrisols and Lixisols on the summit and shoulder in the southwest
of the area, transitional sandier soils (Acrisols and Planosols) on the slightly undulating backslope in the
central portion of the area, and Planosols on the footslope and fluvial terrace in the northeast. The area
is under tropical climate, with mean annual temperature and precipitation of 23.2 ◦C and 1274 mm,
respectively [33], and elevations from 22 to 36 m (Figure 1). The land use has been unimproved
pasture (Panicum maximum Jacq.) for more than a decade. Soils in the region are formed from granites,
gneisses, and migmatites of pre-Cambrian age from the Litoral Fluminense Complex and Serra dos Órgãos
Group, with intrusions of basaltic and alkaline rocks of Cretaceous/Tertiary origin, and Quaternary
sedimentary deposits from the Piranema Formation [34,35].

A sampling grid of 10 × 10 m (dense grid) was set inside the study area, with 29 points distributed
along the toposequence by 13 points across (377 points), leaving a 10-m buffer outside the grid (Figure 1).
Six proximal soil sensors (Figure 2) were used to take in situ measurements on these 377 sites. Apparent
magnetic susceptibility (MSa) [36] was measured by the KT-10 S/C sensor (Terraplus Inc., Richmond
Hill, ON, Canada; Figure 2A, sensor #4). Apparent electrical conductivity (ECa) [37] was measured at
the surface by the KT-10 S/C sensor, and at 0–10, 0–20, and 0–40 cm by the Rabellis sensor (Embrapa
Instrumentação Agropecuária, São Carlos, SP, Brazil; Figure 2B) [38]. The RS-230 BGO gamma-ray
spectrometer (Radiation Solutions Inc., Mississauga, ON, Canada; Figure 2A, sensor #5) [39] was used
to measure the dose rate and equivalent of U (eU) and Th (eTh) contents, with measurements taken over
120 s at the soil surface. The soil volumetric moisture (θ) was measured by the CS650 water content
reflectometer (WCR) (Campbell Scientific Inc., Logan, UT, USA; Figure 2A, sensor #3) [40], and the
cone penetration resistance (PR) by the PenetroLOG cone penetrometer (Falker Automação Agrícola
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Ltd.a., Porto Alegre, RS, Brazil; Figure 2A, sensor #1), using a type 2 cone, both at 0–10 cm. Finally,
the DP-6000 pXRF sensor (Olympus Scientific Solutions Americas Inc., Waltham, MA, USA; Figure 2A,
sensor #2) [41] was used in “Soil” mode to measure total element contents of various elements at the
soil surface. The three beams were used for 30 s each, totaling 90 s per sample. Many element contents
were below the sensor detection limits for many samples. Thus, only those element contents with at
least 374 valid readings were selected for the study, including K, Ti, Mn, Fe, Zn, Rb, Sr, Zr, Ba, Cr,
and Pb. In previous studies, this pXRF sensor achieved 72–90% recovery against NIST certified soils
for Fe, 85–95% for Mn [42], and 90–109% for Ti [43].
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From the dense grid, a grid of 20 × 20 m (thin grid), with 15 by 7 points (105 points), was set
by skipping every other sampling row and column (Figure 1). Additionally, 25 sampling sites for
independent validation were distributed across the study area by conditioned Latin hypercube sampling
(cLHS) [44], using the sampling row, sampling column, and elevation as strata. On these 130 sites,
soil samples were collected at 0–10 cm and analyzed in the laboratory, according to Reference [45],
for organic C (OC) content by wet oxidation with K2Cr2O7 + H2SO4, exchangeable bases (Ca and
Mg extracted with KCl, and K and Na extracted with HCl + H2SO4), exchangeable acidity (H and Al
extracted with Ca(C2H3O2)2), clay content by the hydrometer method, and soil θ and BD measured
from 100-cm3 steel-ring samples. The sum of bases (SB) was derived as the sum of exchangeable bases,
and the cation exchange capacity (CEC) as the sum of SB and exchangeable acidity.

2.2. Predictive Modeling and Mapping

The soil chemical (OC, SB, and CEC) and physical properties (clay, θ, and BD) were modeled by
multiple linear regression (MLR) as a function of data from one specific sensor, and combined data
from multiple sensors, respectively. Data were log-transformed when positively skewed, and stepwise
variable selection with p < 0.05 was applied. Descriptive statistics of individual variables, and linear
correlation coefficients (r in Equation (1)) among individual variables were calculated. The 105 samples
on the thin grid were used to train the models, whereas the 25 cLHS samples were used as independent
validation samples to test and compare results on an external data set. The sensor-measured θ has
many missing values from the first field campaign; thus, it was included separately in the models for
comparison only, and not used to produce soil property maps.

