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Mineral contents in bovine muscle can affect meat quality, growth, health, and reproductive traits. 
to better understand the genetic basis of this phenotype in nelore (Bos indicus) cattle, we analysed 
genome-wide mRNA and miRNA expression data from 114 muscle samples. The analysis implemented 
a new application for two complementary algorithms: the partial correlation and information theory 
(pcit) and the regulatory impact factor (Rif), in which we included the estimated genomic breeding 
values (GeBVs) for the phenotypes additionally to the expression levels, originally proposed for these 
methods. We used PCIT to determine putative regulatory relationships based on significant associations 
between gene expression and GeBVs for each mineral amount. then, Rif was adopted to determine 
the regulatory impact of genes and miRnAs expression over the GeBVs for the mineral amounts. We 
also investigated over-represented pathways, as well as pieces of evidences from previous studies 
carried in the same population and in the literature, to determine regulatory genes for the mineral 
amounts. for example, NOX1 expression level was positively correlated to Zinc and has been described 
as Zinc-regulated in humans. Based on our approach, we were able to identify genes, miRnAs and 
pathways not yet described as underlying mineral amount. the results support the hypothesis that 
extracellular matrix interactions are the core regulator of mineral amount in muscle cells. putative 
regulators described here add information to this hypothesis, expanding the knowledge on molecular 
relationships between gene expression and minerals.

Besides nutritional quality, mineral amount affects meat quality in many ways. For example, the tenderization 
process of the skeletal muscle is driven by the action of the calcium-dependent protease calpain1–4. Minerals also 
affect reproduction, as copper, zinc, selenium and manganese supplementation improves pregnancy rate5; as well 
as health and growth performance6,7 in beef cattle. Mineral homeostasis regulation partially depends on genetic 
factors, among others8. Thus, understanding the genetic aspects linked to mineral amount in bovine muscle can 
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lead to a better modulation of this trait in Nelore muscle, allowing for future production of healthier, more pro-
ductive animals, and better-quality meat.

A differential expression approach detected genes and pathways underlying mineral amount in Nelore cattle 
by comparing extremes of the experimental population used herein9,10. However, as mineral amount traits have a 
continuous distribution trend, it is necessary to study the whole population in order to verify these relationships 
and infer regulatory modes of action. To go beyond contrasting extreme phenotypes11, one can adopt network 
approaches. For instance, a co-expression network approach allows to identify genome-wide genes with similar 
expression patterns related to specific phenotypes or conditions. In this methodology, traits are usually integrated 
into the analysis in a condition-dependent network, by a previous selection of genes or sample clusters related 
to the trait before the analysis12. Another way of including the information of phenotypes to select gene groups 
putatively involved with them is to cluster all expressed genes by their co-expression profiles and then associate 
these clusters to the phenotypes using the weighted correlation network analysis (WGCNA) R package13. In this 
analysis, groups of genes with similar functions are identified and associated with the phenotypes, as already 
described for the mineral amount in our population14.

Among the challenges of these methods regarding the inclusion of phenotype information is that no single 
approach is used to search genome-wide for specific genes linked to phenotypes without prior selection. Also, it is 
challenging to pinpoint the direction of interactions or the regulation, as co-expression networks do not provide 
this information a priori12. To overcome these limitations, we propose a new application of the partial correlation 
and information theory (PCIT) algorithm, designed originally for deriving gene co-expression networks through 
the identification of significant associations between expression profiles15, which was applied herein for deriving 
correlation networks within a matrix of mRNAs, miRNAs and GEBVs for the phenotypes. Additionally, we pro-
pose a new application of the regulatory impact factor (RIF) algorithm16 to identify genes and miRNAs expression 
with significant regulatory impact over the GEBVs for mineral amount in bovine muscle. To this end, we tested the 
impact of mineral associated genes and miRNAs expression values on the GEBVs for minerals, in the same way a 
transcription factor (TFs) would be tested for its regulatory potential over the expression values of selected genes 
in the original application. Therefore, we were able to use GEBVs on the networks to identify regulatory elements 
linked to the phenotypes and, by not relying only on TFs, we allowed the regulatory role to go beyond the current 
functional annotation of the cattle genome. Herein we describe how this new use of the PCIT-RIF algorithms iden-
tified genes and miRNAs whose expression levels in Nelore steers’ Longissimus thoracis muscle were correlated to 
the mass fraction of calcium (Ca), copper (Cu), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), 
sulfur (S), selenium (Se), zinc (Zn) and iron (Fe), in the same tissue. We also describe how this information was 
used to predict the regulatory impact of genes and miRNAs expression over the mineral amount in Nelore muscle.

Results
correlations among genes and miRnAs expression values and minerals. The dataset compre-
hended the expression of 12,943 genes and 705 miRNAs, that remained after data quality control, filtering, 
normalization and batch effect correction. Simultaneously recognizing the results of both PCIT analyses, PCIT 
general and PCIT miRNA, we identified a total of 242 genes and 35 miRNAs with expression values correlated to 
at least one mineral GEBV. From these, the expression of 46 genes and 12 miRNAs were correlated to more than 
one mineral GEBV. The number of genes and miRNAs with expression values correlated to each mineral ranged 
from 19 to 55 and from five to nine, respectively. The number of miRNAs whose expression was correlated to a 
mineral in both PCIT analyses varied from zero to three (Table 1, Fig. 1A). There were two genes and one miRNA 
expression values correlated to six minerals, being Vitamin D3 receptor (VDR) and bta-miR-92b correlated to 
Ca, K, Mg, Na, P and S; and Doublecortin (DCX), correlated to K, Mg, Na, P, S, and Zn (Fig. 1B). From these anal-
yses, we also identified significant correlations among minerals’ GEBVs. There were no significant correlations 
between Se and other minerals, while correlations among K, Mg, Na, Zn, S, and P GEBVs ranged from 0.77 to 
0.97 (Fig. 1C).

