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Abstract: Fast and accurate quantification of the available pasture biomass is essential to support
grazing management decisions in intensively managed fields. The increasing temporal and spatial
resolutions offered by the new generation of orbital platforms, such as Planet CubeSat satellites,
have improved the capability of monitoring pasture biomass using remotely sensed data. Here,
we assessed the feasibility of using spectral and textural information derived from PlanetScope
imagery for estimating pasture aboveground biomass (AGB) and canopy height (CH) in intensively
managed fields and the potential for enhanced accuracy by applying the extreme gradient boosting
(XGBoost) algorithm. Our results demonstrated that the texture measures enhanced AGB and CH
estimations compared to the performance obtained using only spectral bands or vegetation indices.
The best results were found by employing the XGBoost models based only on texture measures. These
models achieved moderately high accuracy to predict pasture AGB and CH, explaining 65% and 89%
of AGB (root mean square error (RMSE) = 26.52%) and CH (RMSE = 20.94%) variability, respectively.
This study demonstrated the potential of using texture measures to improve the prediction accuracy
of AGB and CH models based on high spatiotemporal resolution PlanetScope data in intensively
managed mixed pastures.

Keywords: mixed pastures; tropical pastures; integrated systems; texture measures; extreme gradient
boosting; random forest; Brazil

1. Introduction

Grazing pasture and croplands occupy a significant portion of land surface in the world. In the
last decades, many countries, such as Australia [1,2], France [3], United States of America [4,5],
and Brazil [6–8], have adopted the integration of crop and livestock systems as an alternative for
sustainable production intensification. Integrated Crop–Livestock Systems (ICLS) seek the synergism
between agricultural and livestock resources in combination with land use and management practices
focused on the conservation of natural resources [9].
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Adequate grazing management is of critical importance to ensure greater forage production to the
livestock component of ICLS. Thus, understanding the spatiotemporal dynamics of forage resources in
grazed areas is fundamental to support grazing management decisions [10], especially in intensively
managed fields. Pasture monitoring at a fine scale, based on field measurements, is time-consuming
and often spatially limited—based on sampling design distribution and intensity—and is unlikely to
give representative information of large pasture areas [11].

An alternative approach for pasture monitoring is the use of remotely sensed data [12]. Previous
studies have reported good agreement between field measurements of pasture biomass and information
extracted from satellite data [13–15]. However, the temporal frequency of satellite data and the spatial
resolution needed to capture the forage production variation between or within paddocks have been
an obstacle to achieve effective pasture monitoring using the commonly used satellite data, such
as Terra/Aqua/MODIS (Moderate Resolution Imaging Spectroradiometer) (250 m near daily since
2000) [16,17] and Landsat 5/TM, 7/ETM+, 8/OLI (30 m every 16 days from 1984) [18–20].

The new generation of orbital platforms, so-called constellations of nano-satellites, such as
Planet CubeSats, offer an unprecedented combination of high temporal (daily) and high spatial (3 m)
resolution imagery that may overcome the spatiotemporal limitations offered by the available satellite
data sources [21], as well as advance the field of pasture monitoring at a finer scale in intensively
managed fields. In addition to the spectral information, texture measures derived from high spatial
resolution optical imagery allow the incorporation of both spectral and spatial distribution of image
grey values [22–24], enabling a finer distinction of structural detail within pasturelands. However,
incorporating textural information to monitor intensively managed pasture fields is challenging, since
texture varies widely depending on the landscape, types of measures, and associated parameters
(e.g., window size, offset). To this date, only few studies, if not none, have explored the potential of
using texture measures for monitoring pasture biomass.

The integration of spectral and textural information derived from remotely sensed data results
in high-dimensional and complex datasets, highlighting the need for robust modelling approaches.
Machine learning (ML) algorithms are powerful tools to cope with this kind of high-dimensional and
complex data [25,26] and have been increasingly used for a wide range of tasks, including pasture
monitoring [15,27,28]. The extreme gradient boosting (XGBoost) algorithm, a novel implementation of
gradient boosting decision trees [29], has demonstrated excellent performance in many applications
due to its high efficiency and impressive accuracy [30–32].

In this study, we assessed the feasibility of using spectral and textural information derived from
high spatiotemporal resolution PlanetScope imagery for estimating and monitoring aboveground
biomass (AGB) and canopy height (CH) of intensively managed mixed pastures in an ICLS in the
western region of São Paulo State, Brazil. Additionally, we assessed the potential for enhanced
estimation accuracy by applying the XGBoost algorithm compared with the well-known ML algorithm
random forest (RF).

2. Materials and Methods

2.1. Study Area

To evaluate the performance of PlanetScope imagery for estimating and monitoring AGB and CH
of intensively managed pasturelands, four fields of approximately 50 hectares each were selected in
the western region of São Paulo State, Brazil (Figure 1). The four fields have trees for shade and are
split into 13 paddocks on which grazing livestock (cattle) rotates between them throughout the season.
This area has been intensively managed as an ICLS based on the rotation of cultivated pasture during
the winter season (usually between April and October) and soybean cultivation in the summer season
(usually between November and March), with pasture being the focus of this study.

