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Abstract
Genotyping-by-sequencing (GBS) datasets typically feature high rates of miss-
ingness and heterozygote undercalling, prompting the use of data imputation.
We compared the accuracy of four imputation methods—NPUTE, Beagle, k-
nearest neighbors imputation (KNNI), and fast inbreed line library imputation
(FILLIN)—using GBS data of maize (Zea mays L.) inbred lines, genotyped using
different multiplexing levels. Two strategies for SNP-calling and genotype impu-
tation were evaluated. First, only lines genotyped through 96-plex were used for
single nucleotide polymorphism (SNP) discovery, whereas both 96- and 384-plex
were simultaneously used in the second strategy. In the first genotype impu-
tation strategy, only the 96-plex lines were imputed, then the remaining lines
were appended (96-plex-imputed plus 384-plex) and then imputed. In the sec-
ond imputation strategy, we jointly imputed both datasets. We also investigated
the impacts of including heterozygous genotypes and distinct rates of missing
genotypes per locus. The different SNP-calling strategies and percentage of miss-
ing data did not substantially affect the imputation accuracy. However, the dif-
ferent imputation strategies showed a substantial effect. Generally, imputations
were less accurate for heterozygotes. The scenario 96-plex-imputed plus 384-
plex showed accuracies similar to the 96-plex scenario. Beagle and NPUTE pro-
duced the highest accuracies. Our results indicate that combining SNP-calling
and imputation strategies can enhance genotyping in a cost-effective manner,
resulting in higher imputation accuracies.

Abbreviations: FILLIN, fast inbreed line library imputation; GBS,
genotyping-by-sequencing; InDel, insertion–deletion; KNNI, k-nearest
neighbors imputation; MAF, minor allele frequency; SNP, single
nucleotide polymorphism.
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1 INTRODUCTION

The emergence of next-generation sequencing technol-
ogy presented the possibility of obtaining molecular
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markers densely distributed across the genome using high-
throughput techniques such as GBS (Elshire et al., 2011).
Making use of these genome-wide genotyping platforms,
genomic selection and genome-wide association studies
offer great potential to accelerate and enhance selec-
tion efficiency of plant breeding programs (Chang, Toghi-
ani, Ling, Aggrey, & Rekaya, 2018; Desta & Ortiz, 2014;
Dias et al., 2018; Faville et al., 2018; Gerard, Kobiljski,
Lohwasser, Börner, & Simón, 2018; Haile et al., 2018;
Kayondo et al., 2018). However, the costs of high-density
genotyping for large numbers of individuals are still infea-
sible, representing a barrier to a more widespread adop-
tion of these tools. Because the accuracy of genomic selec-
tion and power of association studies usually increase with
increasing numbers of individuals and density of mark-
ers, low-cost genotyping strategies have to be adopted to
address resource limitations (Cericola et al., 2018; Han
et al., 2018; Jacobson, Lian, Zhong, & Bernardo, 2015).
The adoption of genomic selection in a maize breeding

program allows breeders to genotype elite lines and to pre-
dict the performance of all possible hybrids even if they
are not phenotypically evaluated. This strategy reduces the
costs and labor involved in field trials and can increase
genetic gains. In any case, cost-effective genotyping is
crucial. Key features of GBS data are the high rates of
missingness, heterozygote undercalling, and nonuniform
distribution of sequence reads, which vary according to
the kind of population and multiplexing level (Beissinger
et al., 2013). Several studies have reported the efficiency
of imputing missing data using different methods and
strategies (Bouwman, Hickey, Calus, & Veerkamp, 2014;
Cleveland, Hickey, & Kinghorn, 2011; Gonen et al., 2018;
Hickey, Crossa, Babu, & De Los Campos, 2012; Howie,
Donnelly, & Marchini, 2009; Nazzicari, Biscarini, Cozzi,
Brummer, & Annicchiarico, 2016; Swarts et al., 2014). An
effective strategy involves genotyping someof the individu-
als at higher marker density, then using these high-density
data to impute larger numbers of individuals genotyped
at lower marker density. Genomic selection studies adopt-
ing this approach reported increases in the predictive accu-
racy (Gorjanc et al., 2017a; 2017b; Jacobson et al., 2015). For
species for which genotyping chips are available, as is the
case of economically important animals and some crops,
combining data from high- and low-density SNP arrays is
a cost-effective strategy (Gorjanc et al., 2017b; Hickey, Gor-
janc, Varshney, & Nettelblad, 2015; Jacobson et al., 2015).
When genotyping chips are not available or their use is
prohibitive, the GBS technology allows breeders to adjust
the amount of retrieved information and its cost in dif-
ferent ways (Gorjanc et al., 2017b). For instance, choos-
ing different restriction enzymes, regulating sequencing
depth, and the level of multiplexing (Deschamps, Llaca,
& May, 2012; Elshire et al., 2011; Poland & Rife, 2012).