Mineral Gene miRNA Repeated miRNAa

Ca 22 6 0

Cu 35 5 0

K 33 5 0

Mg 37 8 0

Na 42 6 3

P 19 6 0

S 55 6 1

Se 32 6 2

Zn 36 9 0

Fe 27 5 1

Table 1. Number of genes and miRNAs with RNAseq expression values correlated to each mineral amount in 
Longissimus thoracis muscle of Nelore. The numbers in the columns Gene and miRNA refer to significant results 
in at least one PCIT analysis (PCIT general, considering mineral genomic estimates of breeding values, genes 
and miRNAs expression and PCIT miRNA considering mineral GEBVs and miRNAs expression). aNumber of 
miRNAs with expression values correlated to a mineral in both PCIT analysis (PCIT general and PCIT miRNA).
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principal component score and Regulatory impact factor (Rif). From a principal component 
analysis based on the GEBVs for each animal, considering ten minerals, we calculated a score for each sample 
regarding its contribution to phenotypic variation. Based on that, we selected 30 contrasting samples concerning 
all minerals together, 15 with low score and 15 with high score (Fig. 2). These contrasting groups were used to 
estimate the RIF in the amount of all minerals together of genes and miRNAs whose expression values correlated 

Figure 1. Correlation network among genes and miRNAs with expression values correlated to at least one 
mineral. This network shows all the significant correlations among genes and miRNAs in the PCIT general and 
PCIT miRNA analysis. (A) Complete network, (B) Network with just the correlations regarding the genes and 
miRNAs with expression values correlated to more than one mineral. It is the internal circle of the complete 
network with more details, (C) Correlations among the mineral’s GEBVs.
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to at least one mineral. For these we used our modification of the original RIF algorithm which included genes 
and miRNAs with expression values correlated to all the minerals, as elements to be tested as regulators and the 
minerals’ GEBVs as the targets. Additionally, we estimated the RIF of the genes and the miRNAs with expression 
values correlated to each mineral individually, i.e., using contrasting sample groups for each specific mineral. 
For that, based on the GEBVs, we expanded from six (or five) to 15 the number of samples per contrasting group 
compared to the detailed in previous works with differentially expressed genes regarding mineral amount9,10.

There were 22 genes and two miRNAs with significant RIF based on the high and low general score approach 
(Table 2). Based on the single mineral analysis, there were three common genes and one common miRNA with 
significant RIF for two minerals, being CD86 molecule (CD86) for K and Mg, VDR for Mg and Na, the WD 
repeat-containing planar cell polarity effector gene (WDPCP) for Na and P, as well as bta-miR-369.3p for Ca 
and S. The number of genes with significant RIFs for each mineral ranged from zero to seven, while for miRNA 
it ranged from zero to two (Table 2). The RIF values of each significant gene and miRNA by mineral and for the 
general score analysis are presented in Supplementary Table S1.

correlation network. We used the significant correlations between a gene or a miRNA expression and a 
given mineral, identified in both analyses implemented with the PCIT algorithm above described, to derive a cor-
relation network. To identify potential regulatory mechanisms related to each mineral, we added on this network 
other layers of information from the same samples, tissue and experimental population, as follows: differentially 

Figure 2. Representation of the contrasting samples considering the genomic estimated breeding values of 
all 10 minerals together, based on the PCA score. Orange circles represent the samples with the highest scores 
(positive contrast) and the green circles represent the samples with the lowest scores (negative contrast).

Mineral Gene miRNA

Ca 1 1

Cu 4 0

K 3 1

Mg 3 1

Na 6 1

P 1 0

S 5 2

Se 7 0

Zn 4 2

Fe 0 2

PCA Score 22 2

Table 2. Number of genes and miRNAs with a significant regulatory impact factor over the genomic estimates 
of breeding values for each mineral and all minerals together (PCA score). The data came from Longissimus 
thoracis muscle from Nelore steers and the genes and miRNA expressions were identified based on RNA-Seq 
analysis.
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expressed genes (DEGs) for contrasting mineral amount sample groups9,10, transcription factors (TF)17 and genes 
affected by Expression Quantitative Trait Locus (eQTLs)18. This information, along with genes with significant 
RIFs, was used as node attributes and included in the network analyses (Fig. 1). All correlations and attributes 
necessary to compose Fig. 1 are provided in the Supplementary Table S2. There was at least one putative regula-
tory element, i.e., a significant RIF, TF, miRNA, or gene affected by eQTLs, correlated to each mineral. The num-
ber of genes and of miRNAs with expression values correlated per mineral per attribute is shown in Table 3 and 
the genes, miRNAs and their attributes are displayed in Supplementary Table S2.

There were no significant functional clusters or over-represented pathways identified in the functional anno-
tation analysis carried out separately for the genes correlated to a specific mineral. However, from the functional 
annotation table, we noted that the genes with expression correlated to the minerals are well conserved among 
a broad range of organisms. These genes have functions related to the extracellular matrix, integral membrane 
constituents, metal ion binding. They participate on regulatory processes linked to transcription, replication, 
splicing, apoptotic processes, metabolism, transport vesicles, RNA processing, signalling, cell division, adhesion, 
migration and proliferation, embryonic development and tissue regeneration.

Integration with differentially expressed genes (DEGs). In order to convey the relationship among 
all genetic elements related to mineral mass fraction detected in our population, we used PCIT. In this analysis 
we estimated the correlations between the expression of a gene or miRNA, which was found to be correlated to 
a mineral in the present work, and DEGs previously identified for the same mineral9,10. This analysis was carried 
out for each mineral separately and included the same genes with regulatory potential as in the previous section 
(DEGs9,10, TFs17, genes affected by eQTLs18 and genes with significant RIF). To identify elements with regula-
tory potential, we then selected the genes that were network hubs or that were significant according to RIF (see 
methods). We performed a functional annotation analysis with the selected genes for each mineral, separately, to 
determine which ones were underlying biological pathways.

The expression of all selected putative regulatory elements (hub, significant RIF or miRNA), the ones under-
lying newly identified biological pathways and the ones being part of enriched pathways in previous work with 
DEGs related to mineral amount9,10, were used as inputs for a final PCIT analyses. This PCIT was carried to iden-
tify possible regulators of genes in enriched pathways. Figure 3 shows the co-expression networks built with sig-
nificant correlations from the final PCIT analyses for Ca, Cu, K, Mg, Na, P, S, Se, and Fe. Supplementary Tables S3 
has the correlations and attributes used for creating Fig. 3.