The investigated pasture is composed of a consortium of ruzi grass (Urochloa ruziziensis) and
millet (Pennisetum glaucum), sown at a proportion of 15 kg ha−1 of millet and 5 kg ha−1 of ruzi grass
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in a spacing of 0.17 m between rows. Due to its agronomic characteristics of rapid growth, high
drought resistance, and high dry-matter production, the consortium of millet with tropical forages has
been used as a management strategy to increase biomass production during the winter season and
to decrease the time interval between sowing and the first grazing events in our study area. Pasture
sowing began on 28 March, after soybean harvest, and lasted until 6 April 2019.
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Figure 1. Location of the study area in the western region of São Paulo (SP) state, Brazil. The background
image is a PlanetScope scene (true color composite red-green-blue (RGB):321) on 09 June 2019.

The study area has tropical climatic conditions, corresponding to Köppen’s climatic type Aw, with
drier months during the winter (i.e., June–August) [33]. The mean annual rainfall varies between
1200 mm and 1400 mm, concentrated in the months of December and January. Mean daily temperatures
during the coldest month typically exceed 18 ◦C [34]. Elevations range between 310 m and 370 m
above mean sea level. Soils are predominately sandy loam Oxisol, originated from sandstones of the
Bauru group, with clay contents from 22 to 241 g kg−1.

During the forage growing season, the expression of the productive potential of tropical
pastures is determined by environmental factors, mainly temperature and water availability [35].
The meteorological records for our study area (Figure 2) during the forage growing season of 2019 are
based on daily precipitation and temperature records from the fifth generation ECMWF (European
Centre for Medium-Range Weather Forecasts) reanalysis (ERA5) data of the global climate [36].

2.2. Field Data Collection

Pasture AGB and CH data were collected during the growing season (from May to November of
2019) using a sampling grid with one hundred georeferenced points (Figure 3), defined to maximize the
cost–benefit ratio between sampling efforts (in terms of time and financial resources) and monitoring
results to obtain an acceptable prediction accuracies in the modelling of AGB and CH [37]. The sampling
points were distributed within the study area with a sampling intensity of 25 points per field using
a stratified systematic unaligned sampling design. Field data collection was conducted at six dates:
17 May, 25 May, 18 June, 14 July, 12 August, and 02 November 2019. The field campaigns of May
(17 May and 25 May) occurred before the animal’s entrance in the fields. The following field campaign
dates (18 June, 14 July, 12 August, and 02 November 2019) were defined in order to capture different
phases of pasture growth (millet and ruzi grass) and biomass availability, as well as in function of
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the entry and exit of animals in the paddocks. Although we intended to collect field data in all one
hundred sampling points in every month through the forage growing season, it was not possible due
to the presence of animals in part of the study area in some months and in the entire study area in
September and October (Table 1).
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The rotational grazing system, as well as the dates of entrance and exit of the animals in the
paddocks, were defined by the farm manager. The first grazing cycle happened between the months of
May and June, when the fields were predominantly covered by millet. In July, the fields were without
animals, allowing the growth of forage, especially ruzi grass. However, the ruzi grass had a low
biomass accumulation in July as a response to plant water stress. Later, in August, when the ruzi grass
reached an adequate level of coverage, the animals were allocated in the fields in a lower stocking rate
and stayed there until the beginning of November.

Pasture AGB was measured by destructive sampling from 1 m2 frames (Figure 3b). The fresh
biomass was weighted in the field using a hanging scale, and then the ruzi grass and millet were
separated and weighted again. To determine dry mass (g m−2), the fresh biomass of ruzi grass and
millet were dried at 65 ◦C in the laboratory for 72 h. Next, they were weighed to obtain the total AGB
per sampling point and field campaign. Simultaneously with AGB data collection, CH data were
measured using a sward stick in 11 representative locations within a buffer of 5 m (Figure 3c) in which
the centroid was the position of each sampling point. To obtain the mean CH, we calculated a weighted
mean height based on the proportion of millet: ruzi grass in each sampling point. The proportion
of millet at a specific sampling point was determined by dividing the weight of millet dry mass by
the total AGB weight in that sampling point. The same procedure was adopted to determine the
proportion of ruzi grass in each sampling point: the weight of ruzi grass dry mass was divided by the
weight of total AGB in that sampling point. The field-based descriptive statistics for the pasture under
study are summarized in Table 1.

Table 1. Descriptive statistics of the pasture aboveground biomass (AGB) and canopy height (CH) for
the field campaigns.