Core ideas

∙ Combining SNP-calling and imputation strate-
gies can enhance cost-effective genotyping

∙ SNP-calling strategies and percentage of miss-
ing data did not affect the imputation accuracy

∙ Beagle and NPUTE produced the highest accu-
racies

However, to the best of our knowledge, no studies have
yet empirically investigated the combined use of SNP-
calling and imputation strategies to improve GBS data
quality.
There are several imputation methods available but

most of them were developed for humans (Browning &
Yu, 2009; Howie et al., 2009; Liu, Li, Wang, & Li, 2013).
However, humans are highly heterozygous, obligate out-
crossers, show little inbreeding, and much less structural
variation than that observed in crop plants. These factors
make the imputation methods designed for humans not
necessarily optimized for use in crop systems. For this
reason, it is worthwhile to compare different imputation
methods, which may or may not allow for heterozygous
genotypes. Situations in breeding programs where there
are genotypic datasets with varying levels of multiplex-
ing and heterozygosity are increasingly common. There is
therefore scientific and practical interest in gaining knowl-
edge about how to better explore such datasets in order to
achieve high imputation accuracies.
In this paper, we compared the imputation accuracy

of four imputation methods: NPUTE (Roberts et al.,
2007), Beagle (Browning & Browning, 2007), KNNI
(Troyanskaya et al., 2001), and FILLIN (Swarts et al.,
2014), which are well known algorithms implemented
in freely available software libraries. We imputed miss-
ing genotypes from GBS data of maize inbred lines
genotyped using different levels of multiplexing per
sequencing lane. We evaluated different SNP-calling
strategies in order to better explore the low and high
multiplexing levels of our dataset. Because this dataset rep-
resents a panel of maize inbred lines mostly in final stages
of the breeding program, we expected that these lines were
homozygous for the majority of loci. However, a few of
those lines were in initial stages of the breeding program
and could thus have higher heterozygosity rates.Hence,we
also evaluated the impact of including heterozygous geno-
types on imputation accuracy. The main objective of this
study was to evaluate different SNP-calling and imputa-
tion strategies in a real maize breeding program scenario.
By doing so, we aimed to better explore the possibility of
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using both low and highmultiplexing levels to deliver cost-
effective genotyping without compromising the imputa-
tion accuracy.

2 MATERIALS ANDMETHODS

2.1 Experimental data

Data used in this study came from a collection of 1,060
maize inbred lines from the Embrapa Maize and Sorghum
breeding program. These lines represent dent (34%) and
flint (51%) heterotic groups, aswell as another group—here
called Group C (15% of the lines), which is unrelated to
both dent and flint sources. We performed DNA extraction
from young leaves based on the cetyl trimethylammonium
bromide method (Saghai-Maroof, Soliman, Jorgensen, &
Allard, 1984). The DNA samples were quantified using
the Fluorometer Qubit 2.0 following the manufacturer’s
instructions (Life TechnologiesTM). Samples were also
evaluated on 1% agarose gel in Tris acetate-EDTA buffer,
stained with GelRedTM (Biotium) and recorded under UV
light in the Imager Gel Doc L-PIX (Loccus Biotecnologia).
Genotyping-by-sequencingwas carried out at theGenomic
Diversity Facility at Cornell University (Ithaca, NY, USA)
using the standard GBS protocol (Elshire et al., 2011) with
the restriction enzyme ApeKI. The inbred lines were split
into two groups: (a) 680 lines genotyped using 96 samples
per sequencing lane (HiSeq2500, 1 × 100 bp) and (b) 380
lines genotypedwith 384 samples per lane (NextSeq500, 1×
90 bp).We thus expected a larger number of reads per sam-
ple in the first group. Tags were aligned to the B73 refer-
ence genome (AGPv3) (Law et al., 2015) using the Bowtie2
aligner (Langmead & Salzberg, 2012). Then, SNPs were
called using the GBSv2 Discovery Pipeline, available in the
software TASSEL v. 5.2.28 (Glaubitz et al., 2014), using dif-
ferent strategies as shown below.

