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Abstract

Several studies suggest the relation of DNA methylation to diseases in humans and impor-

tant phenotypes in plants drawing attention to this epigenetic mark as an important source

of variability. In the last decades, several methodologies were developed to assess the

methylation state of a genome. However, there is still a lack of affordable and precise meth-

ods for genome wide analysis in large sample size studies. Methyl sensitive double diges-

tion MS-DArT sequencing method emerges as a promising alternative for methylation

profiling. We developed a computational pipeline for the identification of DNA methylation

using MS-DArT-seq data and carried out a pilot study using the Eucalyptus grandis tree

sequenced for the species reference genome. Using a statistic framework as in differential

expression analysis, 72,515 genomic sites were investigated and 5,846 methylated sites

identified, several tissue specific, distributed along the species 11 chromosomes. We high-

light a bias towards identification of DNA methylation in genic regions and the identification

of 2,783 genes and 842 transposons containing methylated sites. Comparison with WGBS,

DNA sequencing after treatment with bisulfite, data demonstrated a precision rate higher

than 95% for our approach. The availability of a reference genome is useful for determining

the genomic context of methylated sites but not imperative, making this approach suitable

for any species. Our approach provides a cost effective, broad and reliable examination of

DNA methylation profile on MspI/HpaII restriction sites, is fully reproducible and the source

code is available on GitHub (https://github.com/wendelljpereira/ms-dart-seq).

1. Introduction

In the context of a common DNA sequence, cells employ different strategies to coordinate the

set of expressed and repressed genes in order to establish cell identity and fate during develop-

ment and physiological state, as well as adaptation to external stimuli. Epigenetics is defined in
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this context, and for decades is galvanizing the attention of the scientific community as a tun-

able adaptive layer modulating phenotypes of a given genotype [1]. Notwithstanding, this view

of epigenetics is still debatable because it does not necessarily include transgenerational inheri-

tance [2].

Epigenetic information is intertwined with chromatin accessibility and several effectors are

involved as DNA methylation, post-translational modifications of histone tails and selected

non-coding RNAs. It is also observed that these effectors act synergistically to reinforce the

overall chromatin packing density, which in turn influences the transcriptional state of genes

[3,4].

The earliest and probably most recognizable of the epigenetic marks is DNA methylation,

that is the result of the addition of a methyl group in the 5’ position of cytosines (5mC) by sev-

eral conserved and lineage specific DNA methyltransferases [5]. In mammalian genomes these

modifications occur mainly in the CG sequence context, but in other organisms, particularly

plants, other variations are also observed, such as CHG and CHH (H = A, C or T). Although

other forms of base modifications are recognizable and associated with important roles [6],

cytosine methylation mark is the most abundant chemical tag in eukaryotic DNA [7]. While

base identity remains the same, 5mC is actively perceived in the cellular milieu exerting pro-

found influence in the genome, which prompted its designation as DNA’s fifth base [8].

Despite its overwhelming occurrence, it is important to highlight that methylation is not uni-

versal in eukaryotes, given that 5mC appears to be absent in model organisms such as Saccha-
romyces cerevisiae, C. elegans and Drosophila melanogaster [7].

Regions enriched in 5mC are generally associated with closed chromatin state and therefore

transcriptionally repressed [9]. In constitutive chromatin, high levels of DNA methylation dec-

orate the repetitive fraction of the genome, such as transposable elements (TE) and satellite

DNA. This plays a fundamental role in chromosome stability and genome integrity, maintain-

ing TEs in a silenced state [10]. In the vicinity of genic regions, the degree of methylation can

have contrasting outcomes regarding gene expression. Transcription is blocked if the pro-

moter region is methylated [9]. Conversely, 5mC incidence in exonic regions is a distinctive

feature of a subset of genes that are moderately expressed and constitutive [5,11]. Known as

gene body methylation (GBM), this phenomenon, albeit taxonomically widespread, is not nec-

essary for viability and its precise role is not clearly defined [12], although it has been impli-

cated in helping splicing and avoiding spurious transcription start sites [13].

Given the high prevalence and functional implications of 5mC, its detection is the most

used avenue to investigate epigenetic phenomena. Methylation profiling can be used as a

proxy to detect dynamic changes in chromatin structure associated with development, envi-

ronmental clues or physiological/pathological states of cells and individuals. For this purpose,

several ingenious experimental approaches, boosted by the advent of next-generation sequenc-

ing (NGS), were deployed over the years to interrogate cytosine methylation status with vary-

ing degrees of resolution [14–16]. In general, these methods can be classified in three classes:

bisulfite conversion, affinity enrichment and restriction enzyme mediated filtration [17].

Treatment with sodium bisulfite deaminates unmethylated cytosine to uracil, whereas 5mC

is not affected. Subsequent PCR amplification will replace the uracils by thymines. Reads from

NGS libraries created in parallel with and without bisulfite treatment are mapped onto refer-

ence genomes and the contrasting C/T positions between the libraries indicate the degree of

methylation at single base resolution. Whole-genome bisulfite sequencing (WGBS; also BS-seq

or MethylC-seq) is considered the highest resolution method for 5mC profiling [8,18], yielding

the most comprehensive DNA methylation map of a particular sample, i.e. the methylome.

The extensiveness of WGBS paradoxically impairs its use due to high costs and requirement of

a high-quality reference genome.
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Alternatives to WGBS were developed to enable studies dealing with multiple samples, tar-

geted methylation profiling and for species with poor genome resources. The solution is to

narrow down the genome sampling by filtering out regions based on methylation density or

sequence landmarks. Methylation profile techniques employing genome reduction, either

based on restriction enzymes or affinity enrichment, sample a fraction of the genome and

therefore decrease the sequencing effort and costs. As such, these methods represent cost-

effective alternative approaches in comparison to WGBS, that requires high coverage (>30X)

of whole genome sequencing and thus turn out to have prohibitive costs for large sample size

studies [19]. Methods with general application fall into two broad categories: affinity filtering

and restriction enzyme (RE) based. Affinity enrichment methods (reviewed in Zeng et al. [16])

rely on post DNA fragmentation capture of methylated regions in the genome using antibodies

(MeDIP-seq; Down et al. [20]) or CpG binding proteins (MDB-seq, Li et al. [21]; MethylCap-

seq, Brinkman et al. [22]), followed by NGS. The main drawbacks are the bias towards hyper-

methylated regions and the impossibility to ascertain the location of 5mC within the reads

[17,23].

Genome reduction based on restriction enzyme sensitivity to methylated regions have been

used for decades [24]. Using a frequent cutter enzyme such asHpaII, that cleaves CCGG sites

only if cytosines are not methylated, digestion fragments are size selected and subjected to

NGS. Techniques such as methyl-sensitive cut counting (MSCC; Ball et al. [25]), Methyl-seq

(Brunner et al. [26]) and HELP-seq (Oda et al. [27]) construct reduced representation libraries

fromHpaII digestion usingMspI, its methylation insensitive isoschizomer, as a normalizing

control. Even though these fragments represent a very small fraction of the genome, they are

enriched in hypomethylated regions and relevant functional elements such as CpG islands,

promoters and gene bodies [25,27]. To overcome the deficient sampling of CpGs imposed by

HpaII CCGG recognition site, other methyl sensitive restriction enzymes (MREs) were used to

broaden the sampled loci, as is the case of the expanded MSCC [28] and MRE-seq [29]. Both

methods reinforce the observation that, in mammals, promoters are hypomethylated in con-

trast with 5mC incidence in inter and intragenic regions. It was also shown a negative correla-

tion between sites sampled by MRE-seq and MeDIP-seq, that both methods are accurate and

can be used to appraise general methylation status, despite not being able to recognize individ-

ual 5mC [29].