Target
Variable

Field
Campaign

Field-Sampled
Points

Proportion of
Millet: Ruzi

Grass (%)

Descriptive Statistics

Mean StdDev Min Max CV

AGB
(g m−2)

May 100 79:21 209.53 10.82 70.33 656.08 5.16
June 50 44:56 136.75 54.91 61.58 259.02 40.15
July 100 14:86 106.95 39.05 41.08 241.99 36.51

August 38 03:97 162.61 53.68 86.85 336.3 33.01
November 58 0:100 202.19 65.26 107.30 401.10 32.28

All data 346 - 163.19 81.97 41.08 656.08 50.23

CH (m)

May 100 79:21 0.82 0.16 0.37 1.20 19.52
June 50 44:56 0.33 0.10 0.22 0.57 29.77
July 100 14:86 0.29 0.10 0.14 0.68 34.32

August 38 03:97 0.27 0.06 0.16 0.38 23.44
November 58 0:100 0.20 0.05 0.12 0.37 24.50

All data 346 - 0.43 0.27 0.12 1.20 63.34

Where StdDev = Standard Deviation, Min = minimum, Max = maximum, and CV = coefficient of variation.

2.3. Remote Sensing Data Collection and Preprocessing

PlanetScope CubeSat multispectral images were acquired for this study. The selected cloud-free
scenes covering the study area were acquired on dates that most closely coincided with the field
campaign dates (i.e., 20 May 2019, 27 May 2019, 17 June 2019, 11 July 2019, 10 August 2019,
and 02 November 2019, respectively) and were downloaded from the Brazilian Planet Labs commercial
representative platform. PlanetScope is a satellite constellation comprising over 130 CubeSats 3U
form factor (0.10 m by 0.10 m by 0.30 m), called “Doves”, which have the capability to image all of
the Earth’s land surface on a daily basis. The PlanetScope satellites have four spectral bands: blue
(B: 455–515 nm), green (G: 500–590 nm), red (R: 590–670 nm), and near infrared (NIR: 780–860 nm)
with a spatial resolution of ∼3 m (nadir ground sampling distance) with an equatorial overpass time of
9:30–11:30 a.m. (local solar time) [21].
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We used the Planet Surface Reflectance (SR) Product, which is derived from the standard
Planet Analytic Product (Radiance) and processed to top of atmosphere (TOA) reflectance and then
atmospherically corrected to surface reflectance using coefficients supplied with the Planet Radiance
product and the 6SV2.1 radiative transfer code [38].

2.4. Vegetation Indices

For each PlanetScope image, twenty-four vegetation indices (VIs) that only include visible and
NIR spectral bands on their formulation were derived (Table 2). These indices have been used in
agricultural studies and they have shown potential to detect certain vegetation characteristics that
could be crucial for pasture AGB and CH estimation.

Table 2. Summary of the vegetation indices (VIs) used in this study for pasture aboveground biomass
(AGB) and canopy height (CH) estimation.

Index Name Formula Reference

ARVI Atmospherically Resistant Vegetation Index (NIR− 2R + B)/(NIR + 2R− B) [39]
BGND Blue Green Normalized Difference (G− B)/(G + B) -

DVI Difference Vegetation Index NIR−R [40]
EVI Enhanced Vegetation Index 2.5((NIR−R)/(NIR + 6R− 7.5B + 1) [41]

EVI2 Enhanced Vegetation Index 2 (2.5(NIR−R))/(1 + NIR+ 2.4R) [42]
ExB Excess Blue Vegetation Index 1.4B−G [43]
ExG Excess Green Vegetation Index 2G−R− B [44]

ExGR Excess Green minus Excess Red
Vegetation Index ExG− ExR [45]

ExR Excess Red Vegetation Index 1.4R−G [46]
GLA Green Leaf Algorithm (2G−R− B)/(2G + R + B) [47]

GNDVI Green Normalized Difference Vegetation Index (NIR−G)/(NIR + G) [41]
GRVI Green Ratio Vegetation Index G/R [48]
IPVI Infrared Percentage Vegetation Index NIR/(NIR + R) [49]

MGRDI Modified Green Red Vegetation Index (G 2
−R2)/(G 2+R2

)
[40]

MSAVI Modified Soil-Adjusted Vegetation Index
[
(2NIR + 1) −

√
(2NIR + 1)2

−8(NIR−R)
]
/2 [50]

NDVI Normalized Difference Vegetation Index (NIR−R)/(NIR + R) [51]
NGRDI Normalized Green-Red Difference Index (G−R)/(G + R) [40]

NIR/GREEN NIR Green Simple Ratio NIR/G -
OSAVI Optimized Soil-Adjusted Vegetation Index (NIR−R)/(NIR + R+ 0.16) [52]
RGBVI Red Green Blue Vegetation Index (G 2

− B ∗R)/(G 2 +B ∗R) [53]
RVI Ratio Vegetation Index R/NIR [54]

SAVI Soil-Adjusted Vegetation Index [(NIR−R)/(NIR + R+ 0.5)].(1 + 0.5) [55]
SR Simple Ratio NIR/R [56]

VARI Visible Atmospherically
Resistant Index

(G−R)/(G + R− B) [57]