As we included the differentially expressed genes regarding mineral amount previously detected in the same 
population9,10, most of the over-represented pathways identified correspond to the previously detected pathways. 
Besides, by the inclusion of correlated genes and pathways from the Reactome database19, we identified new path-
ways for K, related to protein metabolism, as well as for Ca, Cu, S and Fe, related to immune response, and for S 
related to signalling. All the pathways enriched for S are new, when compared with our previous work9. A list of 
the pathways enriched for each mineral, considering both the ones detected with the inclusion of correlated genes 
expressions and the ones from the previous work9,10, is shown in Table 4.

However, no gene taking part in the unique enriched pathway previously detected for Zn9 met our criteria. 
Because of that, we generated a co-expression network by including the DEGs for Zn9 that had their expression 
values significantly correlated to hub or RIF elements for this mineral and their attributes, in order to identify 
possible regulators for the DEGs found in contrasting Zn samples. This co-expression network is shown in Fig. 4, 
and the correlations and attributes supporting this network are presented in Supplementary Table S4.

Minerals DEGsa Significant RIFb TFsc cis eQTLsd trans eQTLse miRNAsf No attributesg

Ca 0 3 2 0 3 5 14

Cu 1 4 1 0 1 5 28

K 2 5 2 0 7 3 19

Mg 2 6 2 0 5 6 23

Na 3 7 2 0 13 6 21

P 0 1 2 0 3 6 12

S 1 8 3 0 8 6 34

Se 1 9 2 1 3 6 17

Zn 0 6 1 0 3 9 27

Fe 3 19 0 0 2 5 9

Table 3. Number of genes and miRNAs with expression values correlated to mineral amount, per mineral and 
per matching attribute. The numbers result from both PCIT analysis: PCIT general, with genomic estimates 
of breeding values (GEBVs) for mineral, genes and miRNAs expression, and PCIT miRNA, with only mineral 
GEBVs and miRNAs expression. Mineral amount, normalized RNAseq obtained gene and miRNA expression 
levels were from Nelore steers’ Longissimus thoracis muscle. Columns represent the number of matches with 
attributes used for this analysis. aDifferentially expressed genes described in refs. 9,10. bGenes and miRNAs with 
significant regulatory impact factor in the present work. cTranscription factors17. dGenes affected by cis eQTLs18. 
eGenes affected by trans eQTLs18. fMicro RNAs. gGenes and miRNAs with expression values correlated to each 
mineral that were not identified in previous works.
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Discussion
Relationship among minerals. Correlations identified among GEBVs for most minerals were high (0.77 
to 0.97). Thus, a word of caution must inform this discussion of all genes and miRNAs with expression values 
correlated to each mineral, as correlated responses across minerals may underlie the identified genes and miR-
NAs, as well as their predicted relationships. In our correlation network, the link between Se and the other min-
erals was Zn, through the common correlation with the NADPH oxidase 1 (NOX1) gene expression, which had 

Figure 3. Co-expression networks among genes and miRNAs being part of enriched pathways (DEGs and 
correlated to a mineral), hubs, TFs, miRNAs or presenting a significant RIF regarding nine of the minerals in 
study. (A) Mg, (B) Fe, (C) Ca, (D) Se, (E) K, (F) Na, (G) Cu, (H) P, (I) S. Red lines represent the correlations 
with a significant RIF gene or miRNA.
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significant RIF only for Zn. NOX1 expression was positively correlated to Zn and negatively to Se. Accordingly, 
Zn accumulation in the human mitochondria increases the production of reactive oxygen species by the NOX1 
encoded NADPH protein, which in turn activates NF-Kb, a known positive transcriptional regulator of NOX1, 
thus increasing its expression. Conversely, Se acts through selenoproteins, most of which have redox properties. 
Its deficiency is known to support the oxidation of both Keap1 and Nrx oxidation sensors20 in the presence of 
H2O2. The oxidation of NrX protein leads to the activation of the Wnt signalling pathway20, which can act in adult 
muscle regeneration21, hence adding evidence for the relevance of this regulation for muscle homeostasis. Thus, 
both the Zn induced accumulation of H2O2. and the oxidation induced by Se deficiency have similar effects on 
the same known biochemical process, which is known to impact many production and reproductive traits, such 
as residual feed intake22 and spermatic morphology23, indicating that this relationship between this minerals and 
redox reactions can be useful in selection programs. Another link between Se and Zn were the common correla-
tions with the expression of three miRNAs: bta-miR-411c-5p (with significant RIF for Zn), bta-miR-2285co and 
bta-miR-2285bl, although no literature relates these miRNAs to Se or Zn amount.

Fe showed a weak correlation with Mg, K, P, and S and was linked to other minerals through S, sharing neg-
ative correlations with the expression of Phospholipase C Beta 2 gene (PLCB2). The protein coded by this gene 
is critical to Ca efflux24, although no correlation with Ca amount was found in our data, nor in our previously 
reported DEGs9. The relationship of PLCB2 gene expression with Fe and S is undocumented, although Fe was 
reported to cleave the Phospholipase C Beta 2 protein in the cornea of bovine, porcine and humans25. The PLCB2 