2.2 Single nucleotide polymorphism
calling strategies

We evaluated different SNP-calling and imputation strate-
gies as summarized in Figure 1. In our first strategy,
denoted as SNP-calling strategy I, we ran the discovery
SNP caller plugin using only the 680 lines genotyped with
96 samples per sequencing lane. In this scenario, only the
lines with higher depth of coverage, which are likely to
have less missing data and lower genotyping error prob-
ability, were used for SNP discovery. We thus expected this
subset of the data to provide a set of high quality SNPs
with greater power of detection of polymorphic sites and
less false positives. Next, we ran the production SNP caller

plugin with all 1,060 lines. By doing so, all lines were effec-
tively genotyped but only for the loci detected in the first
set (Figure 1a, blue color). For SNP-calling strategy II, we
ran the discovery and production SNP caller plugins com-
bining both the high- and low-multiplexing sets of lines.
This strategy was likely to affect the number and qual-
ity of discovered SNPs because we included lines geno-
typed with 384 samples per sequencing lane throughout
the SNP discovery step (Figure 1a, gray color). Finally,
we evaluated the descriptive statistics generated for each
discovered marker and applied filters for minor allele
frequency (MAF) <5% and inbreeding coefficient <0.8.
Only SNPs that passed both filters were used for further
analyses.

2.3 Imputation scenarios

We initially cleaned the two datasets by removing
insertion–deletion (InDel) and nonbiallelic markers,
because calling of InDel and multiallelic variants from
low-coverage sequencing can be unreliable. Moreover,
some imputation methods used do not allow InDel and
multiallelic markers, and removing them guaranteed that
all comparisons were valid. Next, we used two contrasting
approaches to compare the influence of heterozygous
genotypes by either keeping or removing any nonho-
mozygous genotype calls. Because our dataset contains
a collection of maize inbred lines mostly in final stages
of the breeding program (F6–F7), we expected that these
lines were homozygous for themajority of locus. However,
a few of those lines were in initial stages of inbreeding
(F3–F4) and could thus have higher heterozygosity rates
(up to 25 and 12.5%, respectively).
For each of these scenarios, we then evaluated two dif-

ferent imputation strategies to leverage the varying lev-
els of multiplexing (Figure 1b). Toward this end, we first
imputed only the 680 lines genotyped with 96 samples
per sequencing lane. We expected that the imputation
accuracy of this dataset would be higher because these
lines have higher depth of coverage. Later we appended
to these imputed data the remaining 380 lines, which
were genotyped with 384 samples per sequencing lane
and finally performed the imputation of the remaining
missing data. The competing strategy consisted of jointly
imputing the high and low multiplexing datasets in a
single step.
In addition to the imputation strategies, we aimed to

evaluate the impacts of the rate of missing data per marker
on the imputation accuracies. Then, we filtered the SNP
data to have a maximum of 10, 20, 50 or 80% missing
data per marker, generating four subdatasets. We used
these four subdatasets, in addition to the unfiltered dataset,
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F IGURE 1 Summary of (a) single nucleotide polymorphism (SNP)-calling and (b) imputation strategies. Blue color indicates SNP-calling
strategy I, whereas gray color indicates SNP-calling strategy II. The imputation strategies showed in (b) were applied to all the four imputation
methods evaluated. MAF, minor allele frequency; F, inbreeding coefficient; Het, heterozygous; NF, not filtered

to perform the imputation analyses. For each of these
datasets, we randomly introduced an additional 10% miss-
ing genotypes based on which imputation accuracy could
bemeasured.All the SNP-calling and imputation strategies
are summarized in Figure 1.

2.4 Imputation methods and software

Weused the software TASSEL v.5.2.28 (Glaubitz et al., 2014)
and the open-source environment for statistical program-
ming R (R Core Team, 2018) for data handling, editing,
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summarizing results, and figure design. We performed the
subsequent imputation analyses using the filtered datasets
from the two competing SNP-calling strategies. We eval-
uated four imputation methods: (a) NPUTE software v.1
(Roberts et al., 2007), which is based on the similari-
ties between haplotypes of different individuals for the
same genomic region in which different window imputa-
tion sizes were tested for each chromosome, and the win-
dows with higher accuracies were chosen; (b) Beagle (ver-
sion 4.1 using default parameters [Browning & Browning,
2016]; Browning & Browning, 2007), which was originally
developed for human genetic studies but also presents
a wide application in animal and plant genetics (Law
et al., 2015; Nazzicari et al., 2016), infers haplotypes and
imputes missing alleles both with known and unknown
linkage phase using a stochastic procedure based on hid-
den Markov models to find the most likely haplotype pair
for each individual, a method that works iteratively using
an expectation–maximization approach; (c) KNNI (Troy-
anskaya et al., 2001), which is a method based on the
weighted average of the k closest markers, used in R using
the function KNNIcatimpute from the R package Scrime
(Schwender & Fritsch, 2015); and (d) FILLIN (Swarts et al.,
2014), an imputation method optimized for inbred popula-
tions implemented in the software TASSEL v. 5 (Glaubitz
et al., 2014), which is based on haplotype reconstruction
around recombination break points. With FILLIN, impu-
tation is carried out in two steps: first, the inference of hap-
lotype takes place (FILLINFindHaplotypesPlugin), which
is followed by imputation of missing data based on the
resulting haplotypes (FILLINImputationPlugin). We used
the TASSEL v.5.2.28 (Glaubitz et al., 2014) plugin FILL-
INFindHaplotypesPlugin followed by FILLINImputation-
Plugin to perform the imputation procedure, considering
the options –accuracy and –proSitesMask to calculate the
accuracy.