Here, we applied a technique based on MRE-seq, named Methyl Sensitive DArT-seq

(MS-DArT-seq), which is an adaptation of DArT sequencing (DArT-seq), a genotyping tech-

nology based on the combination of double digestion of genomes, followed by special adapter

ligation and next generation sequencing [30–33]. This RE complexity reduction creates a

reduced representation of the genome, by producing selective and reproducible fragments rep-

resenting methylation loci, providing a cost-effective methylation profiling alternative to

WGBS (revised in Xing et al. [19] and Paun et al. [34]). MS-DArT-seq implements methylation

profiling by mirroring the procedure of MSCC, where two libraries are constructed in parallel

using restriction enzymes that target CCGG sites and show contrasting methylation sensitivity

(MspI, methylation insensitive; HpaII which does not cleave if the internal cytosine is 5’-meth-

ylated). Unlike MSCC, a double digestion with PstI is employed in MS-DArT-seq and only

doubly digested fragments (PstI-MspI/HpaII) are selected by ligation of adaptors correspond-

ing to the two RE overhangs. The enzyme PstI also presents DNA methylation sensitivity,

therefore, extending the sampling bias toward hypomethylated regions. As a proof of concept,

we applied this technique to probe the DNA methylation status of thousands of sites in differ-

ent tissues of a Eucalyptus grandis tree used to generate the reference genome of the species

[35].
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2. Results

2.1 MSD-tags and MSD-sites generation

Two libraries were constructed from each of three different tissues namely, juvenile leaves,

adult leaves and developing xylem, using a pair of restriction enzymes for each (PstI-MspI and

PstI-HpaII) and single-end sequenced using Illumina platform generating more than 45 mil-

lion 77 base pairs (bp) reads. After processing and mapping the reads against the reference

genome, 7,869,635 (17.40%) reads mapped in multiple positions and 5,282,139 (11.68%) did

not align to the reference genome with the applied criteria. Thereby, 32,086,893 (70.92%) were

unique mapped reads and used to derive the methylation status of the sequenced fragments.

We defined a MSD-tag as a region that starts at a PstI restriction site in a read mapping

location and extends to the nextMspI/HpaII restriction site in the same strand (Fig 1A). It is

worth remembering that the entire region between the two sites, i.e., the MSD-tag, could be

deduced considering the Eucalyptus grandis reference genome. Once these MSD-tags were

defined, mapped reads were counted and served as a proxy to assess the methylation status of

cytosines in theMspI/HpaII restriction site comparing read counts for each MSD-tag between

PstI-MspI and PstI-HpaII libraries (Fig 1B). Lower read count in theHpaII library is expected

in methylated regions, due to the impaired digestion of 5mC. Conversely, no significant read

count differences between libraries are expected in non-methylated regions. Once the counts

of a MSD-tag differ between libraries, the MSD-site is classified as methylated (MSD-methyl-

ated site). However, it is important to notice that it is not possible to determine if a MSD-

methylated site is fully-methylated or hemi-methylated (Fig 1B).

After processing MS-DArT-seq data, 76,106 unique MSD-tags were generated and had

counts associated to each sample and library. Since multiple MSD-tags can represent the same

restriction site, these 76,106 MSD-tags represents a set of 72,515 MSD-sites (internal cytosines

Fig 1. Illustration of MSD-tags and MSD-sites. A) A MSD-tag is defined as a sequenced DNA fragment whose count can be used to infer cytosine

methylation status in theMspI/HpaII restriction site (named MSD-site). Notably, a MSD-site can be pictured by more than one MSD-tag, as portrayed

in A). When MSD-tags counts for each library are significantly different (Fold change� 2 and False Discovery Rate (FDR)� 0.05 in both edgeR and

DESeq2), they are considered MSD-methylated sites (B-i). ContrastingMspI andHpaII activities only informs about the methylation status of internal

cytosines within MSD-sites. Moreover, a MSD-methylated site can represent a fully-methylated or one of two hemi-methylated states, since it is not

possible to distinguish them (B-ii).

https://doi.org/10.1371/journal.pone.0233800.g001
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in theMspI/HpaII restriction site). These MSD-sites were widely distributed in E. grandis
genome covering all 11 chromosomes (Fig 2), albeit unevenly distributed. This was verified by

a Pearson’s chi-squared goodness-of-fit test for the equality of the number of sampled sites

along the chromosomes using various window sizes (see Methods). In all cases, the uniform

distribution was rejected (p-value < 0.001).

2.2 Sampling breadth of MSD-tags

In order to assess the extent of genome reduction resulting from the double restriction diges-

tion, we performed an in silico digestion of the reference genome. MS-DArT-seq reads were

compared to the in silico digestion fragments to ascertain the degree of representativeness. We

found that most MSD-tags (80%) have sizes within the range of 48 to 574 bp (Fig 3B), with an

average of 289 bp (s.d. ~ 711.3, CV ~ 2.46). These MSD-tags account for 47.13% of the poten-

tial fragments in the same size range resulting from in silico double digestion. Since Eucalyptus
grandis is a species with a high level of heterozygosity, the presence of SNPs in the reference

genome may have prevented the detection of some restriction sites in our in silico analysis.

Therefore, fragments extremely short or large are presumably artefacts. Consequently, the

range between the 1st and 9th decile may represent a more reliable representation of the sam-

pling capacity of the MS-DArT-seq.

The restriction enzyme PstI is sensitive to DNA methylation, and this feature is leveraged

by MS-DArT-seq methodology to evade highly methylated genomic regions, essentially

enriching hypomethylated loci [32]. To investigate the breadth of MS-DArT-seq genomic

Fig 2. Distribution of 72,515 MSD-sites in the eleven E. grandis chromosomes. Each bar represents a window of 250 kb.

https://doi.org/10.1371/journal.pone.0233800.g002
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reduction protocol, a computational simulation was carried out to probe for the genome-wide

distribution of fragments resulting from an in silico double digestion using PstI andMspI/
HpaII. The program Ologram [36] was applied to test the statistical significance of the result-

ing fragments being colocalized with the set of genes in the genome. As a basal test, we evalu-

ated the distribution of CCGG sites in the genome, i.e. fragments generated byMspI digestion.

The results shown in Fig 3A ascertain that both the sequenceable fragment sets derived

from either theMspI single or double digestion with PstI, show significant colocalization with

genic regions, more than expected by chance (p-value<10−320). Simulations with other poten-

tial six-cutter REs, namely BamHI and EcoRI, also show, to a lesser extent, significant colocali-

zation with genes and no association with intergenic regions (Fig 3A). These observations

suggest a skewed distribution of CCGG sites in the neighborhood and inside genes, accounting

for the observed experimental bias of MRE-seq methods, including MS-DArT-seq.