Ca Cu K Mg Na P S Se Fe

AMPK signalling pathway 3

Antigen processing and presentation 1

Assembly of collagen fibrils and other 
multimeric structures

Biosynthesis of unsaturated fatty acids 1

Collagen biosynthesis and modifying 
enzymes 2 2

Collagen chain trimerization 2 2 2 2

Collagen formation 2

DAP12 interactions 2

Degradation of the ECM 2

ECM organization 2 2 2 2 2 2

ECM-receptor interaction 1 3 3 3 3 1 1

Fatty acid biosynthesis 3

Fatty acid metabolism 3

Fc gamma receptor (FCGR) dependent 
phagocytosis 2

Focal adhesion 1 1 1 1 1

G alpha (q) signalling events 2

Herpes simplex infection 1

Immune system 2

Influenza A 1

Innate immune system 2

Integrin cell surface interaction 2 2 2

Measles 1

Neutrophil degranulation 2

Non-integrin membrane-ECM interactions 2

O-glycosylation of TSR domain-containing 
proteins 2

Phagosome 1

PI3K-Akt signalling pathway 1 1 1 1 1

Platelet activation 1

PPAR signalling pathway 1 1

Prion disease 3

Protein digestion and absorption 1 3 3 3 3 1

Signal transduction 2

Table 4. Pathways enriched for each mineral considering the gene expressions correlated to each one of them 
and the previously detected differentially expressed genes related to the same minerals in the same Nelore 
population. Pathways just enriched in previous works with a differential expression approach and the same 
Nelore population are represented by the number 1, pathways enriched in our correlated genes expression are 
represented by the number 2 and the pathways enriched both in previous work and in the correlated genes 
expressions are represented by the number 3. There were no enriched pathways for Zn.
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gene is affected by 61 trans eQTLs, harboured across 12 chromossomes18, making these eQTL regions candidates 
for regulating this gene expression and consequently Fe and S mass fractions in the muscle.

PCA score analyses identified regulators of mineral composition. Our score successfully detected 
contrasting samples regarding all minerals together, allowing for the identification of genes and miRNAs with 
significant overall RIFs. Considering these genes and the functional enrichment analysis, we identified func-
tions conserved across several species for 14 out of 22 genes. From these, we can highlight three with functions 
related to minerals pointed in DAVID annotation chart: Delta-aminolaevulinic acid dehydratase (ALAD) encodes 
a metal ion binding protein linked to Zn while Zinc finger CCHC domains-containing protein 7 (ZCCHC7) 
encodes a Zn finger chaperone protein, and Myosin light chain kinase 3 (MYLK3) is part of the Ca signalling 
pathway that participates in muscle contraction.

Mutations in the ALAD gene were linked to the phenotypic expression of potentially toxic metal by fly ash 
exposure in cattle born near thermal power plants, being pointed as a candidate for genomic studies related to 
metal toxicity26. Our results indicated that ALAD is a candidate linked to minerals in general, including poten-
tially toxic metals.

functional analyses and search for regulatory elements. Functional annotation analyses, based on 
the genes with expression values correlated to each mineral, showed no functional clusters nor enriched path-
ways for any mineral. However, some of these genes had their expression correlated with DEGs partaking in 
different pathways in which part of the mineral-correlated genes themselves also figure as members. This led us 
to hypothesize that the genes that are found in enriched pathways but do not present its expression correlated 
to minerals may be modulated in less intensity. This agrees with the small Quantitative Trait Loci (QTL) effects 
already observed for mineral amount27. The function annotation for each gene separately indicated membrane 
proteins and extracellular matrix (ECM) related proteins as common annotations for many genes. This observa-
tion helps to corroborate the hypothesis that ECM interactions are at the regulatory core for the mineral mass 
fraction9. ECM pathways were enriched for co-expressed groups of genes related to mineral mass fraction and 
muscle metabolism in this Nelore population14.

When components of a specific pathway are known, a guided-gene approach in a co-expression network can 
help to identify new genes for the same pathway-related-trait28, and a pre-selection of genes by biological meaning 
can improve the network interpretation12. Our selection based on enriched pathways, TFs, and significant RIF 
allowed the inference of genes and miRNAs with a regulatory potential in these pathways. We identified high cor-
relations among these selected elements when compared with the correlations among unselected genes/miRNAs 
and minerals or when considering all genes/miRNAs correlated to a mineral and their respective DEGs. These 
high correlations and the presence of genes related to regulatory processes reinforces that our methodology can 
be used to drive the search for meaningful regulatory relationships.

Figure 4. Co-expression network containing DEGs for Zn, genes or miRNAs with expression values that are 
correlated to these DEGs and are also a hub or a significant RIF for Zn, ora miRNA correlated to Zn. Their 
functional attributes are presented in different colors or shapes. Red lines represent the correlations with a 
significant RIF gene or miRNA. This network is presented in separate for the others in Fig. 3 because there are 
no DEGs for Zn in the network taking part of enriched pathways.
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potential regulators for more than one mineral. Genes with significant RIF and genes with expression 
values correlated to other genes that belong to enriched pathways were considered as the potential regulators. 
These candidate genes may modulate mineral mass fraction by affecting their target genes and pathways. For 
the minerals presenting enriched pathways, except Zn, the elements with significant RIFs were connected to 
miRNAs, correlated genes expressions, TFs and to genes being affected by trans eQTLs. They were also part of 
enriched pathways, reinforcing their regulatory role on the phenotypes. The intricate patterns obtained in these 
network analyses arise from the fact that the same genes are part of different pathways.

As expected, the pathways identified by considering gene expression correlation with mineral GEBVs were 
often the same already reported in the differential expression study9. These results also corroborate our previous 
hypothesis that the regulatory core of mineral amount is linked to ECM processes9. Pathways related to fatty acid 
metabolism were enriched for Cu, as also reported in that previous study. However, with the inclusion of the 
genes with expression values correlated with the minerals, pathways linked to immune responses were enriched 
for Ca, Cu, Fe, and S. The pathways enriched for S, related to signal transduction and immune response, were not 
detected before, emphasizing that the integrative approach used here can bring up new evidence of regulatory 
processes not identified under the differential expression analysis.

Most of the putative regulators are correlated to or take part in ECM and immune system-related pathways, as 
well as fatty acid metabolism-related pathways, as is the case of Cu. ECM is related to the development of skeletal 
muscle by providing biomechanical strength of the intramuscular connective tissue and regulating muscle cell 
behaviour. It also is implicated in post-mortem meat aging, as changes in the ECM reduce the strength of the 
intramuscular connective tissue, contributing to the tenderization of the meat. Additionally, the ECM is linked 
to fat deposition, once during fattening there is a remodelling of the ECM, reducing the mechanical strength of 
intramuscular connective tissue29. High fatty deposits are linked to inflammation, which links Cu to the immune 
system-related pathways. Thus, our results may be useful to derive nutritional strategies to improve the perfor-
mance for fat deposition and beef tenderness.