2.5. Texture Measures

In order to explore the potential of PlanetScope-derived textural information in the prediction of
pasture AGB and CH, we used the grey level co-occurrence matrix (GLCM) statistical texture approach
to derive texture images [58]. Texture measures are commonly used to quantity the spatial distribution
of cell greyscale values in an image, which can provide useful information for AGB and CH in mixed
pastures. In our study area, the variation in cell greyscale values can be a result of changes in the
pasture canopy structure occasioned by variations in the proportion of millet and ruzi grass, grazing
intensity, and pasture coverage. In addition, the presence of terraces (a soil conservation technology
adopted by the farmer—Figure 1) in the pasture fields will affect the texture measures obtained using
different window sizes and offsets.

The GLCM uses a spatially dependent grey level matrix to compute texture measures from which
the spatial arrangements of image colors or intensities are represented. Eight second-order GLCM
texture measures, including mean (MEA), variance (VAR), homogeneity (HOM), contrast (CON),
dissimilarity (DIS), entropy (ENT), second moment (2M), and correlation (COR) were calculated using
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the ENVI/IDL software (Harris Geospatial Solutions, Inc., Broomfield, CO, USA). MEA is the grey
tone average in the GLCM window. VAR is a measure of dispersion of the grey tone values from its
mean. High VAR suggests large standard deviation of grey tone in the local region. HOM is a measure
of homogenous pixel values across an image, and high values suggest small grey tone differences
between neighboring pixels. CON is a measurement of variability and high values mean large local
variations or the opposite of HOM. DIS is inversely related to HOM and similar to CON, and high
values suggest local region with high variability in an image. ENT is a measurement of disorder degree
in an image, and high values mean a heterogeneous texture or the opposite of 2M. 2M, or angular
second moment, is a measure of textural uniformity and is high for locally homogenous regions —
similar to HOM. Finally, COR is a measurement of grey tone linear dependencies between a pair of
pixels in an image (Figure 4 illustrates the eight second-order GLCM texture measures derived from a
subset of a NIR PlanetScope band from May 2019).

To determine the optimal window size for our study, the eight texture measures were calculated for
the G, R, and NIR bands of PlanetScope images using three window sizes: 3 × 3, 5 × 5, and 7 × 7 pixels.
For each window size, texture measures were also calculated at four offsets (θ), 0◦, 45◦, 90◦, and 135◦,
represented in Cartesian coordinates as [0, 1], [−1, 1], [−1, 0], and [−1, −1], respectively. As a result,
a total of 288 texture features were generated for each PlanetScope image. All GLCMs were constructed
using a 64 grey level quantization. PlanetScope blue band was not used to derive GLCM textures,
because this band is strongly influenced by atmospheric scattering [59].
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2.6. Spectral and Textural Data Extraction

From the coordinates of the sampling points, we generated a window of 3 × 3 pixels to extract the
spectral and textural data of the PlanetScope images. In each window, the extracted pixel values in each
of the predictor variables (spectral bands, vegetation indices, and texture measures) were averaged and
then associated with the field-based measures of pasture AGB and CH for model development. By using
this approach, we expected to reduce the uncertainty of positional discrepancy between the image and
field data, as well as to take into account errors associated with GNSS single-point positioning.
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2.7. Pasture AGB and CH Modelling

To explore the potential of using spectral and textural information derived from PlanetScope
imagery to estimate pasture AGB and CH, we designed four prediction scenarios (SC) using both the
XGBoost and RF machine learning algorithms: the first three scenarios used, respectively, spectral bands
(G, R and NIR) (SC1), vegetation indices (SC2), and the optimum textures measures (SC3) individually
to estimate AGB and CH, whilst the fourth scenario (SC4) investigated the use of combined spectral
bands (SC1), vegetation indices (SC2), and the optimum texture measures (SC3). To determine the
optimum textures measures in SC3, we assessed the effect of window size and offset texture parameters
in the accuracy of the AGB and CH models using both the XGBoost and RF algorithms, and the
optimum parameter set (window size and offset) was chosen for each target variable (AGB and CH).

In order to develop single AGB and CH models, which are able to encompass the complexity
and variability of mixed pastures throughout the forage growing season and are dependent only on
remotely sensed variables, we used the complete dataset (considering data from all field campaigns
and image dates) to train and test the XGBoost and RF models. The dataset was divided randomly
into 70% for training and 30% for testing of the models. All AGB and CH modelling analyses and
evaluations were performed using the mlr package in R software [60].

Machine Learning Regression Algorithms

The XGBoost algorithm proposed by Chen and Guestrin [29] is an advanced implementation
of the gradient boosting framework of decision trees. This algorithm creates a number of decision
trees sequentially based on the idea of “boosting”, which combines all the predictions of a set of weak
learners for developing a strong learner through additive training strategies. XGBoost has showed
superiority over other machine learning algorithms and achieved outstanding performances in many
research areas [32,61–63].