Exceptionally, the pXRF sensor was evaluated alone and not combined with the other sensors.
The pXRF sensor alone provided many predictor variables, as it measures the contents of multiple
elements simultaneously, and some of these element contents showed moderate to strong correlations
with some target soil properties. As such, it was anticipated that the pXRF alone could outperform the
other sensors individually, and even the other sensors combined, for predicting the soil properties,
making it reasonable to evaluate it separately. The adjusted coefficient of determination (R2

adj in
Equation (2)) was used to assess model fit, and the root mean square error (RMSE in Equation (3)) to
assess prediction accuracy. The smallest RMSE calculated on the 25 cLHS validation samples was used
to select the best model for each laboratory soil property, respectively.

r =
N∑

i=1

(xi − x)(yi − y)/

√√√ N∑
i=1

(xi − x)2
N∑

i=1

(yi − y)2 (1)

R2
adj = 1−

[(
1− r2

)
(N − 1)/(N − p− 1)

]
(2)

RMSE =

√√√ N∑
i=1

(yi − ŷi)
2/N (3)

where r is the linear correlation coefficient, R2
adj is the adjusted coefficient of determination, RMSE is

the root mean square error, xi and yi are the observed values of x and y variables, respectively, x and
y are their respective mean values, N is the sample size, p is the number of predictors in the model,
and ŷi are the predicted values of y.

Three interpolation approaches were compared to map the six above mentioned soil properties
with 1-m spatial resolution. The first approach was to interpolate the 105 observations (raw data) from
the thin grid using OK [46]. These were considered baseline maps—that is, maps that are produced
without the use of ancillary proximal sensor data. In the second approach, first predictions were made
for the six laboratory-measured soil properties from their best prediction models, respectively, on the
352 dense grid sites (377 sites minus the 25 cLHS sites set apart for validation; empty circles in Figure 1),
which contain sensor data only. Then, the 352 predictions on the dense grid were interpolated by
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OK. From the second approach, two maps were derived for each soil property, one from the best
single-sensor model, and another from the combined-sensor model. The third approach was to use
ordinary COK [46] to interpolate the observations from the thin grid aided by sensor covariate data
from the dense grid. For the latter, the proximally-sensed property that had the highest correlation
and an adequate spatial cross-correlation structure with the target soil property was selected as the
covariate. The empirical variograms (Equation (4) [46]) of all soil properties were fit by the spherical
variogram model (Equation (5) [46]) using ordinary least squares or manually. The quality of the
predictions from the three interpolation approaches was assessed by calculating the RMSE on the
25 validation samples and then compared.

γ = (1/2Nh)

Nh∑
i=1

[z(αi) − z(αi + h)]2 (4)

γ̂ =

 c0 + c
[
1.5(h/a) − 0.5(h/a)3

]
c0 + c

, i f h ≤ a
, i f h > a

(5)

where γ is the observed semivariance of variable z at lag distance h, z(αi) and z(αi + h) are the observed
values of z at Nh pairs of locations separated by lag distance h, and γ̂ is the fitted spherical variogram
of z as a function of lag distance h and variogram parameters nugget effect (c0), sill (c), and range (a).

3. Results and Discussion

3.1. Descriptive Statistics and Correlations

Among the chemical soil properties, OC varied from 3.7 to 28 g kg−1, with a mean of 11.3 g kg−1,
whereas the CEC varied from 2.6 to 12.9 cmolc kg−1, with a mean of 6.8 cmolc kg−1 (Table 1). Among
the physical properties, the clay content varied between 20 and 380 g kg−1, and soil θ between 4.2
and 31.7%. These values agree to those reported previously for Planosols [47] and Acrisols [48] of
the region.

Table 1. Descriptive statistics of laboratory-measured, and field proximally-sensed soil properties.

Property 1 N 1 Min 1 Max 1 Mean Median SD 1 Skew 1

OC (g kg−1) 130 3.7 28.0 11.3 11.4 3.9 0.64
SB (cmolc kg−1) 130 1.4 8.4 3.9 3.8 1.5 0.46

CEC (cmolc kg−1) 130 2.6 12.9 6.8 6.8 1.9 0.29
Clay (g kg−1) 130 20 380 176 160 93 0.24

θ (%) 130 4.2 31.7 15.4 15.6 5.6 0.25
BD (g cm−3) 130 1.12 1.72 1.52 1.54 0.09 −1.18
WCR θ (%) 310 2.3 35.7 14.2 14.1 6.7 0.42

KT MSa (10−3 SI) 376 0.0 3.8 0.3 0.2 0.3 4.44
KT log(MSa) 376 −3.9 1.3 −1.4 −1.5 0.8 −0.06

KT ECa (S m−1) 376 0.0 6.2 1.5 1.4 1.0 0.94
Rab ECa 0–10 (S m−1) 374 0.0 52.7 1.9 0.3 4.5 5.99

Rab log(ECa 0–10) 374 −5.1 4.0 −0.8 −1.3 1.6 0.55
Rab ECa 0–20 (S m−1) 374 0.1 99.9 6.7 3.8 11.5 4.50

Rab log(ECa 0–20) 374 −2.9 4.6 1.2 1.3 1.2 −0.36
Rab ECa 0–40 (S m−1) 374 0.0 10.7 1.4 1.1 1.4 3.26

Rab log(ECa 0–40) 374 −3.0 2.4 0.0 0.1 0.9 −0.30
RS DR (µR h−1) 376 0.2 5.2 2.7 2.7 0.9 0.33
RS eU (mg kg−1) 376 0.3 3.4 1.3 1.2 0.4 0.59
RS eTh (mg kg−1) 376 0.0 13.9 6.2 5.9 2.6 0.36

PR (kPa) 376 53 2697 810 678 493 1.28
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Table 1. Cont.