2.3 Determination of DNA methylation

The determination of cytosine methylation status within the restriction sites was carried out

by MSD-tag read counts comparison between PstI-HpaII and PstI-MspI libraries. The methyl-

ation sensitive PstI-HpaII library would, in principle, not yield reads in case of a fully methyl-

ated site but, given the heterogeneous methylation state of different cell types,HpaII derived

MSD-tags may be also sampled.

We adopted a statistical framework akin to RNA-seq differential gene expression to test for

deviations in read counts per restriction site for the two libraries. The rationale is that, for a

methylated RE site,MspI derived read counts should be higher than the corresponding HpaII
derived.

First, we removed all MSD-sites with missing data for one or more of the tissues. Then, a

minimum depth of 3 counts was imposed for a site to be considered. From a total of 76,106

MSD-tags generated for all BRASUZ1 samples, 32,357 (42.5%) were sampled in all tissues and

30,387 (39.9%) passed the criteria of minimal count. The read counts per MSD-tag were

Fig 3. Distribution and co-localization of fragments generated by in silico digestion. A) Statistics of colocalization of in silico fragments generated by

digestion with different combinations of REs and genomic features (genic and intergenic regions), as evaluated by the software Ologram [36]. In yellow,

it is shown the observed intersections of the set of fragment intervals; in blue, intersections of the shuffled regions. Error bars represent the standard

deviation of the shuffled distribution. The p-values for each feature colocalization is shown above the category bars. B) Distribution of fragments by size.

In yellow, the distribution of fragments predicted by in silico digestion of the E. grandis genome by the combination ofMspI/HpaII and PstI restriction

enzymes. Only fragments that have one end originated from a PstI site and the other end from either aMspI orHpaII site are represented. In blue,

76,106 MSD-tags with reads in at least one of the sequenced libraries. The red lines show the 1st and 9th decile of the sequenced fragment sizes.

https://doi.org/10.1371/journal.pone.0233800.g003
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analyzed using both edgeR [37] and DESeq2 [38] to test for significant abundance differences

between the two libraries. The MSD-tags for which both programs identified significant differ-

ences (fold change� 2 and FDR < 0.05) were assumed to represent a truly MSD-methylated

site. In total, 5,846 MSD-tags passed the criteria and, therefore, were considered as MSD-

methylated sites (Fig 4).

2.4 Accuracy of DNA methylation detection using MS-DArT-seq data

We used whole genome bisulfite sequencing (WGBS) data of the adult leaves sample to certify

the accuracy of MS-DArT-seq methylation calling. We considered only the 30,387 MSD-sites

without missing data in any sample and with counts larger than 3 reads to keep the same crite-

ria. A total of 4,759 MSD-methylated sites were identified in adult leaves sample using

MS-DArT sequencing and 4,280 (89.94%) of these sites were sampled in WGBS. WGBS data

shows 4,086 sites had at least one of the two internal cytosines classified as methylated (3,969

fully-methylated and 117 hemi-methylated). Considering only the MSD-methylated sites also

covered by WGBS, the coincidence between the two approaches reached 95.47%, indicating a

high efficiency of our analytical protocol in DNA methylation detection (S1 File).

One recurrent question about the use of the isoschizomers HpaII andMspI to detect DNA

methylation is how to interpret profiles where fragments are more abundant inHpaII library

[39]. The pattern is normally attributed to hemi-methylation in one of the external cytosines

of the restriction site. To investigate this issue, we applied the same analytical protocol to test if

any MSD-site had counts significantly higher in PstI-HpaII than in PstI-MspI library. Only 47

MSD-sites showed this pattern in adult leaves sample. Twenty four (51%) of these sites are rep-

resented in WGBS, all of these completely unmethylated in WGBS data, except for one which

had the internal cytosines in the fully-methylated state. Therefore, data produced in this study

support the idea that sites whose fragments are more abundant in theHpaII library appear to

be spurious and do not represent hemi-methylation.

Fig 4. Venn diagrams demonstrating comparison among the MSD-methylated sites for all tissues.

https://doi.org/10.1371/journal.pone.0233800.g004
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2.5 DNA Methylation distribution in BRASUZ1 tissues

MS-DArT-seq data were used to evaluate methylation patterns of selected tissues of BRASUZ1

tree: developing xylem, juvenile and adult leaves. Only the 32,357 MSD-sites without missing

data in any tissue were used in this analysis. This subset of MSD-sites show similar distribution

along the chromosomes as the full set (S1 Fig). Data reproducibility were assessed by compari-

son of MSD-tag counts in biological replicates for all the tissues sampled and each of the two

libraries (HpaII andMspI). Within tissue correlation coefficients between replicates were high

(r� 0.97) and the same held between the two leaves samples of different developmental stages

(S2 Fig). Principal component analysis using counts of MSD-methylated sites further high-

lights the methylation differences between xylem and leaves, even though not sufficient to dif-

ferentiate young and adult leaves (S3 Fig).

Considering the three tissues sampled, a total of 5,846 MSD-methylated sites were detected.

Separately, 4,759 MSD-methylated sites were detected in adult leaves sample, 5,026 in juvenile

leaves and 4,634 in xylem (Table 1). Around 64.2% MSD-methylated sites are methylated in all

tissues (Fig 4), reaching up to 74.6% of common MSD-methylated sites in adult and juvenile

leaves. Despite this high intersection, sets of MSD-methylated sites exclusive of each tissue

were also detected. Considering the set of 32,357 MSD-Sampled sites without missing data as a

reference, it is possible to determine that the differences observed are larger than expected by

chance (p-value < 0.001; Cochran’s Q test), with each tissue sample being significantly differ-

ent from the others (p-value < 0.001 in all pairwise comparisons using Wilcoxon sign test).

2.6 Genomic context of the MSD-tags

We set out to explore the genomic context of the MSD-methylated sites and, interestingly,

observed that the majority were located in annotated genes (3,426 or 58.60%), from which

2,503 in exons and 923 in introns or UTRs. TEs accounted for 992 (16.97%) of the MSD-meth-

ylated sites location, 886 residing in intergenic regions and 106 representing TEs inside an

intron or UTR of a gene. Around 19% (1,121) of MSD-methylated sites appear in regions with-

out any annotation (Table 1). For 307 (5.20%) MSD-methylated sites, it was not possible to

determine the genomic context, due to overlapping genes and/or TEs, reflecting possible anno-

tation errors of E. grandis reference genome.

Other studies have demonstrated that genomic reduction by double digestion with enzymes

PstI-MspI/HpaII promotes a preferential sampling of gene rich regions [40,41]. Fisher’s exact

tests were applied to determine if MS-DArT-seq sampling is biased toward genic space. Taking

Table 1. Genomic context of mapped MSD-methylated sites of BRASUZ1 tree by tissue sampled using MS-DArT sequencing.