The RF algorithm is an ensemble of decision trees based on the bagging technique, first introduced
by Breiman [64]. For regression problems, this algorithm grows a large number of decision trees
(forest), and the final prediction value corresponds to the averaged output of all individual decision
trees. Each tree in the forest is independently constructed during the training process using a bootstrap
sample (sample with replacement) of the training data. RF is a well-known regression method with
high accuracy and robustness that provides fast, flexible, robust, and accurate predictive capabilities.

2.8. Model Evaluation

2.8.1. Hyperparameters Tuning in XGBoost and RF models

Each machine learning algorithm requires a set of hyperparameters that need to be tuned properly
during the model development to obtain the best performance. Optimal values of hyperparameters for
each XGBoost and RF model were selected according to the accuracy estimation in the training dataset
using the 5-fold cross-validation method. We employed the random search method for tuning the
hyperparameters [65] for each XGBoost and RF model using the candidate value ranges presented in
Table 3. This method repeatedly trains the models, and each run is based on a random sample from all
combinations of hyperparameter values.
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Table 3. Hyperparameters optimized for the XGBoost and RF algorithms and corresponding candidate
value ranges for the random search.

Algorithm Hyperparameter Description Candidate Value Ranges

XGBoost

nrounds controls the maximum number of iterations 50–200
eta controls the learning rate 0.01–0.3

max_depth controls the depth of the tree 3–10

min_child_weight refers to minimum number of instances
required in a child node 1–10

subsample controls the number of observations supplied
to a tree 0.5–1.0

colsample_bytree controls the number of predictor variables
supplied to a tree 0.5–1.0

RF
ntree controls the number of trees 50–500

mtry controls for the number of predictor variables
randomly sampled at each split 1– 2

√
p

Where p = number of predictor variables.

2.8.2. Feature Importance

The relative importance of the predictor variables for each XGBoost and RF model were calculated
based on the built-in feature importance measures of both algorithms, enabling the most important
variables in each model run to be interpreted. In the RF models, the variables are ranked based on the
increase of the mean square error (IncMSE) when a variable is randomly permuted [64]. In the XGBoost
models, the variables are ranked based on information gain. Information gain is the improvement in
accuracy brought by a predictor variable to the branches it is on. Each gain of each predictor variable
in all trees is taken into account. At the end, the information gain is averaged per predictor variable to
give a vision of the entire model [29].

Although machine learning algorithms may excel at handling settings with several predictor
variables, feature selection may improve the performance of the algorithms, either in terms of learning
speed, generalization capability, as well as interpretability of the resulted model [66]. In our study,
we tested whether the feature selection would further improve the performance of the XGBoost and RF
models. We used the regressional ReliefF (RReliefF) algorithm to select the optimal subset of predictor
variables [67]. RReliefF is a classic filter-based method and a modification of the ReliefF algorithm,
suitable for regression tasks with continuous output values. The performance of the RF and XGBoost
models considering all predictor variables and the selected variables were compared, and the best RF
and XGBoost models with the highest prediction accuracy were selected per prediction scenario.

2.8.3. Accuracy Assessment and Uncertainty Analysis

To evaluate and compare the XGBoost and RF models’ performance, we employed the root mean
square error (RMSE) in absolute and percentage terms, and the coefficient of determination (R2),
calculated based on field-based pasture AGB and CH measurements in the testing dataset, i.e., data
not used in the model development process. Then, the best performing models were used to estimate
AGB and CH for our entire study area. In addition, we used a tree mask to avoid prediction errors in
its location (Figure 1).

In our study, the uncertainty analysis for AGB and CH estimation was carried out following
the procedure adopted by Csillik et al. [68,69]. We grouped the estimated values of AGB and CH
(separately) into 10 bins using the natural breaks method and computed the RMSE in percentage (%)
for each bin. Next, we fitted a regression model using the 10 RMSE bin values and the estimated mean
values of AGB and CH per bin. The fitted regression models were used to create spatially explicit
uncertainty maps for each estimated map of AGB and CH.
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3. Results

The window size and offset (orientation) texture parameters influenced the accuracy of AGB and
CH estimation using both RF and XGBoost machine learning algorithms (Table 4).

Table 4. Performance of PlanetScope-derived texture measures in predicting pasture aboveground
biomass (AGB) and canopy height (CH) using the random forest (RF) and extreme gradient boosting
(XGBoost) regression algorithms based on the testing dataset. The optimum combination of texture
parameters are highlighted in boldface.