Property 1 N 1 Min 1 Max 1 Mean Median SD 1 Skew 1

pXRF K (mg kg−1) 376 0 5302 1997 1866 883 0.81
pXRF Ti (mg kg−1) 376 2254 9638 5141 4947 1465 0.66

pXRF Mn (mg kg−1) 376 83 3421 506 401 375 3.17
pXRF Fe (mg kg−1) 376 2794 53,946 14,014 12,251 8193 1.48
pXRF Zn (mg kg−1) 376 5 153 40 35 24 1.73
pXRF Rb (mg kg−1) 376 3 65 22 21 12 0.89
pXRF Sr (mg kg−1) 376 5 66 25 23 11 0.73
pXRF Zr (mg kg−1) 376 319 2251 917 857 338 1.17
pXRF Ba (mg kg−1) 376 69 503 216 203 78 0.86
pXRF Cr (mg kg−1) 375 0 40 10 9 8 0.94
pXRF Pb (mg kg−1) 374 3 34 14 14 5 0.56

1 N, number of observations; Min, minimum; Max, maximum; SD, standard deviation; Skew, skewness coefficient;
OC, organic C content; SB, sum of bases; CEC, cation exchange capacity; θ, volumetric moisture; BD, bulk
density; MSa, apparent magnetic susceptibility; ECa, apparent electrical conductivity; WCR, CS650 water content
reflectometer; KT, KT-10 S/C MSa/ECa sensor; Rab, Rabellis ECa sensor; 0–10 . . . 40, depths of measurement; RS,
RS-230 BGO gamma-ray spectrometer; DR, dose rate; eU, equivalent U content; eTh, equivalent Th content; PR,
mean cone penetration resistance at 0–10 cm; pXRF, DP-6000 portable X-ray fluorescence spectrometer.

Most laboratory- and sensor-measured soil properties were significantly correlated (Table 2).
The highest correlations among laboratory-measured properties were found between SB and CEC
(r = 0.87), clay content and soil θ (0.85), and OC and CEC (0.76). The sensor variables with the
highest correlations with laboratory-measured properties were eTh from the gamma-ray sensor
with clay content (0.78), and θ from the water content sensor with laboratory-measured θ (0.76).
The sensor-measured properties θ, dose rate and eTh had moderate to high correlations (r > 0.50) with
all laboratory-measured properties except for BD, indicating potential variables for proximal sensor
fusion. This potential was confirmed by their inclusion in the combined-sensor models, as discussed in
the next section. In detail, the sensor-measured θ had the highest correlation among sensor variables
with laboratory-measured OC and θ, and second-highest with SB (after eTh); eTh had the highest
correlation with SB, and second-highest with clay (after pXRF Fe) and θ (after WCR θ); and both had
the highest correlation with CEC (Table 2).

Table 2. Linear correlations among laboratory- and sensor-measured soil properties.

Property 1 OC SB CEC Clay θ BD

OC 1
SB 0.67 * 1

CEC 0.76 * 0.87 * 1
Clay 0.65 * 0.68 * 0.62 * 1
θ 0.63 * 0.63 * 0.62 * 0.85 * 1

BD −0.45 * −0.22 * −0.31 * −0.20 * −0.13ns 1
WCR θ 0.63 * 0.56 * 0.54 * 0.68 * 0.76 * −0.12ns

KT log(MSa) 0.34 * 0.50 * 0.42 * 0.53 * 0.50 * −0.09ns
KT ECa 0.38 * 0.41 * 0.43 * 0.45 * 0.49 * −0.16ns

Rab log(ECa 0–10) 0.45 * 0.47 * 0.49 * 0.35 * 0.47 * −0.01ns
Rab log(ECa 0–20) 0.49 * 0.51 * 0.54 * 0.38 * 0.49 * −0.05ns
Rab log(ECa 0–40) 0.49 * 0.54 * 0.54 * 0.43 * 0.59 * −0.02ns

RS DR 0.51 * 0.51 * 0.52 * 0.70 * 0.60 * −0.13ns
RS eU −0.01ns −0.10ns 0.02ns −0.09ns −0.09ns −0.02ns
RS eTh 0.54 * 0.57 * 0.54 * 0.78 * 0.67 * −0.12ns



Soil Syst. 2020, 4, 52 8 of 22

Table 2. Cont.

Property 1 OC SB CEC Clay θ BD

PR 0.32 * 0.36 * 0.28 * 0.50 * 0.44 * 0.08ns
pXRF K 0.28 * 0.33 * 0.33 * 0.34 * 0.22 * −0.15ns
pXRF Ti −0.11ns −0.16ns −0.08ns −0.13ns −0.16ns 0.06ns

pXRF Mn 0.13ns 0.21 * 0.27 * 0.00ns 0.00ns −0.05ns
pXRF Fe 0.43 * 0.49 * 0.38 * 0.80 * 0.67 * −0.08ns
pXRF Zn 0.24 * 0.38 * 0.29 * 0.33 * 0.23 * −0.07ns
pXRF Rb 0.44 * 0.56 * 0.49 * 0.69 * 0.54 * −0.17 *
pXRF Sr 0.47 * 0.46 * 0.49 * 0.29 * 0.26 * −0.24 *
pXRF Zr −0.33 * −0.49 * −0.36 * −0.53 * −0.50 * 0.03ns
pXRF Ba 0.46 * 0.46 * 0.43 * 0.72 * 0.57 * −0.14ns
pXRF Cr 0.20 * 0.29 * 0.27 * 0.37* 0.22 * −0.19 *
pXRF Pb 0.62 * 0.43 * 0.50 * 0.60 * 0.46 * −0.30 *