We identified putative regulators that might impact more than one mineral, which were linked to ECM, 
immune system or fatty acid related pathways as well. The cluster of differentiation 86 gene (CD86) showed a 
significant RIF and was a hub gene for Mg and K analyses. CD86 encodes a signalling protein for T cell activation 
and proliferation30 and is linked to T cell adhesion after activation31. Another putative regulator, the Mg sensor 
ITK, seems to be required for optimal T cell activation32 after the binding of the CD86 protein in the CD28 
receptor33. This process involves K+ channels, putatively explaining the relationship among these two minerals 
and CD86. The PI3k-akt signalling pathway is activated after CD86 protein binds to the CD86 receptor in an 
antigen-presenting cell, leading to downregulation of integrins, components of the ECM34.

The Vitamin D receptor (VDR) was a TF with significant RIF for Mg and Na. The relationship between this 
gene and the ECM processes-related pathways that were enriched for both minerals seems to be the interaction 
of the VDR receptor with the Runx2 receptor. In mammals, this interaction stabilizes chromatin remodelers by 
activating genes involved in ECM mineralization35. Mg is essential to vitamin D activation, once both enzymes 
involved in this process, 25-hydroxylase and 1α-hydroxylase, are Mg-dependent36. Nonetheless, the link between 
VDR expression and Na is not extensively documented.

WD repeat-containing planar cell polarity effector (WDPCP) gene showed significant RIF for Na and P and 
was affected by one trans eQTL in chromosome five18. This gene encodes a protein that inhibits Wnt activity37. 
Wnt pathway acts in adult muscle regeneration21 and is activated by high P amounts38. ECM processes-related 
pathways were also enriched for these minerals. ECM stiffness increases the expression of several members of 
the Wnt pathway through integrins and focal adhesion pathways39, thus relating the WDPCP gene expression 
with the ECM. The link between WDPCP expression and Na is not known. In both minerals, Na and P, WDPCP 
expression value is positively correlated (0.19) with the TF VDR expression that represses the Wnt pathway40. 
Increased expression of this pathway is involved with increased inflammatory response after tick infestation in 
the skin of Bradford steers41, suggesting that Na and P can be candidates to more studies linking them to the 
indication of tick resistance.

The miRNA bta-miR-369-3p had a significant RIF for Ca and S and was correlated to several genes involved 
in immune pathways for Ca and S. The genes with expression values correlated to this miRNA are not known 
targets to it. This miRNA expression level is increased in skin and serum of humans with psoriasis42, which 
trigger seems to be the activation of the cellular immune system43. A homolog of psoriasin, a common protein 
in psoriasis patients, was identified in bovines and had the same antimicrobial and immune response activity as 
the human protein44. Further, Ca and vitamin D play important roles in keratinocyte differentiation and regulate 
proteins involved in psoriasis45 and S is used as a known treatment and prevention of recurrence for this disease46. 
Our results suggest the genes whose expressions were correlated to bta-miR-369-3p expression as new candidate 
targets of this miRNA, linked to immune response and mineral concentration.

Potential regulators for a specific mineral concentration. Some putative regulators showed signif-
icant RIF for only one mineral, linked to the same important pathways. The miRNA bta-let-7i showed signifi-
cant RIF for Mg and one of the genes correlated to this miRNA in the Mg analysis, Collagen alpha-1 (XI) chain 
(COL11A1) is a target of this miRNA. The COL11A1 gene is associated to protein digestion and absorption, as 
well as to ECM receptor interaction. This gene encodes a collagen protein, the most abundant protein in ECM. 
COL11A1 expression is correlated to Mg, which stimulates collagen synthesis47, and its expression is correlated 
to the expression of other genes of the same or related pathways. Cystathionine gamma-lyase (CTH) is also a 
gene with significant RIF only for Mg. This gene expression is correlated to a Zn finger protein of the cerebellum 
(ZIC3), a TF, which was correlated to the already mentioned CD86 gene expression, also associated with Mg and 
ECM herein.
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We identified two genes with significant RIF, specifically for K: Matrix metallopeptidase (MMP16) and E3 
ubiquitin-protein ligase (RNF34). The gene MMP16 encodes a protein whose family is involved in the breakdown 
of ECM, mostly by degrading collagen proteins48. This function could explain the enriched pathways related 
to ECM organization and its correlation with Collagen type XXI alpha 1 chain (COL21A1). Both MMP16 and 
RNF34 expressions were correlated to CD86 expression, for which the link to K was already discussed. RNF34 
encodes a RINF finger protein that negatively regulates the NOD1 pathway, involved in receptors that activate 
immune responses similarly to CD86. Bta-miR-92b expression was correlated to the expression of seven genes 
associated with ECM and immune system-related pathways. One of these genes, MMP16, being a known target 
for this miRNA, which could explain the relationship of this miRNA with the over-represented pathways.

For Na, we identified six genes with significant RIF: WDPCP and VDR, linked to the already discussed ECM 
processes, Vimentin type intermediate filament associated coiled-coil protein (VMAC), Cyclin-dependent kinase 
inhibitor 3 (CDKN3), Centromere protein E (CENPE), and Calcium/calmodulin-dependent protein kinase 1 
(CAMKK1). VMAC plays an important role in cytoskeletal organization49. Cell adhesion, mediated by integrins, 
connect ECM and cytoskeleton50. CDKN3 encodes a cyclin-dependent kinase inhibitor that is involved in cell 
cycle regulation51, a process where integrins take part52. The presence of an integrin gene, integrin subunit alpha 
10 (ITGA10) in the network, as well as actin interactions, could explain the link between these two genes and the 
ECM-related pathways for Na. Na presented a miRNA with significant RIF, bta-miR-125a, with expression values 
correlated to two genes with significant RIF, WDPCP and VMAC, as well as with the integrin gene ITGA10. This 
miRNA targets VMAC which is also affected by six trans eQTLs in chromosome six, being candidate for future 
studies on the regulation of this gene.