Modelling
Algorithm

Window
Size

Offset
(θ)

AGB CH

RMSE
(g m−2)

RMSE
(%) R2 RMSE

(m)
RMSE

(%) R2

RF

3 × 3

0◦ 53.31 34.36 0.47 0.10 22.73 0.87
45◦ 50.77 32.72 0.51 0.10 22.91 0.87
90◦ 48.49 31.25 0.52 0.10 23.09 0.87
135◦ 51.54 33.22 0.50 0.10 22.37 0.87

5 × 5

0◦ 49.72 32.05 0.51 0.10 23.00 0.87
45◦ 49.61 31.97 0.51 0.10 23.55 0.87
90◦ 47.79 30.80 0.54 0.10 22.84 0.87
135◦ 47.46 30.59 0.56 0.10 22.18 0.88

7 × 7

0◦ 46.43 29.93 0.57 0.10 22.34 0.87
45◦ 45.60 29.39 0.58 0.10 23.25 0.86
90◦ 44.09 28.42 0.60 0.10 22.89 0.87
135◦ 46.42 29.92 0.56 0.10 22.50 0.87

XGBoost

3 × 3

0◦ 51.56 33.23 0.46 0.10 22.63 0.87
45◦ 49.12 31.66 0.52 0.10 22.30 0.87
90◦ 47.84 30.84 0.53 0.10 22.88 0.87
135◦ 49.82 32.11 0.49 0.10 22.21 0.88

5 × 5

0◦ 49.02 31.59 0.52 0.10 22.37 0.87
45◦ 47.53 30.63 0.54 0.10 22.20 0.87
90◦ 47.50 30.61 0.54 0.10 21.64 0.88
135◦ 48.38 31.18 0.52 0.09 20.94 0.89

7 × 7

0◦ 46.19 29.77 0.56 0.09 21.31 0.88
45◦ 45.22 29.15 0.58 0.10 22.02 0.87
90◦ 41.15 26.52 0.65 0.10 22.07 0.88

135◦ 47.12 30.37 0.55 0.09 21.11 0.89

In general, the XGBoost models resulted in the highest prediction accuracies. For AGB estimation,
the highest R2 (0.65) and the lowest RMSE (26.52%) were achieved using a 7 × 7 window size and the
90◦ offset. On the other hand, the 5 × 5 window size and the 135◦ offset resulted in the highest R2 (0.89)
and the lowest RMSE (20.94%) for CH estimation.

Our results show that the XGBoost models achieved slightly superior performance in predicting
AGB and CH than the RF models in all prediction scenarios tested in this study (Table 5). The spectral
band models (SC1) for AGB and CH estimation have less predictive ability than the other tested
prediction scenarios (SC2, SC3, and SC4). The optimum texture measures (SC3) showed a considerable
improvement in the accuracy of AGB (an increase of up to 23% in the R2 values) and CH (an increase
of around 3% in the R2 values) estimation when compared with using only spectral bands (SC1) or
vegetation indices (SC2). However, the combination of the spectral bands, the vegetation indices,
and the optimum texture measures (SC4) did not improve the AGB and CH estimation accuracies
when compared to those obtained using only the optimum texture measures.
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Table 5. Pasture aboveground biomass (AGB) and canopy height (CH) estimates based on the spectral
bands (SC1), the vegetation indices (SC2), the optimum texture measures (SC3), and the combination of
spectral bands, vegetation indices, and the optimum texture measures (SC4) using the random forest
(RF) and extreme gradient boosting (XGBoost) regression algorithms. The best performing models are
highlighted in boldface.

Modelling
Algorithm

Prediction
Scenario

AGB CH

RMSE
(g m−2)

RMSE
(%) R2 RMSE

(m)
RMSE

(%) R2

RF

SC1 52.47 33.82 0.46 0.10 23.70 0.86
SC2 50.93 32.83 0.48 0.10 22.52 0.87
SC3 44.09 28.42 0.60 0.10 22.18 0.88
SC4 46.49 29.96 0.55 0.10 22.50 0.87

XGBoost

SC1 49.76 32.07 0.50 0.10 23.46 0.86
SC2 48.99 31.58 0.50 0.10 22.61 0.87
SC3 41.15 26.52 0.65 0.09 20.94 0.89
SC4 45.85 29.55 0.57 0.10 21.61 0.88

The predictions of AGB and CH, retrieved for the best XGBoost models using the optimum
texture measures, showed a good agreement with the field-based measurements in the testing dataset
(Figure 5). The AGB (Figure 5a) and CH (Figure 5b) estimates showed strong linear relationships
between predicted values and field-based measurements (Pearson’s correlation (r) = 0.80 and r = 0.94,
respectively). In general, the lowest values of AGB were overestimated, while the highest observed
AGB values were underestimated. In spite of the high agreement between predicted and measured
values of CH, we observed a small trend of underestimation of CH higher than 0.9 m.
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Figure 5. Scatterplots of the predicted versus measured values of pasture aboveground biomass (AGB,
g m−2) (a) and canopy height (CH, m) (b) obtained using the best extreme gradient boosting (XGBoost)
model based on the testing dataset. A 1:1 line (grey, dashed) is provided for reference.