1 OC, organic C content; SB, sum of bases; CEC, cation exchange capacity; θ, volumetric moisture; BD, bulk
density; MSa, apparent magnetic susceptibility; ECa, apparent electrical conductivity; WCR, CS650 water content
reflectometer; KT, KT-10 S/C MSa/ECa sensor; Rab, Rabellis ECa sensor; 0–10 . . . 40, depths of measurement; RS,
RS-230 BGO gamma-ray spectrometer; DR, dose rate; eU, equivalent U content; eTh, equivalent Th content; PR,
mean cone penetration resistance at 0–10 cm; pXRF, DP-6000 portable X-ray fluorescence spectrometer. *, significant
at the 0.05 significance level; ns, not significant.

3.2. Individual-Versus Combined-Sensor Models

The MLR prediction models had moderate to good fits with R2
adj > 0.50 for all soil properties except

for BD (Table 3). The highest R2
adj were found for clay content, and soil θ, both as a function of combined

sensors plus the CS650 WCR water content sensor, with R2
adj of 0.94 and 0.81, respectively, stressing

the importance of including a water content sensor in proximal sensor combinations, as previously
noted by References [3,49]. However, clay content and θ were the only soil properties that benefited
from adding WCR θ to the combined models. Considering the RMSE of external validation to select
the best models, the pXRF covariates (element contents) derived the best models for OC, clay, and BD,
whereas combined models (with or without WCR θ) outperformed the individual sensors, including
pXRF, for SB, CEC, and θ. Among individual sensors, the pXRF, gamma-ray, and water content sensors
showed the best performances for soil property assessment.

The pXRF sensor was superior to the other sensors combined in modeling three out of six soil
properties, and was the best among individual sensors to predict all soil properties except for CEC,
based on the RMSE of validation (shown in Table 3 in order from the best to the worst for each target
property, respectively). A possible explanation is the fact that this sensor measures the contents of many
chemical elements simultaneously, and thus, provides many covariates for soil property prediction.
Moreover, some correlations among pXRF covariates and target soil properties were moderate to strong,
for example, between OC and Pb (r = 0.62); SB and Rb (0.56); clay and Fe (0.80), Ba (0.72), Rb (0.69) and
Pb (0.60); and θ and Fe (0.67), Ba (0.57) and Rb (0.54) (Table 2). On the other hand, the relatively lower
correlations observed among the target soil properties and pXRF K, Ti and Mn were not expected, since
these elements constitute more common soil minerals and are more abundant in soils than Ba, Rb and
Pb, for example (Table 1). The gamma-ray sensor was the second-best among individual sensors for
predicting all soil properties, and the best one for CEC prediction (Table 3), which is supported by the
relatively high correlations observed between the sensor-measured eTh and dose rate, and all target
soil properties except for BD (Table 2).
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Table 3. Model training and validation results for the laboratory soil properties predicted as a function
of data from individual and combined proximal soil sensors.

Property 1 Model 1 Selected Covariates 1
Training 1 Validation 1

Nt R2
adj RMSEt Nv RMSEv 2

Individual sensors (excluding WCR)

OC (g kg−1)

pXRF K, Ti, Mn, Zn, Rb, Sr, Zr, Ba, Cr, Pb 102 0.58 2.2 25 2.5
KT log(MSa), ECa 104 0.11 3.3 25 3.1
RS DR, eTh 103 0.33 2.8 25 3.2

Rab log(ECa 0–10), log(ECa 0–40) 103 0.30 2.8 24 3.3

SB (cmolc kg−1)

pXRF Ti, Fe, Rb, Sr, Zr 99 0.64 0.8 25 0.9
RS DR, eTh 105 0.27 1.2 25 0.9

Rab log(ECa 0–10), log(ECa 0–40) 105 0.25 1.3 24 1.1
KT log(MSa), ECa 103 0.24 1.6 25 2.9

CEC (cmolc kg−1)

RS DR, eTh 105 0.27 1.7 25 1.4
KT log(MSa), ECa 103 0.24 1.6 25 1.5
Rab log(ECa 0–10), log(ECa 0–40) 105 0.27 1.7 24 1.5

pXRF Ti, Sr, Zr, Pb 102 0.52 1.3 25 1.7

Clay (g kg−1)

pXRF Ti, Fe, Zn, Rb, Zr, Cr, Pb 103 0.81 37 25 40
RS eU, eTh 100 0.79 38 25 60
KT log(MSa), ECa 105 0.21 78 25 80
Rab log(ECa 0–10), log(ECa 0–40) 105 0.16 81 24 97

