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José Cola Zanuncio7☯, Carlos Frederico Wilcken1☯

1 Departament of Plant Protection, School of Agricultural Sciences, São Paulo State University (UNESP),

Campus of Botucatu, Botucatu, São Paulo, Brazil, 2 Instituto Superior de Estudios Forestales, CENUR
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Abstract

Cleruchoides noackae (Hymenoptera: Mymaridae), native to Australia, is the most promis-

ing biological control agent for Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae),

an exotic Eucalyptus spp. pest in Brazil. The aim of this study was to determine the courtship

behaviour, mating and oviposition of unmated or mated C. noackae females parasitizing T.

peregrinus eggs utilizing the same rearing system used in biological control programmes in

Brazil. The mating behaviour of eleven C. noackae unmated couples was observed and the

time taken for males and females to find each other in polystyrene vials and the duration and

number of copulations were recorded. Ten unmated or mated females were placed individu-

ally in vials with 10 T. peregrinus eggs each, and oviposition behaviour, percentage of eggs

inserted and parasitized, viability and sex ratio of emerged C. noackae were recorded. This

species lacked defined courtship behaviour and mated in less than an hour after adults’

emergence. The time spent finding the first host, evaluating and inserting the ovipositor was

similar for mated and unmated C. noackae females, as well as the frequency of inserted and

parasitized eggs and their viability. Mated females took less time to find other host eggs and

the sex ratio is female-biased. Occurrence of arrhenotokous parthenogenesis was con-

firmed. The ability of C. noackae to mate and lay eggs in less than one hour and parasitism

of T. peregrinus eggs by females can improve the parasitoid mass rearing and biological

control of T. peregrinus.
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Introduction

Australian exotic pest insects have damaged forest plantations in several countries around the

world, especially those of the genus Eucalyptus (Myrtaceae) [1–3]. The bronze bug, Thaumas-
tocoris peregrinus Carpintero & Dellapé, 2006 (Hemiptera: Thaumastocoridae), detected in

Brazil in 2008 in the states of São Paulo and Rio Grande do Sul, has spread rapidly throughout

the country [4–6]. This invasive insect pest has a gregarious and sucking habit, lays eggs in

clusters and it has caused intense defoliation in eucalyptus trees [3, 7, 8]. Symptoms caused by

this pest include silvering, tanning and leaf drying due to sap sucking, followed by defoliation

of susceptible genotypes [4, 9, 10]. In addition, reduction in tree diameter, height and volume,

besides losses in eucalyptus wood yield of up to 10 to 15%, were recorded in eucalypt planta-

tions infested by T. peregrinus [3, 4].

Biological control is the most suitable strategy for T. peregrinusmanagement in eucalyptus

plantations [11], due to sustainability requirements for planted areas, lower environmental

risks and the high cost of chemical insecticides [12, 13]. Entomopathogenic fungi cause high

T. peregrinus nymph and adult mortality in the laboratory and also in epizootics in the field

[14–16]. Native predators such as Chrysoperla externaHagen (Neuroptera: Chrysopidae) [17],

Supputius cincticeps Stal (Heteroptera: Pentatomidae) [18] and Atopozelus opsimus Elkins

(Hemiptera: Reduviidae) [19] prey on nymphs and adults of T. peregrinus in Brazil. The egg

parasitoid Cleruchoides noackae Lin & Huber, 2007 (Hymenoptera: Mymaridae), the main bio-

logical control agent of the bronze bug [13, 20, 21], was introduced to Brazil in 2012 to pro-

mote classical biological control of this pest [6].

Cleruchoides noackae is a solitary egg parasitoid, approximately 0.5 mm long [21], and it

has an emergence rate higher than 60% from T. peregrinus eggs up to three days old and lower

than 10% for those three to five days old [6]. The parasitism of T. peregrinus by C. noackae in

the laboratory and the field is 50%-60% [22] and its release in eucalyptus plantations in Brazil

has reduced infestation by this pest [3].