Among the optimum texture measures, the MEA textures obtained from the G, R, and NIR spectral
bands were the most important variables in the prediction of AGB and CH, as indicated by the relative
importance metric of the best XGBoost models (Figure 6). The CON, VAR, COR, and ENT textures
of NIR and R bands were among the subsequent most important variables for the AGB and CH
predictions. On the other hand, DIS and HOM textures contributed little to the AGB and CH models.
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in the best extreme gradient boosting (XGBoost) models predicting aboveground biomass (AGB) (a)
and canopy height (CH) (b).

The spatiotemporal variations in pasture AGB and CH through the forage growing season are
shown in the maps obtained with the best-performing XGBoost models (Figures 7 and 8) using the
optimum texture measures extracted from the PlanetScope spectral bands (SC3). Predicted AGB varied
from 51.07 to 463.89 g m−2. For CH, the predicted values ranged from 0.16 to 1.06 m. The spatiotemporal
changes in pasture AGB and CH for all paddocks during the growing season were in parity with
expected changes in pasture vegetation, as driven by forage development, management operations,
and weather conditions. The maximum values of pasture AGB and CH were measured in the fields
in the month of May, mainly due to the high proportion of millet in the pasture vegetation (Table 1).
Correspondingly, the highest predicted values of AGB and CH (Figures 7 and 8) were also observed
for the month of May. In June, after the first grazing cycle in some paddocks, we observed a decrease
in both predicted and measured pasture AGB and CH values. July was the month with the lowest
predicted and measured AGB values due mainly to grazing intensity and meteorological drought
stress (Figure 2). November showed the lowest predicted and measured CH values due to the full ruzi
grass establishment (Table 1).

To create spatially explicit uncertainty maps for each estimated map of AGB and CH, we fitted
polynomial functions (Figure 9) for the relative RMSE uncertainties in our AGB and CH estimations.
The uncertainties in AGB estimations (Figure 9a) were under 20% RMSE for lower predicted values
of AGB (< 90 g m−2) and for predicted values of AGB between 230 and 370 g m−2. AGB predictions
between 110 and 205 g m−2 resulted in uncertainties equal or higher than 25% RMSE, and the
uncertainty increased for predicted values higher than 370 g m−2. Predicted values of CH (Figure 9b)
between 0.26 and 0.52 m and higher than 1.01 m resulted in uncertainties higher than 25% RMSE.
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The uncertainties in CH estimations were under 15% RMSE for predicted values of CH lower than
0.18 m and ranging from 0.67 to 0.93 m.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 22 
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The predicted AGB (Figure 10) and CH (Figure 11) uncertainty maps can be useful to be compared
with the maps obtained by the best XGBoost models (Figures 7 and 8), providing additional information
about prediction reliability at pixel level and for specific areas within the pasture fields.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 22 
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4. Discussion

In this study, spectral and textural information derived from PlanetScope imagery were explored
to estimate pasture AGB and CH in intensively managed fields using the XGBoost and RF machine
learning algorithms. Although the differences between the AGB and CH prediction accuracies obtained
by the two algorithms are small, the XGBoost models outperformed most of the RF models in the
prediction scenarios analyzed (Tables 4 and 5). The superior performance of XGBoost when compared
with other well-known machine learning algorithms in terms of both accuracy and computational cost
has also been observed in other remote sensing studies [30–32,61]. Our results highlight the potential
of using GLCM-based texture measures (SC3) to achieve enhanced AGB (RMSE = 26.52%; R2 = 0.65)
and CH (RMSE = 20.94%; R2 = 0.89) prediction accuracies when compared to the use of spectral
bands (SC1) or vegetation indices (SC3) as predictor variables (Table 5). The integration of texture
measures with spectral bands and vegetation indices (SC4) did not result in improved AGB and CH
prediction accuracies.

Texture measures derived from high-resolution satellite data enable a finer distinction of vegetation
structural details [70]. For this reason, texture measures derived from optical remotely sensed data
have been used to improve the prediction of vegetation structural parameters in forests [22,70–73] and
croplands [74,75]. In our study area, the texture measures were able to capture the differences in AGB
and CH in the pasture fields as a result of grazing intensity, proportion of millet and ruzi grass, plant
stress response, and pasture coverage. The MEA texture was more important than the other texture
measures in the prediction of AGB and CH, as measured by the feature importance metric of the
XGBoost algorithm (Figure 6). This texture measure corresponds to the average values of grey tones or
intensities in the G, R, and NIR spectral bands within the moving window that may contain information
about the pasture canopy structure and the background. By averaging the grey tones values, the MEA
texture smooths the image and minimizes the interference of the background [76]. The subsequent
most important variables for AGB and CH predictions were the CON, VAR, COR, and ENT textures of
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NIR and R spectral bands. These texture measures are directly related to high variations in the grey
tones’ values caused mainly by the variations in the leaf shapes through the forage growing season.
Leaves are the main component of canopy responsible for the overall texture appearance. As a result,
the variations in the intertwined characteristics of millet and ruzi grass through the growing season,
such as leaf shape, leaf color, leaf angle, leaf size, and density, were potentially represented by the
GLCM-based texture measures.