θ (% m/v)

pXRF Ti, Zn, Zr, Ba, Cr, Pb 103 0.57 3.2 25 5.2
RS DR, eTh 105 0.44 3.8 25 5.4

Rab log(ECa 0–10), log(ECa 0–40) 105 0.34 4.1 24 6.0
KT log(MSa), ECa 105 0.22 4.4 25 6.1

BD (g cm−3)

pXRF K, Ti, Mn, Fe, Zn, Rb, Sr, Zr, Cr, Pb 102 0.01 0.078 25 0.085
RS DR, eTh 104 0.00 0.081 25 0.090

Rab log(ECa 0–10), log(ECa 0–40) 103 −0.02 0.077 24 0.091
KT log(MSa), ECa 104 0.02 0.081 25 0.093

Combined sensors (excluding pXRF)

OC (g kg−1)
Combined log(Rab ECa 0–20), eTh 103 0.46 2.5 24 3.0

Combined + WCR WCR θ, DR, PR 46 0.58 2.2 24 3.3

SB (cmolc kg−1)
Combined log(MSa), log(Rab ECa 0–40), DR 105 0.39 1.1 24 0.7

Combined + WCR WCR θ, log(MSa) 47 0.28 1.2 24 0.7

CEC (cmolc kg−1)
Combined ECa, log(Rab ECa 0–20), DR 104 0.47 1.4 24 1.2

Combined + WCR WCR θ, DR 46 0.42 1.4 24 1.6

Clay (g kg−1)
Combined + WCR WCR θ, log(MSa), log(Rab ECa 0–20), DR, eU, PR 44 0.94 21 23 47

Combined KT ECa, eU, eTh, PR 101 0.79 38 25 54

θ (% m/v) Combined + WCR WCR θ, log(ECa 0–20), log(ECa 0–40), DR 47 0.81 2.2 23 3.8
Combined log(Rab ECa 0–20), log(Rab ECa 0–40), eTh 104 0.64 3.0 24 4.7

BD (g cm−3)
Combined eTh, PR 103 0.07 0.074 25 0.090

Combined + WCR WCR θ, eTh 46 0.10 0.066 24 0.095
1 Nt, number of observations in the training set; R2

adj, adjusted coefficient of determination; RMSEt, root mean
square error of training; Nv, number of observations in the validation set; RMSEv, root mean square error of
validation; OC, organic C content; SB, sum of bases; CEC, cation exchange capacity; θ, volumetric moisture; BD, bulk
density; MSa, apparent magnetic susceptibility; ECa, apparent electrical conductivity; KT, KT-10 S/C MSa/ECa sensor;
Rab, Rabellis ECa sensor; RS, RS-230 BGO gamma-ray spectrometer; pXRF, DP-6000 portable X-ray fluorescence
spectrometer; WCR, CS650 water content reflectometer; 0–10 . . . 40, depths of measurement; DR, dose rate; eTh,
equivalent Th content; eU, equivalent U content; PR, mean cone penetration resistance at 0–10 cm. 2 For each target
soil property, the RMSEv is ordered from the smallest (best) to the largest (worst) in the “Individual sensors” and
“Combined sensors” sections, respectively.

All pXRF models selected Ti and Zr as covariates (Table 3). Titanium is the second-most abundant
element among those measured by pXRF (Table 1), followed by K, which was included in the OC and
BD models only, and then Zr. Titanium and Zr had a moderately high correlation (r = 0.63), whereas K
had its highest correlations with Rb (0.78) and Sr (0.64). Titanium and Zr are usually present in primary
minerals (rutile—TiO2, ilmenite—FeTiO3, and zircon—ZrSiO4) in the sand-size fraction of soils [50].
Thus, they can indicate different parent materials, lithological discontinuities, and/or preferential
weathering responding to water and relief dynamics. In the study area, Ti and Zr had 0.33 and 0.60
correlations with fine sand content (0.05–0.20 mm), respectively, with both Ti and Zr, and fine sand
content presenting higher values in the fluvial terrace and lower values on the summit. Presumably, the
sand on the terrace present at the topsoil (A + E horizons) derive from other parent materials carried in
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from outside the study area by turbulent water flows, which corroborates the correlated Ti and Zr
patterns. Unexpectedly, Fe—the most abundant among the measured elements and notably important
in tropical soils forming Fe oxides—was not selected in the OC, CEC, and soil θ MLR models, although
its correlation to these properties was higher compared to some of the model-selected pXRF elements.
Iron was strongly correlated with Ba (0.89), which may explain why they were mutually exclusive
in the models. It should be mentioned that the three pXRF models that outperformed the combined
models (for OC, clay, and BD) were the ones that selected the most pXRF elements, up to 10 out of 11
elements (Table 3).

Portable X-ray fluorescence has been used to predict sand, and clay contents in Louisiana, USA,
obtaining R2 of 0.86 and 0.96, respectively [51]. Moreover, in Louisiana, USA, soil pH was predicted
from pXRF data, obtaining an R2 of 0.77 [5], and in California and Nebraska, USA, CEC was predicted
with R2 of 0.91 [6]. In the aforementioned studies, samples were measured in the laboratory using a
pXRF sensor, whereas in the present study pXRF measurements were taken in situ. Comparatively,
the R2

adj of the pXRF models for clay and CEC obtained in this study were 0.81 and 0.52, respectively.
When used to predict the same pXRF elements, but measured by inductively coupled plasma optical
emission spectrometry (ICP-OES), the field-measured pXRF elements predicted Fe, Mn, Zn, and Pb
contents with R2 of up to 0.91, 0.70, 0.61 and 0.66, respectively [52]. Note that the pXRF sensor measures
many other soil elements that were not included in this study, either because they were below the
detection limit or because they are not provided in “Soil” mode, which was used.