Category Subcategory Adult leaves Juvenile leaves Developing Xylem Total

Genes Intron or UTR 803 826 817 923

Exon 2,108 2,229 2,128 2,503

Total 2,911 3,055 2,945 3,426

TEs Intron or UTR 88 91 88 106

Intergenic 689 737 565 886

Total 777 828 653 992

Feature overlap Overlapping genes 23 21 21 26

TE overlapping gene 209 232 239 281

Total 232 253 260 307

Intergenic Intergenic (outside TEs) 839 890 776 1,121

Total 4,759 5,026 4,634 5,846

https://doi.org/10.1371/journal.pone.0233800.t001
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all possibleMspI/HpaII restriction sites in E. grandis genome, it was found that MSD-sites are

located within genes at a significantly higher proportion than expected by chance (p-

value < 0.001; S1A Table). Moreover, considering only the set of MSD-sites without missing

data sampled in this study by MS-DArT-seq (32,357), therefore excluding the influence of

sampling bias, we determined that MSD-methylated sites occur more frequently within genes

than in intergenic regions (p-value < 0.001; S1B Table).

Furthermore, the majority of the 1,121 MSD-methylated sites in intergenic regions are

located within 10 kb from a gene (509 sites) or a TE (1,037 sites) as shown in Fig 5. In order to

verify if there is a genic region enrichment bias promoted by MS-DArT-seq sampling, a chi-

square test was applied to compare the distribution of these sites against the distribution of

MspI/HpaII sites in the same interval of 10 kb of a gene or a TE (Fig 5, S4 Fig). Results demon-

strated that concentration of MSD-methylated sites in the vicinity of genes is higher than

expected only in the first kilobase, considering the proportion ofMspI/HpaII sites at the same

distance (p-value = 0.006; S4 Fig). Conversely, the incidence of MSD-methylated sites up to 10

kb from TEs is not biased in comparison with the distribution ofMspI/HpaII sites in the same

region (p-value = 0.52). Finally, comparison of MSD-methylated sites between tissues showed

no significant difference regarding their occurrence near genes or TEs in the evaluated

intervals.

Another evidence of the preferential sampling of gene rich regions were obtained applying

the recently developed Annotation Landscape For Aligned reads (ALFA) software [42]. As

shown in Fig 6, considering the normalized counts of the MS-DArT-seq mapped reads, there

is a clear overrepresentation of genic regions, mostly 5’ UTR and coding sequences, while the

intergenic regions are less represented than expected. Therefore, MS-DArT-seq promotes a

cost-effective approach to the detection of DNA methylation in genic regions.

2.7 Comparison of tissue methylation profiles

Taking into account MSD-methylated sites present in genes (S5A Fig) or TEs (S5B Fig), it is

possible to observe that the coincidence of MSD-methylated sites in genes among tissues is

higher than what was found for all MSD-methylated sites (~ 75.4% and 64.2%, respectively).

Fig 5. Distribution of MspI/HpaII sites present in the vicinity (10 kb) of genes and TEs (left) and distribution of

MSD-methylated sites co-locating with genic regions (right).

https://doi.org/10.1371/journal.pone.0233800.g005
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On the other hand, correspondence among MSD-methylated sites in TEs is reduced to

approximately 48.2%. Once again, for both methylated genes and TEs (here defined as genes

or TEs that contains at least one of the MSD-methylated sites), correspondence between leaves

samples is higher than both general and the correspondence of any of the two distinct develop-

mental stage leaves with xylem sample, reflecting the methylation patterns associated to tissue

differentiation (S5C and S5D Fig).

Fig 6. Distribution of MS-DArT-seq reads in the E. grandis genome accordingly with ALFA software. While the total number of reads are

concentrated in intergenic regions (superior), the normalized counts reveal a clear bias of the MS-DArT-seq sampling towards genic regions

(inferior). Because replicates counts from each tissue are similar, the sum is presented to simplify visualization.

https://doi.org/10.1371/journal.pone.0233800.g006
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Notwithstanding, it was also possible to detect MSD-methylated sites specific for each sam-

ple. To evaluate if distribution of MSD-methylated sites on specific genomic features is equiva-

lent between the three samples, a chi-squared test was applied using the proportion of MSD-

methylated sites in each category. The results show that there is a statistically significant associ-

ation between tissues and MSD-methylated site genomic feature category (p-value ~ 0.04).

The only significant distribution deviation demonstrates that xylem sample has less MSD-

methylated sites in TEs located in intergenic regions than expected, as observed by Pearson

standardized residuals (S6 Fig).

Since it is possible to have more than one MSD-methylated site per gene or TE, compari-

sons of methylated genes and TEs in different samples were also conducted (S5C and S5D Fig,

respectively). Results of these comparisons were similar to MSD-methylated sites results with

high correspondence of methylated genes among tissues (2,097 genes; 75.4%) and a lower cor-

respondence of methylated TEs (406 TEs; 48.2%). However, the probability of a gene or TE be

methylated depends on the tissue (p-value ~ 2.2−06 and p-value < 0.001, respectively;

Cochran’s Q test). The Wilcoxon signed test applied to pairwise comparisons reveals that the

set of methylated genes from juvenile leaves is different from both adult leaves and xylem sets

(p-value < 0.001). However, the difference between the set of methylated genes from adult

leaves and xylem are not significant (p-value ~ 0.92). Finally, it is possible to declare that the

methylation patterns in TEs are different in all three evaluated tissues (p-value < 0.001 in all

pairwise comparisons using Wilcoxon sign test).

2.7.1 Classification and comparison of methylated TEs among tissues. Transposable

elements which had at least one MSD-methylated site were classified and their distribution

were compared among samples (Fig 7; S7 Fig). To determine if the distribution of methylated

TEs belonging to different classes is tissue dependent, and considering that the sets of methyl-

ated TEs differ among tissues, a chi-square test was applied using proportions of TEs in each

class. Results showed that the proportion of methylated TE class does not differ among the

samples (p-value = 0.99).

When the test was applied considering all annotated TEs as equally possible of being meth-

ylated, a significant difference was verified (p-value < 0.001), suggesting that some TE classes

Fig 7. Relative frequency of all TEs in the E. grandis genome (left) and classes of methylated TEs in each sample

(right). RNA_general and DNA_general are TEs not classified. Nested TEs reflects regions where more than one class

of TEs that overlaps each other were predicted.

https://doi.org/10.1371/journal.pone.0233800.g007

PLOS ONE A cost-effective approach to DNA methylation detection by MS-DarT-seq.

PLOS ONE | https://doi.org/10.1371/journal.pone.0233800 June 4, 2020 11 / 23

https://doi.org/10.1371/journal.pone.0233800.g007
https://doi.org/10.1371/journal.pone.0233800


are not constitutively methylated as would be expected. By analysis of Pearson standardized

residuals, it is possible to demonstrate that the three samples have fewer methylated TEs in

LARD and MITE classes than expected (S8 Fig). Furthermore, all tissues sampled have more

methylated LINE and Helitron TEs, as well as Nested TEs, than expected (Fig 7; S8 Fig).

Thereby, maybe the methylation mechanism in the E. grandis species affect the different classes

of TEs in distinct ways, since it was not possible to detect bias in the selection of sampled sites

inside TEs in relation to TE’s class.