The miRNAs bta-miR-25 and bta-miR-378c had significant RIF for Fe. Their expression values were cor-
related to each other and to other miRNAs expression. As with other miRNA found in our results, the genes 
whose expressions correlated to bta-miR-25 and bta-miR-378c were not described as their targets. Both miRNAs 
expressions were correlated to the expression of the hub gene ALAD in the Fe network. The levels and activity of 
Delta-aminolevulinic acid dehydratase, the ALAD gene encoded protein, are positively affected by the Fe amount 
in the extracellular environment53. The relationship with the immune response pathways enriched for Fe seems 
to be through the proteasome. Delta-aminolevulinic acid dehydratase protein modulates proteasome activity54, 
which is known to shape innate and adaptative immune responses55.

Lysophosphatidic acid receptor 4 (LPAR4) was a hub gene with significant RIF for Ca. This gene product is 
known to positively regulate cytosolic Ca amount through the phospholipase C-activating G protein-coupled 
signalling pathway (GO:0051482). Its expression was linked in our network to MAF BZIP transcription factor 
B (MAFB) expression, a TF that interacts with Gcm2 and modulates the expression of the parathyroid hormone 
encoding gene (PTH), which in turn regulates Ca mass fraction56. The expression of this genes was correlated 
to other six genes. Three of them were DEGs for Ca being part of pathways involved in ECM processes, and the 
other three were hub genes. From these hub genes, Bcl-2-modifying factor (BMF) regulates apoptosis after cell 
detachment from the ECM57.

We identified the RAS like family 11 member A gene (RASL11A), which encodes a RAS protein, with signifi-
cant RIF for Cu. This gene expression was positively correlated mainly to the expression of genes involved in fatty 
acid metabolism, a process where Cu is a known enzymatic co-factor58. RAS proteins’ posttranslational modifica-
tions are affected by fatty acids59, thus suggesting a feed-back mechanism regulating this gene.

For S, we identified Fucosyltransferase 8 (FUT8), RAB44 member RAS oncogene family (RAB44), Proline-rich 
and gla domain 3 (PRRG3), Protein-lysine methyltransferase METTL21E (METTL21E), and Phospholipid phos-
phatase related 5 (PLPPR5) genes with significant RIF, being their expression values correlated or being part of 
immune response and signal transduction pathways. Sulfur amino acids affect the inflammatory aspects of the 
immune system60. Although there is no primary connection between FUT8 and RAB44 proteins and the immune 
system, these proteins contribute to tumor progression61,62, in which a robust immune response is involved63. 
PRRG3 encodes a vitamin K-dependent transmembrane protein with a GLA domain involved in coagulation 
factors64, a process related to the innate immune system65. Regarding signal transduction pathways, METTL21E 
was linked to signalling pathways in mouse siRNA experiments66, and PLPPR5 encodes a protein member of the 
phosphatidic acid phosphatase family, acting in phospholipase D mediating signalling67. The bta-miR-500, who 
presented a significant RIF for S is a known regulator of the genes whose mRNA levels were correlated to this 
miRNA in our analysis.

For Se, all enriched pathways were related to ECM interactions as well as to protein digestion and absorption. 
For this mineral, we identified six annotated genes with significant RIF, Thyrotroph embryonic factor (TEF), Zn 
finger DBF-type containing 2 (ZDBF2), Tetratricopeptide repeat domain 21 (TTC21A), Histidyl-tRNA synthetase 
(HARS), DTW domain containing 1 (DTWD1), and Pyruvate dehydrogenase kinase 3 (PDK3). TEF is a TF and 
a leucine zipper protein68, whose family is required for the activation of DDRs receptors, essential to matrix 
remodeling69. PDK3 encodes an enzyme responsible for the regulation of glucose metabolism and, among many 
other functions, is related to ECM remodeling70. We could not find a link among ZDBF2, HASR, and DTWD1 
genes expression and Se or the enriched pathways. Thus, they are candidates for future studies regarding these 
potential relationships.

Regarding Zn, even without over-represented pathways, it is possible to infer that the six elements presenting 
significant RIF are putative regulators of several genes with correlated expressions and of a few DEGs, as already 
discussed by NOX1. From the six genes with significant RIF, the Membrane-bound transcription factor peptidase, 
site 2 (MBTPS2) gene, which encodes an intramembrane Zn metalloprotease, was also a hub gene, whereas TNR 
encodes an ECM glycoprotein. This information can lead to the assumption that the ECM processes can also be 
associated with Zn amount, as they putatively do to most of the other minerals in this study9.
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new application for pcit and Rif algorithms. The first co-expression network, containing gene and 
miRNA expressions correlated to the mass fraction of at least one mineral, is considered to be a correlation 
network among elements from two different sources: sequencing (mRNA-Seq and miRNA-Seq) and a measure 
referring to the trait of interest, the minerals‘ GEBVs. Originally, outputs from PCIT algorithm is used to build 
co-expression networks based on significant correlations between gene and miRNA expression levels. However, 
in theory PCIT can be used to test the correlation and the significance threshold of other genetic elements, if they 
vary in the population. Thus, there is no statistical impediment of using PCIT in the way we proposed here, to 
detect genes and miRNAs whose expression values vary in the experimental samples in correlation with the min-
erals’ GEBVs, since GEBVs represent only the additive genetic effect of the traits27, thus being a genetic element 
as well.

The RIF algorithm was developed to calculate the impact of TFs over a selected list of genes through the 
expression values of genes and TFs across samples, in two contrasting groups for the studied phenotype (in our 
case, minerals). Again, there is no impediment in the analytical method to use other genetic information, e.g., 
GEBVs, since it varies in the population. In our application, RIF gives a high score to the genes or miRNAs that 
are most differentially co-expressed, highly abundant and with more expression difference between the contrast-
ing groups (mineral specific groups and score-based groups, separately) and to genes and miRNAs for which the 
expression can predict better the magnitude of the GEBVs. Together, both new applications can be used to predict 
the correlation between genes or miRNAs expressions and the genetic estimated value for mineral mass fraction, 
thus highlighting genetic elements with regulatory impact over mineral amount. Besides adding information to 
the understanding of mineral regulation, our findings might also contribute to SNP prioritization for genomic 
selection aiming these traits, if the effect of sequence variants in the regulatory candidate genes is verified.

conclusion
By using a modification of the PCIT/RIF methodology, we were able to predict regulatory elements related to 
the mineral amount of ten minerals, indicating over-represented pathways related to the mass fraction of each 
mineral and putative regulators that are mineral-specific. Our analyses corroborate the link between mineral 
amounts and the ECM processes, including for Zn, which was not seen in our previous analysis. In our proposed 
approach, PCIT can be applied to predict the relationship between gene transcripts, or miRNAs, and phenotypes, 
in a genome-wide fashion. Similarly, RIF may predict the regulatory impact of mRNA and miRNA levels over 
phenotypes. This new approach can be applied for any phenotype that is of interest for genomic selection and 
livestock breeding.