All combined models without the CS650 WCR water content sensor selected at least one property
measured by the gamma-ray sensor, with a preference for dose rate or eTh, with eU only selected
for clay (Table 3). All combined + WCR models selected WCR θ in the stepwise process. Apparent
electrical conductivity variables were included in all combined models without WCR; however, when
WCR θ was included, the ECa variables were left out, except for clay and θ. Penetration resistance
was included in the prediction models for OC, clay, and BD. The combination of proximal soil sensors
in these models improved predictions (that is, reduced the RMSE of validation) of all soil properties
investigated compared to individual sensors, disregarding the pXRF sensor (which was not considered
for this comparison because it measures many soil elements at once). These results show that proximal
sensor fusion is superior to individual sensors for soil property prediction. As an exception, BD could
not be well predicted from any sensor or sensor combination, as its validation RMSE was as high as
its standard deviation (BD varies little in the study area) (Tables 1 and 3). In other words, its ratio of
validation RMSE to standard deviation, commonly used to infer prediction quality, was close to 1,
indicating weak prediction capacity. For all other soil properties, the validation RMSE was lower than
their standard deviation, respectively.

The combination of sensors improving soil property predictions relative to single sensors was
also observed in Reference [4], who obtained better clay content predictions by combining ECa and
gamma-ray sensors. Their modeling efficiency (similar to R2) improved from 0.85 and 0.94 (ECa-only
and gamma-ray-only models, respectively) to 0.96 when the sensors were combined. The ECa
and gamma-ray sensor combination also better-discriminated soils that had similar outputs to one
individual sensor [53]. In Brazilian Latosols, R2

adj of 0.67 and 0.58 were obtained for clay and sand
content prediction, respectively, by combining magnetic susceptibility and pXRF data [15]. Besides
improving soil property predictions, the combination of proximal soil sensors offers other advantages,
due to the complementary features of individual sensors. For instance, PR required a water content
sensor for its proper interpretation as a measure of soil compaction [54], or for its prediction from a
mechanical resistance sensor [3].

3.3. Baseline Versus Sensor-Aided Maps

Compared to OK from the 105 thin grid raw observations (that is, the baseline maps),
the interpolated sensor-based predictions on the dense grid with 352 sites achieved the least validation
errors, except for OC (Table 4), showing that, overall, proximal soil sensors produces better soil
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property maps. In detail, soil property predictions from the combined models derived the most
accurate maps for soil SB, CEC, and θ, whereas clay, and BD maps benefited most from the pXRF
predictions, according to the smaller RMSE of validation (Table 4). Only in two cases, COK performed
a little better than any other approach: It was better than OK from combined sensor-based predictions
for clay content; and better than OK from pXRF-based predictions for soil θ. Equivalent Th, measured
by the gamma-ray sensor, was selected as the covariate for COK of all properties except BD (which used
KT-10 ECa) because it had a high correlation and an adequate spatial cross-dependence structure with
them. These results stress the superiority of OK of sensor-based predictions over the other approaches.

Table 4. Fitted spherical variogram parameters of laboratory soil properties, and external validation
errors of produced maps.

Property 1 Method 1 Grid Model/Covariate 1 Nugget Sill Range (m) Nugget/Sill (%) RMSEv 1,2

OC (g kg−1)

OK Thin 5.00 28.00 348 17.9 2.8
OK Dense pXRF 3.16 12.07 291 26.2 2.9
OK Dense Combined 2.50 7.50 269 33.3 3.0

COK Mixed RS eTh 8.33 17.57 220 47.4 3.2

SB (cmolc kg−1)

OK Dense Combined 0.30 1.20 225 25.0 0.9
OK Thin 1.05 3.15 254 33.3 1.0
OK Dense pXRF 0.31 1.73 147 18.0 1.0

COK Mixed RS eTh 1.70 2.79 230 61.0 1.3

CEC (cmolc kg−1)

OK Dense Combined 0.80 2.30 138 34.8 1.5
OK Dense RS 0.32 1.58 281 20.3 1.5
OK Thin 2.00 6.50 339 30.8 1.6

COK Mixed RS eTh 2.67 4.50 220 59.2 1.9

Clay (g kg−1)

OK Dense pXRF 925 11573 228 8.0 57
OK Thin 450 13915 278 3.2 60

COK Mixed RS eTh 2408 12412 220 19.4 61
OK Dense Combined 1118 9267 294 12.1 63

θ (% m/v)

OK Dense Combined 7.00 32.00 285 21.9 5.6
OK Thin 9.33 38.39 275 24.3 5.8

COK Mixed RS eTh 10.58 31.97 205 33.1 6.1
OK Dense pXRF 4.72 19.22 190 24.6 6.3

BD (g cm−3)