2.7.2 Annotation and comparison of methylated genes among samples. All genes

which have at least one MSD-methylated site, in one or more of the three BRASUZ1 samples

investigated, were functionally annotated according to Gene Ontology (GO) (S2 File). To

investigate if there is a class of genes preferentially methylated, an enrichment analysis of GO

terms was performed. The results show that there are 149 enriched terms in the set of methyl-

ated genes verified in this study (S3 File), 74 (49.66%) present in all samples. Additionally,

there are enriched terms in the set of methylated genes that are sample specific (S2 File). Most

of these terms represents basic functions and processes. These results may reflect the fact that

samples used in this study were trees growing in normal conditions without any stress or envi-

ronmental challenge which could trigger a more specific set of methylated genes. Though, in

juvenile leaves exclusive set, it is interesting to note that there are processes related to cell

cycle, biosynthetic pathways and development in agreement with the sample developmental

stage. Moreover, the results demonstrate the capacity of our approach to promote a complete

functional annotation, that can be useful to deeply explore the biology behind a treatment or

scenario where this approach can be applied.

3. Discussion

The featured MS-DArT-seq methodology is a 5mC profiling method that can be classified

under the umbrella of genome reduction by means of methylation-sensitive restriction enzyme

digestion, such as MSCC [25] or MRE-seq [29]. Our approach branches out from these estab-

lished techniques as it relies on double digestion with the use of the RE PstI and one of each of

the isoschizomersMspI (methylation insensitive) andHpaII (methylation sensitive) that rec-

ognize the prototypical site (CCGG) covering CG and CHG methylation contexts. Two paral-

lel libraries are constructed per sample using PstI and one of each of the isoschizomers.

Library preparation assures the directional selection of fragments containing both restriction

sites (PstI-MspI/HpaII) and the generation of a larger sequence context (up to 73 bases, mean

of ~50 bases, after quality control) that improves genome mapping uniqueness when com-

pared to MSCC’s short tags. The choice of PstI is advantageous because it is also sensitive to

methylation and its activity impaired in highly methylated areas, notably the repetitive fraction

of genomes [32], thereby enriching hypomethylated regions such as transcriptionally active

chromatin.

As a proof of concept, we used MS-DArT-seq to probe for tissue-specific methylation dif-

ferences in the tree Eucalyptus grandis, although it can be applied to any species. Using three

tissue samples, the straightforward protocol resulted in more than 30 thousand MSD-sites

without missing data distributed along the 11 Eucalyptus chromosomes. It is important to

mention that the DNA quality has an important role in the detection of MSD-sites, as poor-

quality DNA will impair the full DNA digestion. In this study, DNA samples from xylem tissue

had the smallest number of MSD-sites identified, a direct consequence of the poorer DNA

quality of these samples compared to leaves. Therefore, we only used MSD-sites present in all

samples, excluding MSD-sites with missing data, circumventing the variation in DNA quality

between samples.
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Using MS-DArT-seq, methylation is called based on the difference of library specific (MspI
andHpaII) counts of mapped reads against a reference genome. It is important to highlight

that the availability of a reference genome is optional, making the methodology applicable to

species poor in genomic information. Furthermore, the technique showed high reproducibil-

ity, as demonstrated by the strong correlation for the three biological replicates of each sample

tissue analyzed, both in terms of site sampling and methylation calling (S2 Fig).

MS-DArT-seq was confronted with the current gold standard protocol for cytosine methyl-

ation detection at single nucleotide resolution, WGBS. Taking the adult leaves sample as vali-

dation data, the majority of the MSD-methylated sites detected by our approach was

confirmed by WGBS results (95.47%; S1 File), endorsing the great accuracy in DNA methyla-

tion detection promoted by the combination of the experimental method MS-DArT-seq data

and our analytical pipeline.

Regarding the functional annotation of MSD-tags, we observe a sampling bias towards

genomic sites positioned inside annotated genes. Strikingly, around 47% of our MSD-sites

(15,317 out of 32,357) are located in genes, albeit the bulk majority of repeats and non-genic

regions (Table 1; Figs 5 and 6). This can be a result of the chosen REs. Even thoughMspI is

considered to be methylation insensitive, it was shown that bothMspI andHpaII are blocked

by methylation in the external cytosine (Cext) of the restriction site 5’-CextCintGG-3’, which

corresponds to the CHG context observed in plants [39,41]. Therefore, methylated CHG sites

are not sampled by MS-DArT-seq and, since CHG methylation occurs more frequently in

intergenic regions and is predominantly enriched in repetitive elements [43], these locations

tend to be filtered out favoring genic region sampling. The enzyme PstI also shows sensitivity

to CHG methylation, enhancing this effect [41,44]. A potential disadvantage of this PstI attri-

bute is the reduction in the number of sampled sites. As shown in Fig 3A), while thousands of

MSD-sites were identified, a considerable fraction of the fragments predicted in silico were not

sequenced, potentially due to avoidance of hypermethylated regions and DNA methylation in

the CHC context. Moreover, the removal of multiple mapped reads can promote the under-

representation of sequenced fragments originated from genomic regions rich in repetitive ele-

ments, contributing to the reduction in the number of sampled sites by our analytical pipeline.

The genic region bias of MS-DArT-seq may be favorable to appraise the effects of methyla-

tion dynamics in gene expression, imprinting and gene body methylation, although not in a

targeted way. For instance, a survey based on WGBS determined that ~21% of E. grandis genes

(7,731 of 36,349) showed methylation patterns indicative of GBM [43]. In our experimental

setting, 45.48% of all genes with GBM in E. grandis were sampled by MS-DArT-seq, suggesting

that this technique provides an attractive alternative to study this puzzling biological phenom-

enon [12], at least in plants, at a fraction of the cost of WGBS.

In terms of methylated TEs, MS-DArT-seq is able to identify a fraction of the elements in

each of the main classes (Fig 7), although there is a greater than expected chance to detect sub-

sets of TEs annotated as HELITRON, LINE and Nested TEs, whereas LARD and MITE ele-

ments were less frequently detected as methylated (S8 Fig). This observation is consistent in all

tissues, but neither the reasons for this discrepancy nor its generalization to other species can

be ascertained at this stage.

Another interesting observation was the significant difference observed in methylation pat-

terns between immature leaves and the two other samples coming from mature tissues (leaves

and xylem), that may be explained by the dynamic feature of DNA methylation during devel-

opmental stages [45–49]. Either increase [50,51] or decrease [52] in methylation levels has

been observed in different species as tissues mature. Other evidence come from elevated

expression of the RdDM (RNA directed DNA methylation) pathway and other chromatin reg-

ulators in meristems suggesting they act as a relay mechanism to ensure correct propagation of
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silent states to new tissues and organs [53], from epigenomic diversity observed between cell

types within root meristem [54] and from highly dynamic DNA methylation during cork cells

differentiation [55]).