2.5 Imputation accuracy and
computational time

For each imputation scenario, we used the artificial miss-
ing genotypes to measure the overall imputation accuracy
and the accuracy for each genotype class. The imputation
accuracy was computed as the proportion of correct impu-
tation measured as the number of correctly imputed miss-
ing data divided by the total number of artificially missing
data points.
We also measured the computational time required for

imputation to be completed in each analysis as an indica-
tor of the software relative performance. To ensure consis-
tency, all jobs were separately submitted to the same com-
puting platform, a multinode server with two Intel Xeon
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F IGURE 2 (a) Minor allele frequency (MAF) and (b) inbreed-
ing coefficient distributions for two alternative single nucleotide
polymorphism (SNP) calling strategies. Solid blue line corresponds
to SNP-calling strategy I, that is, SNP identification using only the
680 lines genotyped with 96 samples per sequencing lane, followed
by genotype calling with all 1060 lines. Dashed gray line corresponds
to SNP-calling strategy II, that is, SNP identification and genotype
calling using all 1060 samples. A total of 1,227,281 and 1,116,281 mark-
ers are represented in SNP-calling strategies I and II, respectively

E5-2650 v4 at 2.20 GHz CPUs with a total of 48 threads and
256 GB of RAM.

3 RESULTS

3.1 Genotypic data

Using our SNP-calling strategy I, that is, with only the
680 lines with higher depth of coverage for SNP discov-
ery, we found 1,227,281 SNPs. We initially removed SNPs
that did not pass the MAF and inbreeding coefficient fil-
ters, generating 475,253 SNPs (Figure 2). Comparatively,
we found 1,116,281 SNPs with our SNP-calling strategy II,
that is, using all the 1060 lines with high and low depths
of coverage for SNP discovery. We again removed SNPs
with the same filtering criteria, resulting in 444,409 SNPs
(Figure 2). As expected, the number of SNPs found with
SNP-calling strategy II was slightly smaller, possibly a
result of the lower detection power with this higher multi-
plexing dataset. The mean depth of coverage was 3.04 and
0.77 reads per locus per sample for the lines genotyped
using 96 and 384 samples per sequencing lane, respec-
tively. The number of markers found per chromosome fol-
lowed similar patterns in both SNP-calling strategies (Sup-
plemental Figure S1). In addition to the higher number of
markers found with SNP-calling strategy I, the number of
missing data per locus was also higher (Supplemental Fig-
ure S2). After removing InDel and nonbiallelic markers,
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F IGURE 3 Imputation accuracy using single nucleotide polymorphism (SNP) calling strategy I, that is, SNP identification using only the
680 lines genotyped with 96 samples per sequencing lane, followed by genotype calling with all 1060 lines, removing heterozygous genotypes.
Each row represents imputation accuracy for different genotypic classes: total imputation accuracy, major homozygous accuracy, and minor
homozygous accuracy. Each column represents an imputation strategy: 96- plus 384-plex, 96-plex, and 96-plex-imputed plus 384-plex. The x-axis
represents the different filters of allowed missing data per locus (10, 20, 50, and 80% and not filtered). Line colors represent the four imputation
methods: Beagle (solid red), FILLIN (dotted green), KNNI (dashed blue), and NPUTE (dashed purple)

the different filters of allowed missing data (10, 20, 50, and
80% and no filter) generated 12,957; 42,053; 173,328; 368,351;
and 474,367 markers, respectively, for SNP-calling strategy
I and 17,508; 50,793; 187,440; 380,955; and 443,940markers,
respectively, for SNP-calling strategy II.