Methods
Samples. The Ethical Committee of Embrapa Pecuária Sudeste (São Carlos, São Paulo, Brazil) approved 
all experimental, animal protocols and methods (CEUA 01/2013). All methods were performed in accordance 
with the relevant guidelines and regulations. We used the GEBVs from mineral amount27, the mRNA-Seq10. and 
miRNA-Seq71. data from 113 samples of Longissimus thoracis muscle from Nelore steers, part of the population 
already described in differential expression analysis related to mineral amount9,10. Figure 5 contains the steps of 
our methodology.

The samples studied here are a subsample from a Nelore steers population described elsewhere27,72. In sum-
mary, all animals belong to half-sibling families and our samples were generated by artificial insemination in 
two different farms, during two breeding seasons. They were transferred to a feedlot system at Embrapa Pecuária 
Sudeste (São Carlos, São Paulo, Brazil) with an average of 21 months of age and mantained in the feedlot with ad 
libitum feed and water access until slaughter. The slaughters were organized in nine different groups, when the 
animals were in average 25.5 months old, approximately 70 days after the feedlot started. A cross-section of the 
Longissimus thoracis muscle samples were collected in the slaughterhouse right after the exsanguination, using a 
5 mm hole saw, between the 11th and 13th ribs, and conserved in liquid nitrogen until RNA extraction.

Mineral mass fraction and genetic estimated breeding value (GeBV). Calcium (Ca), copper (Cu), 
potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), sulfur (S), selenium (Se), zinc (Zn) and iron (Fe) 
mass fractions were determined from lyophilized and microwave-assisted digested samples, such as described 
elsewhere27. Calcium, Cu, K, Mg, Na, P, S, Zn, and Fe were determined by inductively coupled plasma optical 
spectrometry (ICP OES, Vista Pro-CCD with a radial view, Varian, Mulgrave, Australia). Selenium was deter-
mined by inductively coupled plasma mass spectrometry (ICP-MS 820-MS, Varian, Mulgrave, Australia).

The genetic breeding values (GEBVs) for all the minerals’ amount were previously estimated27 through a 
Bayesian model that considered birthplace, feedlot location and breeding season in the contemporary groups as 
fixed effects and age at slaughter as a linear covariate.

mRNA-Seq and miRNA-Seq sequencing and quality control. The total RNA extraction, quality con-
trol, and sequencing were described elsewhere71. In summary, total RNA from all samples was extracted using 
Trizol® (Life Technologies, Carlsbad, CA) and its integrity was evaluated in a Bioanalyzer 2100® (Agilent, Santa 
Clara, CA, USA). Regarding the mRNA-Seq data, the library preparation was made with the TruSeq® sample 
preparation kit, and the paired-end sequencing10 was made in an Illumina HiSeq. 2500®. For the miRNA-Seq 
data, the library preparation was made with TruSeq® small RNA sample preparation kit, and the single-end 
sequencing71 was made in a MiSeq® sequencer.

As a quality control for the sequences, we filtered out reads with less than 65 bp and Phred Score less than 24 
for the mRNA-Seq data, and with less than 18 bp and Phred Score less than 28 for the miRNA-Seq data, using the 
Seqyclean software (http://sourceforge.net/projects/seqclean/files/).
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The reads that passed the quality control were aligned to the reference bovine genome ARS-UCD 1.2 with the 
STAR v.2.5.4 software73 for the mRNA-Seq data and with the mirDeep2 software74 for the miRNA-Seq. The same 
software was used for the identification and quantification of transcripts and miRNAs, respectively, in raw counts.

filtering, normalization and batch effect correction. After quality control, the mRNA-Seq and 
miRNA-Seq expression data were filtered separately to remove the transcripts and miRNA not expressed in at 
least 22 samples, or approximately 20% of the samples.

A first component analysis was performed for the mRNA-Seq expression data with the NOISeq v.2.16.0 soft-
ware75 to visually verify the batch effect of the birthplace, feedlot location, breeding season, age at slaughter, 

Figure 5. Flowchart representing the steps of the methodology.
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slaughter group and a combination of sequencing flowcell and lane over the expression data. The data were nor-
malized using the VST function from DESEq. 2 software76, and the batch effect correction for the combination 
of sequencing flowcell and lane was made using the ARSyNseq function from NOISeq v.2.16.0 software75. For 
the miRNA-Seq data, the procedure was the same, with the batch effect correction being applied only for the 
sequencing lane.

PCIT (Partial Correlation Coefficient with Information Theory) among mRNA, miRNA and phe-
notypes. A new application of the PCIT algorithm15 was developed to test the correlation among the expres-
sion values of mRNAs and miRNAs that passed the quality control filters as well as the GEBVs for ten minerals.

The original application of the algorithm is used to test the co-expression between genes by correlation anal-
ysis between expression values15. First, this algorithm calculates the strength of the linear relationship between 
every two elements in a trio, independent of the third one, using a calculation of the partial correlation for each 
trio of elements based on the expression values in a specific set of samples. Then, the algorithm sets an informa-
tion theory threshold for each significant association, by calculating the average ratio of partial to direct cor-
relations for each trio of elements. In our application, we included the GEBVs for each one of the ten minerals 
evaluated in each sample in the elements tested by the algorithm along with the gene and miRNA expression 
values (herein called PCIT general). Using this approach, we estimated the correlations among all the elements. 
Among the significant correlations, we selected only the genes and miRNAs with expression values correlated to 
the GEBV of at least one mineral. Due to the low number of miRNAs identified compared to the high number of 
genes, we did one more PCIT analysis only with the expression values for miRNAs and the GEBVs (herein called 
PCIT miRNA). The results of these two PCITs analyses were combined. At the end, we had a list of elements 
(genes and miRNAs) with expression values correlated to each mineral GEBV.