OK Dense pXRF 0.0002 0.0007 78 31.7 0.086
OK Dense Combined 0.0004 0.0005 112 74.9 0.087
OK Thin 0.0065 0.0100 316 65.0 0.089

COK Mixed KT ECa 0.1971 0.1988 245 99.1 0.210
1 RMSEv, root mean square error of validation; OC, organic C content; SB, sum of bases; CEC, cation exchange
capacity; θ, volumetric moisture; BD, bulk density; eTh, equivalent Th content; ECa, apparent electrical conductivity;
OK, ordinary kriging; COK, ordinary cokriging; pXRF, DP-6000 portable X-ray fluorescence spectrometer; RS,
RS-230 BGO gamma-ray spectrometer; KT, KT-10 S/C MSa/ECa sensor. 2 For each target soil property, the RMSEv is
ordered from the smallest (best) to the largest (worst).

The empirical and fitted variograms of the soil properties are shown in Figure 3. From left
to right, the variograms were derived, respectively, from: The 105 thin grid raw samples; the 352
dense grid predictions from the best individual-sensor model; the 352 dense grid predictions from
the combined-sensor model; and the 105 thin grid samples and collocated dense grid samples of
the selected covariate. The best prediction models, the selected COK covariates, and the variogram
parameters of the fitted spherical models are listed in Table 4. For each target soil property, similar
spatial dependence structures were found among the three interpolation approaches (Table 4; Figure 3).
However, in general, the variogram range decreased when data from the dense grid was considered,
either using OK or COK.

Among OK approaches, except for clay content, the nugget variance decreased when the dense
grid sensor data was used, which makes sense because data is available to explain the variance over
shorter distances. Most soil properties showed a marked increase in the empirical semivariance at
around 200 m, which is related to the approximate distance between the hillslope positions with the
most distinct soil properties values in the area. In detail, on the summit and shoulder, in the southwest
of the area (Figure 1), Lixisols are present with higher OC, SB, CEC, and θ values, whereas on the
footslope and floodplain, in the central-east part, Planosols with lower soil property values are found.
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This increase in the semivariance can indicate an uncorrected geographic trend, which is not desired
for OK. Thus, universal kriging using the geographic coordinates and elevation to remove the trend
was tested in a separate study, and did not show considerable differences in the spatial patterns and
quality of output maps that supported its use instead of OK [55].

The derived soil property maps are shown in Figure 4. From left to right, the maps were produced
by: OK of the 105 thin grid samples; OK of the 352 dense grid predictions from the best individual-sensor
model; OK of the 352 dense grid predictions from the combined-sensor model; and COK of the 105 thin
grid samples aided by the 352 dense grid samples. The best prediction models and the selected COK
covariates are listed in Table 4. The maps show similar spatial trends among soil properties, with OC,
SB, CEC, clay, and θ showing trends in the same direction, and BD showing opposite ones (Figure 4).
One of the reasons is their significant correlations (Table 2) and another one is their similar spatial
dependence structures (Table 4; Figure 3). These correlations and the similarities among soil property
maps derive from the common soil-forming factors and processes acting in the study area, notably
those related to the interconnected water dynamics and relief processes and patterns that resulted in
the different geomorphic/landscape strata in the area.

In detail, the upslope portion (summit and shoulder) in the southwest of the area has the highest
OC, SB, CEC, clay, and θ values, the latter due to the higher clay content (Figure 4). In the east, there
is a floodplain with a drainage channel cutting across it in the south to north direction (Figure 1),
with sand-rich deposits (fluvial terrace) on both sides of the channel where the lowest values of
these soil properties are found. On the backslope in the central portion, the soil property values are
intermediate. Due to the combined effect of turbulent water flows with high energy in the events
of heavy rains, seasonal flooding, and fluctuating water table in a depositional environment, the
Planosols on the fluvial terrace undergo processes of preferential deposition of sand-sized particles
from outside areas, and removal of clays, which are washed out by the drainage water, forming E
horizons. The channel drains outward to the extreme north of the area, where high values are found
again for these soil properties. Bulk density spatial patterns were the opposite of clay (and thus, of the
other properties), as sandier soils have higher BD. Thus, high BD values concentrated on the footslope
and sand-rich terrace, whereas low BD values occurred on the summit and extreme north of the area
(Figure 4).