3.2 Imputation accuracy

Accuracies are reported for each combination of SNP-
calling and imputation strategies (Figures 3 through 6).
Comparing the imputation accuracies between the SNP-
calling strategies I and II, we did not observe pro-
nounced differences. When removing heterozygous mark-
ers, we observed that Beagle and NPUTE outperformed
all other imputation methods in most scenarios evaluated
(Figures 3 and 4). The KNNI method presented a compu-
tational limitation and in most evaluated scenarios did not
run to completion. Interestingly, however, in some cases

it outperformed all other methods. For example, in the
joint imputation of the whole dataset, the total and major
homozygous accuracies of the KNNI method were slightly
higher than all other methods when the rate of allowed
missing data per locus was 20%. The FILLIN method
resulted in considerably smaller accuracies in all scenarios
evaluated.
Contrary to our expectations, the allowed missing data

per locus did not substantially adversely affect the imputa-
tion accuracy, with most methods showing a (nearly) flat
response to increased missing data (Figures 3 and 4). The
KNNI method showed decreasing imputation accuracy
with increasing missing data. On the other hand, FILLIN
showed increasing imputation accuracy with increasing
missing data in the imputation strategy 96-plex imputed
plus 384-plex and, particularly in the SNP-calling strategy
II, for the 96 plus 384-plex scenario (Figure 4).
When not removing the heterozygous genotypes, we

assessed the imputation accuracy with only the Beagle
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F IGURE 4 Imputation accuracy using single nucleotide polymorphism (SNP) calling strategy II, that is, SNP identification and genotype
calling using all 1060 samples, removing heterozygous markers. Each row represents imputation accuracy for different genotype classes: total
imputation accuracy, major homozygous accuracy, and minor homozygous accuracy. Each column represents an imputation strategy: 96- plus
384-plex, 96-plex, and 96-plex-imputed plus 384-plex. The x-axis represents the different filters of allowedmissing data per locus (10, 20, 50, and
80% and not filtered). Line colors represent the four imputation methods: Beagle (solid red), FILLIN (dotted green), KNNI (dashed blue), and
NPUTE (dashed purple)

method because it accepts all genotype classes, while
NPUTE and FILLIN require exclusively homozygous
genotypes. Although the KNNI method accepts heterozy-
gous genotypes, its computational limitations precluded
further evaluation. The accuracy for heterozygous geno-
types was considerably lower than for the two homozy-
gous genotypes (Figures 5 and 6). Again, the allowed
missing data per locus did not affect the imputation
accuracy.
We observed extensive differences between the two dif-

ferent imputation strategies (Figures 3 through 6). As
expected, the 96-plex imputation scenario always showed
the best accuracies, while the 96- plus 384-plex performed
the worst. Interestingly, the imputation scenario 96-plex-
imputed plus 384-plex showed imputation accuracies sim-
ilar to the 96-plex scenario. This opens up the possibility
of combining high- and low-depth GBS data without com-
promising the imputation accuracy.

3.3 Computation time

We tracked the amount of time required to complete
the imputation process for each method and imputation
scenario in each SNP-calling strategy with and without
removing heterozygotes (Tables 1 and 2). The number of
markers for the different filters of allowed missing data
varied considerably, which reflected in the computation
times. The FILLIN method required, by far, the least com-
putational times (Table 1). Even in the most complex sce-
nario, that is, a higher number of markers and 96-plex-
imputed plus 384-plex, the time required to complete the
imputation process was never more than a few minutes.
The second fastest method was Beagle, which however
required noticeably more time in more complex scenarios
(Tables 1 and 2). The NPUTEmethod was the slowest algo-
rithm overall except for some scenarios where KNNI was
slower (Table 1).
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F IGURE 5 Imputation accuracy using single nucleotide polymorphism (SNP) calling strategy I, that is, SNP identification using only the
680 lines genotyped with 96 samples per sequencing lane, followed by genotype calling with all 1060 lines, not removing heterozygous markers
for the Beagle imputation method. Each row represents imputation accuracy for different genotype classes: total imputation accuracy, major
homozygous accuracy, minor homozygous accuracy, and heterozygous accuracy. The x-axis represents the different filters of allowed missing
data per locus (10, 20, 50, and 80% and not filtered). Line colors represent the three imputation scenarios: 96 plus 384 plex (solid red), 96 plex
(dotted green), and 96-plex-imputed plus 384-plex (dashed blue)
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F IGURE 6 Imputation accuracy using single nucleotide polymorphism (SNP) calling strategy II, that is, SNP identification and genotype
calling using all 1060 samples, not removing heterozygousmarkers for the Beagle imputationmethod. Each row represents imputation accuracy
for different genotype classes: total imputation accuracy,major homozygous accuracy,minor homozygous accuracy, and heterozygous accuracy.
The x-axis represents the different filters of allowed missing data per locus (10, 20, 50, and 80% and not filtered). Line colors represent the three
imputation scenarios: 96- plus 384-plex (solid red), 96-plex (dotted green), and 96-plex-imputed plus 384-plex (dashed blue)
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TABLE 1 Running times for the different imputation methods for each allowed missing data per locus (10, 20, 50, and 80% and not
filtered [NF]) and respective number of markers in each imputation and single nucleotide polymorphism (SNP) calling strategy removing the
heterozygous markers