To the best of our knowledge, there are only two other published computational methods

for DNA methylation data analysis based on methyl-sensitive restriction enzymes combined

with NGS. Chwialkowska et al. [40] developed MSAP-Seq and Mayne et al. [56] developed the

R package msgbsR, which employs a similar approach. However, these methods are con-

strained to MSCC-type data, dealing only with frequent cutter enzymes, which is not applica-

ble to the double digestion strategy adopted by MS-DArT-seq. Overall, our pipeline provides a

broad and reliable overview of DNA methylation profile onMspI/HpaII restriction sites and

can handle the double digestion scenario. Also, the aforementioned programs can only deter-

mine a sample methylation status contrasting to another sample (usually, a control condition).

Since our approach is based on direct comparison between PstI-MspI and PstI-HpaII libraries

for each sample, it is possible to determine the methylation status in thousands of genomic

sites independently of a control sample.

In the light of probing the dynamic context of epigenetic states in cells, the profusion of

DNA methylation profiling methods arises from the necessity to equate resolution, scalability

and costs. Whole genome bisulfite-based approaches provide the best coverage and a quantita-

tive view of methylated cytosines in a genome. But this comes at a high price tag and with the

strict requirement of a reference genome, that hinders its application for the vast majority of

species. Restriction-based methods, despite the noticeable sampling distortion, offer an afford-

able gateway to epigenomic studies in species with poor genomic resources. MS-DArT-seq is a

new representative of this approach, allowing DNA methylation detection with accuracy and

scale. We suggest this approach can be of great importance in population studies, balancing

large sample sizes with a discrete, but informative, overview of the epigenome.

4. Materials and methods

4.1 Plant material

Plant material used in this study are three Eucalyptus grandis trees which are biological repli-

cates or clones of the genotype BRASUZ1, the same used for the sequencing of the species ref-

erence genome [35]. The clones are planted at EMBRAPA (Brazilian Agricultural Research

Corporation) Genetic Resources and Biotechnology, Brası́lia, Brazil. Three tissues were col-

lected simultaneously from the trees of 4 year old: completely developed leaves referred to as

adult leaves, juvenile or developing leaves (for each tree, both leaves tissues were sampled from

the same branch which was in the side of the tree directed to sunlight exposition) and xylem.

Genomic DNA of each sample was extracted using an adapted protocol based on the classic

CTAB [57,58] method. MS-DArT library preparation and sequencing was carried by the

Diversity Arrays Technology Ltd. (DArT, Australia).

4.2 Methylation sensitive DArT sequencing (MS-DArT-seq)

DArT-seq represents a combination of a DArT complexity reduction method and next genera-

tion sequencing platforms [32]. For methylation analysis, named MS-DArT-seq, two parallel

libraries are prepared per sample using DNA double digestion restriction-based protocol with

the combination of the enzymes PstI andMspI (PstI-MspI) and PstI andHpaII (PstI-HpaII).
DNA samples are processed in digestion/ligation reactions as described in [32], except for

replacing a single PstI-compatible adaptor with two different adaptors corresponding to two

different Restriction Enzyme (RE) overhangs. Therefore, only “mixed fragments” (PstI-MspI
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and PstI-HpaII) are effectively amplified in 30 rounds of PCR. Then, the amplification prod-

ucts are single-end sequenced in an Illumina Hiseq 2500 machine for 77 cycles.

4.3 Data processing and sampled sites definition

Quality check of MS-DArT-seq raw sequence data was performed by FastQC (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/). Low quality bases and sequencing adapters

were trimmed using Trimmomatic v.0.36 [59] with default parameters, except for the addition

of SLIDINGWINDOW:5:25 option. Read mapping was performed by bowtie2 v.2.3.5 [60].

Reads from all libraries were mapped together on the Eucalyptus grandis genome v.2.0 (Phyto-

zome v.12; Goodstein et al. [61]) in four steps. At first, no mismatches were allowed and at

each subsequent step only unmapped reads were used, allowing one additional mismatch at a

time up to three mismatches. No gaps were allowed and reads mapped to multiple locations

were removed.

Bedtools v.2.27.1 [62] was used to extract the positions of mapped reads. This information

was processed by an in-house R script to determine the sequenced fragments, named as MSD-

tags, as well as, the position of the correspondingMspI/HpaII restriction sites, named MSD-

sites, whose methylation status are interrogated by reads counts comparison between the two

libraries. Both MSD-tags and MSD-sites are determined using the mapped reads locations and

positions of theMspI/HpaII and PstI restriction sites in the E. grandis reference genome, as

described in Fig 1.

The distribution of sequenced fragments (MSD-tags) was compared with the distribution

of in silico predicted fragments by the genomic digestion using the combination ofMspI/
HpaII and PstI restriction enzymes. To test if these two distributions are comparable, we used

a two-sample Kolmogorov-Smirnov test. Since these are discrete distributions, the bootstrap

Kolmogorov-Smirnov test (Matching R package [63]) was applied using one thousand Monte

Carlo simulations to determine the proper p-value.

The program Ologram [36] was applied to evaluate the statistical significance of colocaliza-

tion between the in silico fragments generated by the double digestion using PstI-MspI/HpaII
and genes. Similarly, a colocalization analysis was also conducted for in silico fragments gener-

ated by double digestion using the restriction enzymes BamHI and EcoRI andMspI/HpaII as

alternatives to PstI. For all colocalization analysis, the in silico digestion was performed by a

custom R script. Fragments smaller than 100 bp or larger than 600 bp were removed since they

are outside the fragment size range for Illumina sequencing library construction.

To test if the distribution of the MSD-sites along the chromosomes of E. grandis is uniform,

each chromosome was split in windows of different sizes (1 Mb, 500 Kb, 250 Kb and 100 Kb)

and a goodness-of-fit test (chi-squared) was applied using the number of sampled sites in each

window.

To identify the methylated sites (MSD-methylated sites) in each sample, libraries (PstI-
MspI and PstI-HpaII) reads were mapped individually to the E. grandis assembly and counts

for each MSD-tag were found by featureCounts v.1.6.2 [64].

4.4 DNA methylation determination by reads count comparison

For each sample in this study, determination of MSD-methylated sites was carried out by com-

parison between counts of each MSD-tag in PstI-HpaII and PstI-MspI libraries. Bioconductor

packages edgeR [37] and DEseq2 [38] were used for this comparative analysis, assuming that

counts follow a negative binomial distribution. Adult leaves MS-DArT-seq data was used as a

reference to determine the optimized values of the False Discovery Rate (FDR) limit, minimal

Fold Change between counts from PstI-MspI and PstI-HpaII libraries and minimal counts
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necessary for a MSD-tag to be considered not spurious (minimal count filter), since bisulfite

sequencing was accomplished for the same sample (see below). These three parameters were

used to filter significant differences between counts of PstI-HpaII and PstI-MspI libraries.

In a population of different cells types, the same restriction site can be found in distinct

methylation states. Therefore, different fragments can be produced from the same correspon-

dent region in different cells, depending on the site accessibility to the RE. As a consequence,

where multipleMspI/HpaII sites are close to each other in the genome, their correspondent

MSD-tags can overlap (S9 Fig). We try to account for that during the MSD-tag definition and

counts of each MSD-tag were adjusted (S9 Fig). Also, we consider reads always starting in a

PstI site.