The better performance of the CH model (R2 = 0.89) compared to the performance of the AGB
model (R2 = 0.65) may be explained by the geometric properties of these two variables (AGB and CH)
and variations in the pasture canopy structure through the growing season (Table 1). AGB is a three-
dimensional variable. Hence, the capacity of the texture measures derived from PlanetScope imagery
to provide accurate estimates of AGB depends on their ability to discriminate both the horizontal
(e.g., canopy density/coverage) and the vertical (e.g., canopy height) pasture structure [77]. However,
in our study area, the pasture canopy structure is directly affected by the proportion of millet and ruzi
grass through the growing season, as well as grazing intensity, which resulted in greater variation in
the spatiotemporal pattern of canopy reflectance.

Millet and ruzi grass are two forages with different structural properties, growth rates, and biomass
production. Millet is a tall, robust, erect, annual bunchgrass with long narrow leaves and a rapid
initial growth rate, whereas ruzi grass is a creeping perennial that has short rhizomes, which form a
dense leafy cover over the ground. The size, shape, orientation, and roughness of individual parts
(e.g., the leaves, stems, and inflorescence) of millet and ruzi grass and their variation throughout the
forage growing season will affect the reflectance and, consequently, the texture measures derived from
remotely sensed imagery. The dominance of either millet or ruzi grass in the pasture canopy will result
in smaller differences in grey tone values between neighboring pixels than when there is a greater or
less proportion of one or the other forage in the pasture canopy. In the beginning of the pasture-growing
season, the high proportion of millet in the pasture canopy was responsible for the highest values
of AGB and CH (Table 1, Figure 7, and Figure 8). After the first grazing cycle, the decrease in the
proportion of millet favored the growth of ruzi grass and resulted in high variability in the grey tones
on the images. Later in the growing season, the proportion of millet in the pasture canopy was lower
than 45% in June and 15% in July. In these months, all paddocks had lower values of AGB mainly due
to grazing and plant water stress, a meteorological drought characteristic in this region during the
winter months (total precipitation in June–July lower than 50 mm (Figure 2)). The lowest values of CH
were observed in November, when the pasture canopy was composed only of ruzi grass. However,
with the beginning of the rainy season and full ruzi grass establishment, we observed a significant
increase in AGB production in November (Figures 7 and 8). It thus seems that the texture measures
derived from PlanetScope imagery were more efficient to capture variations in CH than in AGB in our
study area.

The Planet’s constellation of CubeSats nano-satellites offers an unprecedented opportunity to
monitor vegetation dynamics with enhanced spatial detail more frequently than ever before [78,79].
The temporal and spatial resolutions of the commonly applied optical remotely sensed data, especially
medium and coarse spatial resolution remotely sensed imagery, have been an obstacle to achieve
effective pasture monitoring at a fine scale in intensively managed fields [15,18,80]. The increasing
temporal and spatial resolution offered by Planet CubeSat satellites may overcome this spatiotemporal
limitation. However, while the Planet CubeSat satellites offer an unprecedented combination of
high temporal and spatial resolution imagery necessary to monitor rapid changes in pasture canopy
structure, these satellites have the disadvantage of not being equivalent to a rigorously calibrated
and high-performing satellite, such as Landsat [81]. Cross-sensor variations in images obtained from
different nano-satellites may affect the generalization of models produced based on the relationship
between field-based measurements and variables derived from PlanetScope imagery. Future predictions
on new areas or dates will be limited to images with a matching histogram to the reference training
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images. Another possible limitation is related to data accessibility. Planet Labs is a commercial company,
and therefore, PlanetScope imagery are not open access as NASA’s frequently used Landsat imagery.

Finally, the approach used in this study provide a framework for integrating field data and
textural information derived from high-resolution remotely sensed imagery to monitor AGB and CH
in intensively managed mixed pasture fields. In addition, the concepts presented in this study are
expected to be consistent regardless of the sensor, provided that the spatial resolution of the remotely
sensed imagery is able to capture the variability of the pasture fields.

5. Conclusions

In this study, we showed that the GLCM-based texture measures derived from PlanetScope
imagery enhanced the prediction accuracy of AGB and CH models compared to the performance
obtained using spectral bands or vegetation indices. The extreme gradient boosting (XGBoost)
algorithm outperformed the well-known machine learning (ML) algorithm random forest (RF) in all
prediction scenarios analyzed in our study.

Even though pasture canopy structure varies greatly through the growing season due to forage
composition (proportion of millet and ruzi grass), grazing management, and environmental conditions,
our models were able to predict the spatiotemporal changes in pasture AGB and CH with moderate
(R2 = 0.65) to high (R2 = 0.89) prediction accuracies, respectively.

Despite possible limitations, this study demonstrated the potential of using texture measures
to improve the prediction accuracy of AGB and CH models based on PlanetScope-derived data in
intensively managed pasture fields at a fine scale.
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