SNP-calling
strategya

Imputation
strategy

Allowed
missing data
per locus No. of markers

Imputation
method Running time

% HH:MM:SS
I 96-plex 10 12,957 Beagle 00:02:37

KNNI 00:07:29
NPUTE 00:42:39
FILLIN 00:00:12

20 42,053 Beagle 00:18:18
KNNI 00:56:47
NPUTE 04:24:57
FILLIN 00:00:35

50 173,328 Beagle 01:23:00
KNNI 21:19:08
NPUTE 20:56:10
FILLIN 00:01:51

80 368,351 Beagle 02:58:00
KNNI 107:06:20
NPUTE 38:34:20
FILLIN 00:03:49

NF 474,367 Beagle 03:25:00
KNNI –
NPUTE 41:25:49
FILLIN 00:04:30

96-plex imputed
plus 384-plex

10 12,957 Beagle 04:17:24

KNNI –
NPUTE 02:48:06
FILLIN 00:00:13

20 42,053 Beagle 29:28:46
KNNI –
NPUTE 15:58:28
FILLIN 00:00:54

50 173,328 Beagle 43:28:34
KNNI –
NPUTE 84:54:03
FILLIN 00:02:53

80 368,351 Beagle 61:54:41
KNNI –
NPUTE 163:19:23
FILLIN 00:07:03

NF 474,367 Beagle 54:25:08
KNNI –
NPUTE 189:12:28
FILLIN 00:07:07

(Continues)
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TABLE 1 (Continued)

SNP-calling
strategya

Imputation
strategy

Allowed
missing data
per locus No. of markers

Imputation
method Running time

96- plus 384-plex 10 12,957 Beagle 01:11:34
KNNI –
NPUTE 01:30:01
FILLIN 00:00:15

20 42,053 Beagle 02:57:11
KNNI 07:32:04
NPUTE 09:28:58
FILLIN 00:00:45

50 173,328 Beagle 04:17:45
KNNI 07:32:04
NPUTE 43:46:57
FILLIN 00:02:49

80 368,351 Beagle 06:16:15
KNNI –
NPUTE 77:52:46
FILLIN 00:05:28

NF 474,367 Beagle 06:21:13
KNNI –
NPUTE 83:50:49
FILLIN 00:06:33

II 96-plex 10 17,508 Beagle 00:03:41
KNNI 00:15:52
NPUTE 00:57:22
FILLIN 00:00:18

20 50,793 Beagle 00:27:06
KNNI 06:53:51
NPUTE 05:31:46
FILLIN 00:00:36

50 187,440 Beagle 01:40:45
KNNI 10:10:12
NPUTE 24:51:52
FILLIN 00:02:05

80 380,955 Beagle 03:26:19
KNNI 117:56:04
NPUTE 41:17:26
FILLIN 00:04:05

NF 443,940 Beagle 03:33:55
KNNI –
NPUTE 42:56:24
FILLIN 00:04:30

(Continues)
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TABLE 1 (Continued)

SNP-calling
strategya

Imputation
strategy

Allowed
missing data
per locus No. of markers

Imputation
method Running time

96-plex-imputed
plus 384-plex

10 17,508 Beagle 03:14:19

KNNI –
NPUTE 03:00:25
FILLIN 00:00:20

20 50,793 Beagle 18:47:42
KNNI –
NPUTE 16:42:40
FILLIN 00:00:50

50 187,440 Beagle 42:42:46
KNNI –
NPUTE 78:20:06
FILLIN 00:03:07

80 380,955 Beagle 69:25:25
KNNI –
NPUTE 155:48:01
FILLIN 00:07:41

NF 443,940 Beagle 57:18:19
KNNI –
NPUTE 179:39:53
FILLIN 00:09:06

96- plus 384-plex 10 17,508 Beagle 01:41:32
KNNI –
NPUTE 02:52:14
FILLIN 00:00:27

20 50,793 Beagle 03:02:00
KNNI 13:10:43
NPUTE 15:59:20
FILLIN 00:01:13

50 187,440 Beagle 04:26:05
KNNI –
NPUTE 48:18:38
FILLIN 00:04:14

80 380,955 Beagle 06:28:54
KNNI –
NPUTE 74:41:06
FILLIN 00:08:41

NF 443,940 Beagle 08:09:11
KNNI –
NPUTE 81:20:55
FILLIN 00:09:37

a SNP-calling strategy I: SNP identification using only the 680 lines genotyped with 96 samples per sequencing lane, followed by genotype calling with all 1060
lines; SNP-calling strategy II: SNP identification and genotype calling using all 1060 samples.
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TABLE 2 Running times for Beagle for each allowed missing data per locus (10, 20, 50, and 80% and not filtered [NF]) and respective
number of markers, in each imputation and single nucleotide polymorphism (SNP) calling strategy, considering the heterozygous markers