Three values of the FDR (� 0.05,� 0.01 and� 0.001), two values of the Fold Change (� 1

and� 2) and three values of the minimal counts filter (� 3,� 5 and� 10) were tested and all

combinations among those parameters were evaluated. For each combination, identified

MSD-methylated sites were compared with the WGBS data correspondent cytosines (S1 File).

The combination of these parameters with the largest number of MSD-methylated sites in the

validation sample (adult leaves), alongside with a maximized WGBS validation rate (called as

methylated when truly methylated), was used to determine MSD-methylated sites of all

MS-DArT-seq samples on this study.

4.5 DNA Methylation patterns of BRASUZ1 tissues

To compare methylation patterns of three different tissue samples of BRASUZ1 tree, it was

necessary to ensure that only MSD-sites sampled in all tissues would be employed. Only MSD-

tags with one or more reads in PstI-MspI library of all tissues were submitted to edgeR and

DEseq2 algorithms. The genomic context of MSD-methylated sites for each tissue was evalu-

ated to determine if methylations were positioned within or close to genes and/or on transpos-

able elements (TEs). Both TEs and genes which contain at least one of the MSD-methylated

sites, referred as methylated TEs and methylated genes, were annotated and comparisons of

these elements among tissues were performed.

Cochran’s Q test was applied to test if the probability of occurrence of a methylated site dif-

fers among tissues. If the p-value was significant, pairwise comparisons were carried out using

the Wilcoxon sign test. The same approach was used to determine if the probability of each gene

and TE have at least one MSD-methylated site is equal among the BRASUZ1 tissues sampled.

4.6 Gene functional annotation and TEs classification

Functional annotation of all methylated genes was executed by the softwares Blast2GO v,4.1

[65] and BioMart [66] (biomaRt R package [67]), using Mart provided by Phytozome v.12. For

each gene, annotation provided by the two databases were merged. To verify if there is over-

representation of methylated genes related to specific biological functions or aspects, enrich-

ment analysis of Gene Ontology (GO) terms was performed using the Bioconductor cluster-

Profiler package [68]. Prediction and classification of transposable elements was performed by

REPET v2.5 package [69].

4.7 Bisulfite sequencing

4.7.1 Library construction. Libraries were prepared by Zymo Research using Methyl-

MaxiSeq protocol. Starting with the digestion of 500 ng of genomic DNA with 2 units of Zymo

Research’s (ZR) dsDNA Shearase TM Plus (Cat#: E2018-50), fragments were end-blunted and

3’-terminal-A extended, and then purified using the Zymo Research (ZR) DNA Clean & Con-

centrator TM– 5 kit (Cat#: D4003). The A-tailed fragments were ligated to pre-annealed
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adapters containing 5’-methyl-cytosine instead of cytosine and adapter-ligated fragments were

filled-in. Bisulfite treatment of the fragments was done using the EZ DNA Methylation–Light-

ning kit (ZR, Cat#: D5030). PCR was performed with Illumina TruSeq indices, size and con-

centration of fragments were confirmed on the Agilent 2200 TapeStation and then sequenced

on Illumina Hiseq.

4.7.2 Sequence alignments and data analysis. Sequence reads from bisulfite-treated Epi-

Quest libraries were identified using standard Illumina base-calling software and analyzed with

a Zymo Research proprietary analysis pipeline written in Python and using Bismark [70] as the

alignment software for analysis. Index files were constructed by bismark_genome_preparation

command using the E. grandis reference genome. Default parameters and—non_directional

were applied while running Bismark. Methylation level of each sampled cytosine was estimated

as the number of reads reporting a C, divided by the total number of reads reporting a C or T.

To call methylated sites, we applied an approach similar to the one described by Schultz

et al. [71]. A binomial test was applied using the number of reads that supported methylation

at a site as the number of success and total reads at the same site as the number of trials. The

probability of success was given by the WGBS non-conversion rate and p-values were cor-

rected by the False Discovery Rate (FDR) procedure (Benjamini–Hochberg). A cytosine was

considered methylated if the associated FDR was� 0.01 and there were at least three reads

supporting this position.

To validate MSD-methylated sites (verified in the adult leaves sample) using WGBS data,

only MSD-sites (5’-CCGG-3’) where both internal cytosines, in the Watson and Crick strands,

were supported for at least 3 reads in the WGBS were considered. Using this comparison, it

was possible to classify MSD-methylated sites as fully-methylated (both the internal cytosines

methylated) or hemi-methylated (one of the internal cytosines methylated).

4.8 Availability of data and materials

Raw data produced by MS-DArT-seq sequencing was deposited in figshare database and is

available to download at https://doi.org/10.6084/m9.figshare.10305431. Bioinformatic analyses

were performed by open-source software and by Python and R scripts elaborated in the con-

text of this study. The analytical steps are coordinated and executed by the Snakemake work-

flow management system [72]. Scripts and the snakemake configuration files are available in

GitHub at https://github.com/wendelljpereira/ms-dart-seq.

4.9 Statistical analysis

Besides the software described in the previous sections to process the sequencing data, all anal-

ysis, statistical tests and plots generation were conducted using R programming language

v.3.5.1. A list of all R packages, their respective versions, as well as the source code is available

at https://github.com/wendelljpereira/ms-dart-seq.

Cochran’s Q non-parametric test was applied to compare the methylation state of MS-Tags

(yes or no) matched across the tissues, with the null hypothesis considering that the proportion

of methylated sites is the same for all tissues. In case of rejection of Cochran’s Q test null

hypothesis, group differences were tested by pairwise comparisons using Wilcoxon sign test.

Fisher’s exact test (one-sided) was applied to determine if MS-DArT-seq sampling is biased

toward genic space, generating more MSD-sites in genic regions than expected. Also, the same

test was applied to determine if the MSD-Methylated sites are more frequent in MSD-sites of

genes than in MSD-sites located outside genes.

For all statistical tests we considered 5% as the significance threshold and the false discovery

rate (FDR) procedure (Benjamini–Hochberg) was used to correct for multiple comparisons.
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Supporting information

S1 Fig. Distribution of the 32,357 MSD-sites, with counts in all samples, along the E.

grandis chromosomes. Each bar represents a window of 250 kilobases.

(TIFF)

S2 Fig. Correlation plot of biological replicates for each tissue. a) Pearson correlation coeffi-

cients of the comparisons between replicates counts in PstI-MspI libraries. b) Pearson correla-

tion coefficients of the comparisons between replicates counts in the PstI-HpaII libraries. The

order of samples was determined by hierarchical clustering.

(TIFF)

S3 Fig. Principal components analysis (PCA) of the MSD-tags considered as MSD-methyl-

ated sites (which counts differ significantly between PstI-MspI and PstI-HpaII libraries).

(TIFF)

S4 Fig. Association plot demonstrating Pearson’s residuals of the independence model

(chi-squared) applied to the distribution of MSD-methylated sites in the vicinity of genes

(10 kb) compared with the distribution of MspI sites in the same region.

(TIFF)

S5 Fig. Venn diagrams demonstrating comparison among the MSD-methylated sites of

three tissues. In a) and b) are presented the comparisons of MSD-methylated sites in genes

and in TEs, respectively. Comparison of methylated genes and TEs, here defined as genes or

TEs that contains at least one of the MSD-methylated sites, are respectively demonstrated in c)

and d) plots. All comparisons are supported by Cochran’s Q and Wilcoxon sign tests which

demonstrated that each tissue is significantly different from the other two (p-value < 0.05).