For each soil property, the quality of predictions was reasonably similar among interpolation
approaches (Table 4), meaning that only modest improvement in map accuracy was achieved by
using sensor covariates. However, the sensor-aided derived maps were more detailed (Figure 4),
since the sensor-based predictions had better spatial coverage with more samples to be interpolated.
On the other hand, COK did not perform as well as OK of sensor-based predictions, as similarly
found by References [17,56]. In Reference [17], kriging predictions from terrain-based models using
two approaches (regression-kriging models “A” and “B”) were compared to three other methods,
including COK, to predict the depth of solum, depth to bedrock, topsoil gravel, and subsoil clay
content in a sub-catchment area in Adelaide, Australia. For all properties, kriging the terrain-based
predictions using either regression-kriging model outperformed COK and three other methods tested.
Sensor-derived ECa data was used to predict soil horizon depth in a 97-ha grassland area in the
Netherlands [56]. The predictions obtained by OK were better than those from COK of the horizon
depth aided by ECa data. In contrast, the best predictions for sand, silt, and clay contents were obtained
by COK using ECa as a covariate, relative to three univariate interpolation methods in 10 to 45-ha farm
fields in Poland [23]. However, they did not interpolate sensor-based predictions.
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Figure 3. Empirical and fitted spherical variograms of soil (A) organic carbon content (OC; g kg−1), (B) sum of bases (SB; cmolc kg−1), (C) cation exchange capacity
(CEC; cmolc kg−1), (D) clay content (g kg−1), (E) volumetric moisture (θ; %), and (F) bulk density (BD; g cm−3). OK, ordinary kriging; COK, ordinary cokriging; eTh,
equivalent Th content; ECa, apparent electrical conductivity; pXRF, DP-6000 portable X-ray fluorescence spectrometer; RS, RS-230 BGO gamma-ray spectrometer; KT,
KT-10 S/c MSa/ECa sensor.
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Different sampling designs were also compared for mapping various soil properties in
References [30,57]. In Reference [30], similar to our study, soil PR, BD, and soil moisture maps
derived from a dense grid of 145 samples (20 × 20 m) were more accurate than their corresponding
maps derived from a thin grid of 41 samples (40× 40 m). When using the sensor-based prediction on the
dense grid for OK, the RMSE of validation improved, indicating more accurate maps. In Reference [57],
grid sampling was compared to simple random sampling for kriging nine soil properties in a 10-ha
tobacco field in southwest China. Using 115 samples from each design, grid sampling provided more
accurate maps of soil organic matter, CEC, total N, total K and available K, simple random sampling
was preferred for soil pH, total P, and available P, and no difference among designs was found for
nitrate N.

3.4. Recommendations and Final Considerations

For individual use, among the sensors tested, the DP-6000 pXRF and the RS-230 BGO gamma-ray
sensors are recommended for their portability, ease of use, and potential to predict and aid fine-scale
mapping of other soil properties. Moreover, the pXRF sensor derived the best predictive models for
OC, clay, and BD, the eTh (measured by the gamma-ray sensor) had relatively high correlations with all
soil properties except BD. It is also recommended to include the CS650 WCR or another water content
sensor to improve soil property predictions. In this study, the WCR θ had the highest correlations with
OC, CEC, and soil θ among proximal sensor variables (Table 2), and was selected as a covariate in all
combined + WCR stepwise models (Table 3). A water content sensor is important for interpreting
and/or correcting other sensor measures that are influenced by soil moisture (for example, PR and ECa).

The pXRF, gamma-ray, and other sensors used in the study display the measurements as they
are taken in the field. As such, beyond soil property prediction and mapping, potential applications
for these sensors include: Rapid in situ soil characterization; assessment of the horizontal and
vertical variation (or homogeneity) of soils; delineation of soil mapping units or management zones;
assessment of soil chemical and physical quality and limitations; allocation of samples for soil mapping;
identification of soil and mineral anomalies in geochemical surveys; and others.

Via MLR prediction, the proximal soil sensors indirectly increased the sample size improving
the spatial coverage for interpolation, which provided more accurate and more detailed soil property
maps. Thus, for soil property mapping, proximal soil sensors could be used in place of laboratory soil
analysis, especially when used in combination, in similar soil-landscape settings. This would save time,
personal, financial, and environmental resources, as sample collection, transportation, preparation,
and laboratory analysis would be avoided. Moreover, it is expected that this successful application of
proximal soil sensors for fine-scale soil attribute mapping in a tropical landscape fosters the research
and on-farm operational use of proximal soil sensors in tropical soils.

4. Conclusions

Regression models from a combination of proximal soil sensors produced better soil property
predictions than those from individual sensors, excluding the pXRF sensor. In turn, the pXRF sensor
produced the best predictions for chemical and physical soil properties among individual sensors and
outperformed fusion of the other sensors for soil OC content, clay content, and BD prediction. It is one
of the most portable sensors, making it ideal for in situ measurements, and directly measures other soil
constituent elements that may be of interest, including plant macro- (K) and micronutrients (Mn, Fe,
Zn), heavy metals and pollutants (Cr, Ba, Pb), elements present in minerals linked to soil-forming
processes (Ti, Zr), and others. The proximally-sensed eTh content from the gamma-ray sensor showed
0.78 correlation with clay, 0.67 correlation with θ, and moderate correlations (r > 0.50) with OC, SB,
and CEC, and is the easiest to operate in the field.

Proximal soil sensor fusion produced better soil property maps through OK of sensor-based
predictions compared to OK of the raw data, except for OC. The soil spatial patterns, which in turn
respond to relief patterns and processes and water dynamics, were captured with better detail and
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higher accuracy, by the individual or fused soil sensor data. In situ sensor measurements are fast and
do not necessarily require soil sampling and handling (transportation, storage, preparation, laboratory
analysis), and thus, can be taken with minimum effort in more sites to increase the sample size and
improve spatial coverage and extent. In the new sampling sites, there is no need to take soil samples and
run laboratory analysis. On one side, this reduces the time and cost of sampling and data generation,
and on the other, it improves the quality of high-resolution soil property maps.
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