Rif (regulatory impact factor). A new application of the RIF algorithm16 was adopted to predict the reg-
ulatory impact of the genes and miRNAs with expression values associated to a given mineral’s amount GEBVs. 
The algorithm was originally developed to determine the regulatory impact of TFs over selected genes (targets) 
related to a given trait through their expression values analysis between contrasting groups for the same trait16. 
To this end, the impact factor is calculated two scores (RIF 1 and RIF 2). RIF 1 gives high scores to TFs that are 
most differentially co-expressed, highly abundant, and with more expression difference between the groups. RIF 
2 gives a high score to TFs whose expression can predict better the abundance of DEGs16. In our approach we 
used the genes and miRNAs with expression values correlated to each mineral, from the previous PCIT analyses, 
as elements to be tested as regulators and the mineral GEBV as the target, in the place of the TFs in the original 
application. We used an analogy to the concepts used originally to calculate RIF1 and RIF2, i.e., RIF1 gave high 
score to mRNAs and miRNAs that were most differentially co-expressed, highly abundant, and with more expres-
sion difference between the groups of minerals. RIF 2 gave a high score to mRNAs and miRNAs whose expression 
can predict better the GEBV for mineral amount.

We carried out 10 different analyses with the RIF algorithm16, being one for each mineral. As input, we used 
the GEBVs for the 30 contrasting samples for each mineral as targets (15 representing samples with high mineral 
mass fraction and 15 with low mineral mass fraction) and the expression values for the genes and miRNAs cor-
related to the same mineral as elements to be tested. To select these contrasting groups we expanded the sample 
selection based on GEBVs previously made9,10. Genes and miRNAs with RIF I or II scores higher than |1.96| were 
considered as significant, as authors suggest16.

Rif for all minerals together. To identify genes and miRNAs with significant impact factor in all miner-
als’ mass fraction together, we used the new application for the RIF algorithm16 by applying the GEBV from 30 
contrasting samples forming two groups regarding the amount of the ten minerals as targets and the expression 
values for the genes and miRNAs correlated to at least one mineral as elements to be tested.

To select contrasting samples for all the minerals together, we ranked our samples based on a score. To cal-
culate this score for each sample, we performed a principal component analysis (PCA) using the GEBVs for the 
ten minerals in the 113 samples. From the PCA results, the score of each sample was calculated based on the 
following formula:

∑= × ×
=

A kContrib Z V%i
j i

ijk ijk PCj

10

Where: Ai = score for the animal i, ∑ == kj i
10  sum of all minerals k, in all the PCs j and in all the animals i, 

=Contribijk  contribution of the animal i in the PC j for the mineral k, =Zijk  standardized value (standard devia-
tion one and mean zero) of the GEBV for the mineral k for the animal i in the PC j and =V% PCj  eigenvalue of the 
PC j.

We performed a functional annotation analysis using DAVID 6.8 software77 with the genes presenting signif-
icant RIFs for this score.

Genes and miRnAs correlated to minerals. Significant correlations obtained from PCIT15 analy-
sis between genes or miRNAs expressions and minerals were used to build a co-expression network with the 
Cytoscape software78. We overlapped the gene list from our network with the genes previously reported by our 
research group to be differentially expressed for at least one mineral, based on the same population evaluated 
here9,10, TFs17, genes affected by cis or trans eQTLs18 and with significant RIF in the present work. These features 
were used as attributes in the network. Regarding the differentially expressed genes (DEGs) described for Fe10, 
we called the genes more expressed in the high Fe content group as upregulated whereas genes more expressed in 

https://doi.org/10.1038/s41598-020-65454-7


1 4Scientific RepoRtS |         (2020) 10:8436  | https://doi.org/10.1038/s41598-020-65454-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

the low Fe content group were called as downregulated, to match the nomination of the other minerals’ DEGs9. 
Functional annotation analyses were made using DAVID 6.8 software, considering significant the pathways pre-
senting a p-value corrected for multiple tests by Benjamini of less than 0.0577.

integration with DeGs. To estimate the relationship among the genes or miRNAs whose expression values 
were correlated with minerals and the DEGs previously detected between contrasting groups of mineral concen-
tration9, we made ten separately PCIT15 analysis. In these analyses, the PCIT algorithm was used as proposed 
initially15 to test the correlations among the genes and miRNAs with expression values correlated to each mineral, 
and the DEGs previously detected for the same mineral9,10.

The significant correlations identified in each analysis were used to obtain co-expression networks with the 
Cytoscape software78. The NetworkAnalyzer tool of the Cytoscape software78 was used to obtain the connectivity 
degree of each gene and miRNA in the networks. This value was used to identify the hub genes/hub miRNAs, 
that were obtained from the average of the connectivity degree of the network summed with the double of the 
standard deviation.

We considered only the significant correlations containing at least a hub or significant RIF gene/miRNA for 
a given mineral. The genes present in these correlations were used to perform a functional annotation analysis 
with the STRING v.1.2.2 software79. From these analyses, we selected the genes being part of enriched pathways, 
considering KEGG80 and Reactome19 databases with Bos taurus reference genome.

putative regulators of the genes being part of enriched pathways. To identify the elements puta-
tively regulating the genes being part of over-represented pathways in the study, we did another round of PCIT15 
analyses, separately for each mineral. In this case, from the last PCIT analysis by mineral, we selected as inputs 
the genes being part of enriched pathways, also considering the previously enriched pathways from differen-
tially expressed genes related to mineral amount9,10, the hub elements, TFs17, miRNAs and the ones with signif-
icant RIFs, with their respective attributes. The PCIT15 results were used to obtain co-expression networks with 
Cytoscape78 software.

miRNA-gene targeting confirmation. We used TargetScan software81 to predict the target genes for the 
miRNAs with expression values significantly correlated to a mineral and compared these putative targets with the 
genes with expression values correlated to them in our networks.
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