(TIFF)

S6 Fig. Association plot demonstrating residuals (Pearson) of the independence model

(chi-squared) applied to the distribution of MSD-methylated sites per genomic features

for each tissue. The shown p-value in the bottom right was generated by Pearson’s chi-

squared test of a multi-way contingency table and rejects (p<0.05) the null hypothesis of com-

plete independence among the samples. The area of each box is proportional to the difference

in observed and expected frequencies and the color shading highlights the individual cells that

are probably individually significant. While the color shading is helpful as a proxy of signifi-

cance it should be interpreted as an indicator of higher deviation from the expected.

(TIFF)

S7 Fig. Classification of all TEs in E. grandis genome (left) and methylated TEs in each

sample (right).

(TIFF)

S8 Fig. Association plot demonstrating residuals (Pearson) of the independence model

(chi-squared) applied to the distribution of methylated TEs in classes for each sample

alongside the distribution of all TEs in E. grandis genome.

(TIFF)

S9 Fig. Counts correction of regions where there are overlaps of MSD-tags. Because the

same restriction site can be blocked (methylated in the external cytosine) or accessible in dif-

ferent cells that are part of the pool sampled, different patterns of DNA fragments are pro-

duced. Likewise, multiple MSD-tags could be generated in the same region, each one related to

a different restriction site (MSD-site). Due to these overlaps, the count of the larger MSD-tag
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is also attributed to the ones inserted in the same region. After the correction, the counts of

each tag should match their correspondent MSD-site, improving the detection of DNA meth-

ylation.

(TIFF)

S10 Fig. Colocalization analysis of in silico fragments with gene features (CDS, exon and

UTR) and intergenic regions. Statistics of colocalization of in silico fragments generated by

digestion with different combinations of REs and genomic features (genic and intergenic

regions), as evaluated by the software Ologram [36]. In yellow, it is shown the observed inter-

sections for the set of fragment intervals; in blue, intersections of the random shuffled regions.

Error bars represent the standard deviation of the shuffled distribution. The p-values for each

feature colocalization is shown above the category bars. A-D) Statistics of colocalization as cal-

culated by the number of bases in the intersection between regions. E-F) Statistics of colocali-

zation as calculated by the number of intersections between regions.

(TIFF)

S1 File. Descriptive statistics of the comparison between MS-DArT-seq and WGBS using

different parameters for MS-DArT-seq methylation calling.

(XLSX)

S2 File. Functional annotation of genes containing MSD-methylated sites organized by tis-

sue.

(XLSX)

S3 File. Enriched GO terms of genes containing MSD-methylated sites organized by tissue.

(XLSX)

S1 Table. Contingency tables used in Fisher’s exact test to determine if MS-DArT-seq sam-

pling is biased toward genes (A) and to determine if detection of methylation is indepen-

dent of the genomic context (B). In A) is represented the distribution of all 979,886MspI/
HpaII restriction sites in the genome (CCGG). A fraction of those was sampled by

MSD-DArT-seq and called MSD-sites. The contingency table shows the proportion of all sites

located in genes and in intergenic regions, expliciting the ones sampled (MSD-sites) or not

sampled by MSD-DArT-seq in our study. The applied Fisher’s exact test evaluates if sites both

in genic and intergenic regions have an equal chance of being sampled by this technology (the

null hypothesis that sampling is independent of the genomic location). Therefore, since the

null hypothesis was rejected (p-value < 0.001), against an alternative hypothesis of true odds

ratio greater than 1, it is possible to demonstrate thatMspI/HpaII restriction sites in genes are

more likely to be selected by MSD-DArT-seq than in intergenic regions. In B), it is shown the

distribution of the MSD-sites with no missing data in all tissues, after correction of tags redun-

dancy (31,427 MSD-sites). The contingency table shows the proportion of these sites, located

in genes and intergenic regions, grouped by their methylation status. Similarly to A, the rejec-

tion of the null hypothesis indicates that MSD-sites in genes have a higher probability of being

methylated than MSD-sites in intergenic regions, even though MSD-sites in intergenic are the

most abundant.

(DOCX)
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4. Bošković A, Rando OJ. Transgenerational Epigenetic Inheritance. Annu Rev Genet. 2018; 52: 21–41.

https://doi.org/10.1146/annurev-genet-120417-031404 PMID: 30160987

5. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet.

2012; 13: 484–492. https://doi.org/10.1038/nrg3230 PMID: 22641018

6. Alderman MH, Xiao AZ. N(6)-Methyladenine in eukaryotes. Cell Mol Life Sci. 2019; 76: 2957–2966.

https://doi.org/10.1007/s00018-019-03146-w PMID: 31143960

7. Schmitz RJ, Lewis ZA, Goll MG. DNA Methylation: Shared and Divergent Features across Eukaryotes.

Trends Genet. 2019; 35: 818–827. https://doi.org/10.1016/j.tig.2019.07.007 PMID: 31399242

8. Lister R, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome

Res. 2009; 19: 959–966. https://doi.org/10.1101/gr.083451.108 PMID: 19273618

9. Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev

Genet. 2019; 20: 207–220. https://doi.org/10.1038/s41576-018-0089-8 PMID: 30675018
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36. Ferré Q, Charbonnier G, Sadouni N, Lopez F, Kermezli Y, Spicuglia S, et al. OLOGRAM: Determining

significance of total overlap length between genomic regions sets. Bioinformatics. 2019; https://doi.org/

10.1093/bioinformatics/btz810 PMID: 31688931

37. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression

analysis of digital gene expression data. Bioinformatics. 2010; 26: 139–140. https://doi.org/10.1093/

bioinformatics/btp616 PMID: 19910308

38. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data

with DESeq2. Genome Biol. 2014; 15: 550. https://doi.org/10.1186/s13059-014-0550-8 PMID:

25516281

39. Fulneček J, Kovařı́k A. How to interpret methylation sensitive amplified polymorphism (MSAP) profiles?

BMC Genet. 2014; 15: 2. https://doi.org/10.1186/1471-2156-15-2 PMID: 24393618

40. Chwialkowska K, Korotko U, Kosinska J, Szarejko I, Kwasniewski M. Methylation Sensitive Amplifica-

tion Polymorphism Sequencing (MSAP-Seq)-A Method for High-Throughput Analysis of Differentially

Methylated CCGG Sites in Plants with Large Genomes. Front Plant Sci. 2017; 8: 2056. https://doi.org/

10.3389/fpls.2017.02056 PMID: 29250096

41. Pootakham W, Sonthirod C, Naktang C, Jomchai N, Sangsrakru D, Tangphatsornruang S. Effects of

methylation-sensitive enzymes on the enrichment of genic SNPs and the degree of genome complexity

reduction in a two-enzyme genotyping-by-sequencing (GBS) approach: a case study in oil palm (Elaeis

guineensis). Mol Breed. 2016; 36: 154. https://doi.org/10.1007/s11032-016-0572-x PMID: 27942246
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