SNP-calling
strategya

Imputation
strategy

Allowed missing
data per locus No. of markers Running time
% HH:MM:SS

I 96-plex 10 12,957 00:27:02
20 42,053 01:08:07
50 173,328 04:01:21
80 368,351 04:51:47
NF 474,367 05:20:26

96-plex-imputed
plus 384-plex

10 12,957 02:28:25

20 42,053 05:29:07
50 173,328 11:43:59
80 368,351 17:24:06
NF 474,367 21:10:02

II 96- plus 384-plex 10 12,957 01:28:59
20 42,053 02:56:30
50 173,328 07:33:40
80 368,351 08:29:33
NF 474,367 11:16:18

96-plex 10 17,508 00:21:33
20 50,793 01:00:56
50 187,440 03:12:39
80 380,955 06:25:55
NF 443,940 07:13:19

96-plex-imputed
plus 384-plex

10 17,508 03:08:15

20 50,793 06:55:54
50 187,440 13:15:22
80 380,955 20:52:30
NF 443,940 21:48:30

96- plus 384-plex 10 17,508 01:47:01
20 50,793 03:17:01
50 187,440 06:44:40
80 380,955 12:24:20
NF 443,940 12:41:05

a SNP-calling strategy I: SNP identification using only the 680 lines genotyped with 96 samples per sequencing lane, followed by genotype calling with all 1060
lines; SNP-calling strategy II: SNP identification and genotype calling using all 1060 samples.

In general, running times for the imputation strategy 96-
plex weremuch lower than for situations that included the
samples sequenced at lower depth. The second imputation
strategy in amount of time required was the 96-plex plus
384-plex. Finally, the 96-plex-imputed plus 384-plex impu-
tation strategy largely exceeded the others in amount of
time required to complete the imputation process (Tables 1
and 2).

4 DISCUSSION

Results from our study indicate that combining SNP-
calling and imputation strategies can enhance cost-
effective genotyping, resulting in higher imputation accu-
racies. These approaches thus allow a more widespread
adoption of genomic selection and genome-wide associ-
ation studies in plant breeding programs. The different
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SNP-calling strategies aimed to better explore the high-
and low-multiplexing levels of our dataset and yielded dif-
ferent number of markers. Even after we removed SNPs
with MAF <5% and inbreeding coefficient <0.8, the SNP-
calling strategy I, that is, using only the high coverage
dataset to discover SNPs, produced 30,000 more markers
than the alternative scheme. Across the MAF plots, we
observed thatMAFs closer to zero were less frequent using
only lines genotyped with 96 samples per sequencing lane
(Figure 2). The higher coverage dataset likely enabled
greater power of detection and less false positives. With
regard to the inbreeding coefficient, both SNP-calling
strategies showed similar patterns, with slightly higher
values with SNP-calling strategy II (Figure 2). It is more
difficult to call heterozygous SNPs with the lower-depth
dataset, such that the homozygous genotypes tend to be
called more frequently (Swarts et al., 2014). Overall, the
SNP-calling strategies did not greatly affect the imputa-
tion accuracy but had influence on the number of markers
found (Figures 3 through 6).
In SNP genotype imputation, it is important to evaluate

not only the total imputation accuracy but also the per-
class accuracy. Data balancedness refers to the ratio that
each genotype class (AA, AB, BB) appears. Classification
problems are more difficult when the data is unbalanced,
that is, the three classes appear at different frequencies in
the dataset. Data balancedness is directly related to MAF
because very low MAFs arise when a class is underrepre-
sented (Hickey et al., 2012; Nazzicari et al., 2016). Insofar
as the classes of missing genotypes appear at different fre-
quencies, the total imputation accuracy can be dominated
by the most frequent class. The imputation accuracy tends
to be higher for the more frequent genotype class, and the
overall imputation accuracy will predominantly represent
the imputation accuracy of that class. Indeed,we found sig-
nificantly higher error rates in the less frequent class for all
imputation methods.
Beagle and NPUTE methods produced the best impu-

tation results with accuracies close to 100% in the impu-
tation strategies 96-plex and 96-plex-imputed plus 384-
plex in most scenarios of missing data. The KNNI method
did not work in most evaluated scenarios. With large
amounts of missing data, the complexity of the imputa-
tion problem increases and complicates the identification
of k neighbors that are close enough to the data point to be
imputed (Nazzicari et al., 2016). Probably as a consequence
of the curse of dimensionality (Marimont & Shapiro, 1979),
scenarios with large amounts of missing data could not
be imputed with KNNI. The FILLIN method performed
poorly in all tested scenarios, which may be explained
by the fact that this algorithm is optimized for homo-
geneous inbred populations, while our dataset consists
of a collection of lines from different heterotic groups.

Similar results using Beagle, KNNI, and FILLIN methods
were observed in a study with GBS data from rice (Oryza
sativa L.) and alfalfa (Medicago sativa L.) (Nazzicari et al.,
2016).
The allowed missing data per locus did not reflect on

the imputation accuracy for Beagle and NPUTE meth-
ods (Figures 3 and 4). Nonetheless, in the 96-plex imputa-
tion strategy, with larger quantities of missing genotypes,
KNNI showed a decrease in imputation accuracy. In the 96-
plex imputation strategy, FILLIN also showed decreasing
imputation accuracywith increasingmissing rates for total
and major homozygous imputation accuracies. However,
overall in more stringent scenarios, with only 10 to 20%
allowed missing data, imputation accuracy for all classes
in the scenarios 96-plex-imputed plus 384-plex and 96-
plex plus 384-plex as well as the minor homozygous accu-
racy in the scenario 96-plex were reduced for the FILLIN
method.
Despite working with inbred maize lines, some of them

were in the initial stages of the breeding program (F3–
F4) and were not yet completely endogamic. Including
heterozygous genotypes complicated the imputation prob-
lem, because this dataset showed relatively few heterozy-
gotes, which are more susceptible to genotyping errors. As
a consequence, the heterozygous accuracy was consider-
ably lower than for both homozygote classes (Figures 3
and 4).
The complexity of the problem directly affected the

running time required to complete the imputation pro-
cess. The KNNI and NPUTE methods were the most
demanding, with computation times growing both with
the number of markers and with the number of miss-
ing genotypes to be imputed. The 96-plex-imputed plus
384-plex imputation strategy exceeded substantially the
others in amount of time required. We believe that
despite the smaller amount of missing data to impute,
the initial step of identifying the haplotypes is likely
more time consuming because there are more informa-
tive loci. Considering both imputation accuracy and com-
putational time, the best imputation method was Beagle
(Tables 1 and 2). In addition, this method allows for het-
erozygote genotypes, which is an interesting feature for
panels that include individuals with few generations of
inbreeding.
Several works have explored imputation strategies com-

bining high- and low-density genotyping (Gonen et al.,
2018; Gorjanc et al., 2017a; Hickey et al., 2012, 2015; Huang,
Hickey, Cleveland,&Maltecca, 2012;Mulder, Calus, Druet,
& Schrooten, 2012). These studies, however, do not focus
on combining SNP-calling and imputation strategies using
real GBS data. In this paper, we investigated the impact on
imputation accuracies of combining different SNP-calling
and imputation strategies using a real dataset of lines
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from a maize breeding program genotyped with GBS. We
believe that our study is a first stage of what can be done
regarding SNP-calling and imputation strategies with GBS
data. Further research is necessary, for example, establish-
ing the number of high-coverage individuals necessary to
ensure high imputation accuracy of low-coverage individ-
uals. We suggest that some key individuals could be geno-
typed using lower multiplexing levels, while others might
be included in larger pools. This set of key individuals
should bewell-thought-out to represent the entire diversity
of heterotic groups in the breeding program. Besides that,
as sequencing costs continue to decrease, it should become
feasible to increase sequencing depth for a larger portion
of the samples or to increase the number of individuals in
the genotyping panel at the same cost. Both approaches
can increase overall genotyping and imputation accura-
cies as a result of the added information, allowing breeders
to fine-tune the strategy to their particular needs. Finally,
the accuracy of imputationmay vary substantially depend-
ing on the genetic complexity of the species at hand. For
instance, imputation in rice, which is nearly fully homozy-
gous and has a reference genome available, outperformed
imputation in alfalfa, a species with higher heterozygosity
and which required the genome of a closely related species
as a reference (Nazzicari et al., 2016).
Our results indicate that designing the SNP-calling and

imputation strategies in order to better explore the differ-
ent depths of coverage considerably improves the imputa-
tion accuracy and reduces costs since high-multiplexing
levels are considerably cheaper. Bringing together SNP-
calling strategies using only high-coverage data to discover
variants followed by genotype calling for all sequenced
sampleswith the imputation strategy 96-plex-imputed plus
384-plex produced the larger number of SNPs and higher
imputation accuracies. These combined strategies encom-
pass awide range of applications in breeding programs rep-
resenting an opportunity to reduce costs and time by opti-
mizing the genotyping process.
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