Cleruchoides noackae can reproduce by arrhenotokous parthenogenesis, with fertilized eggs

yielding females and unfertilized eggs yielding males [23]. In the laboratory and field, the sex

ratio (female: male) of this parasitoid, when emerging from T. peregrinus eggs, was 0.76 and

0.65 respectively [6, 22]. Cleruchoides noackae reared in the laboratory has a short longevity,

1.1 to 3.6 days without and with food, respectively [23, 24]. The reproductive behaviour of C.

noackae needs further study. Even with previous information, some key aspects remain

unknown: the time for males and female of C. noackae to find each other after emergence in

transparent polystyrene vials that have been used in the laboratory rearing system in Brazil,

and the number of T. peregrinus eggs in which they are inserted by C. noackae female oviposi-

tion and which are effectively parasitized in one hour. This information is very important to

known the optimal time that we need to wait to offer host eggs to copulated female in order to

avoid arrhenotokous parthenogenesis [23]. Swift mating and, in turn, a large number of eggs

parasitized in a short time are important considering the parasitoid’s brief longevity [23, 24].

In parasitic wasps, mating behaviour involves mate location and recognition, which can

include specific courtship behaviour rituals, copulation, during which the male transfers its

spermatozoa to the female and post-copulation, characterized by grooming behaviour [25].

Females of egg parasitoids exhibit distinct oviposition behaviour, consisting of host location

and evaluation, ovipositor insertion, host acceptance, oviposition and chemical or mechanical

marking to avoid superparasitism [26]. These patterns may be inborn to the species or learned

by experience during the host evaluation and oviposition process [27] and by this learned,

female can locate and parasitize the host more efficiently and quickly [28, 29]. Therefore, the

mating behaviour and oviposition patterns of C. noackae need be studied for purposes of
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efficiently rearing this parasitoid in the laboratory and increasing its efficacy after releasing

mated females in the field.

The aim of this study was to evaluate, in laboratory conditions, the courtship, mating and

oviposition behaviour of unmated or mated C. noackae females on T. peregrinus eggs, in the

same vials used for parasitoid mass rearing in Brazil.

Materials and methods

Study site

The bioassays were carried out at the Laboratory of Biological Control of Forest Pests (LCBPF)

of the São Paulo State University (UNESP), School of Agricultural Sciences (FCA), in Botu-

catu, São Paulo, Brazil.

Host Thaumastocoris peregrinus
Thaumastocoris peregrinus eggs were obtained from LCBPF breeding stocks, with previous

field collection done in eucalyptus plantations infested by the pest in the state of Minas Gerais,

Brazil. The insects were kept on 3-year-old Eucalyptus urophylla var. platyphylla (Myrtaceae)

branches in 250-ml Erlenmeyer flasks with water on a plastic tray (40 cm long x 35 cm wide x

8 cm high). Strips of towel paper (1.5 cm wide x 15.0 cm in length) were arranged on the upper

surfaces of the branches for 24 h as a substrate for T. peregrinus oviposition. These eggs were

used for parasitoid rearing and bioassays. Thaumastocoris peregrinus were reared in an air-

conditioned room at 24 ± 2 ˚C, 60 ± 10% RH and with a 12-h photophase [30].

Parasitoid Cleruchoides noackae
Cleruchoides noackae adults were provided from LCBPF rearing stock that had been started

with T. peregrinus parasitized eggs collected in eucalyptus plantations in state of Rio Grande

do Sul, Brazil. The adults were kept in transparent polystyrene vials (7.5 cm high x 3.0 cm in

diameter) with filter paper strips (7.0 cm high x 1.5 cm wide) moistened with 50% honey solu-

tion as food. One-day-old T. peregrinus eggs were offered to the females of this parasitoid in a

climatic chamber at 24 ± 2 ˚C, 60 ± 10% RH and with a 12-h photophase [31].

Courtship and mating behaviour

One hundred T. peregrinus eggs, parasitized by C. noackae, were stored individually in trans-

parent polystyrene vials (3.5 cm high x 2.0 cm in diameter) at the same controlled conditions.

Adult parasitoids were sexed after emergence (< 3 hours old), based on the antennae mor-

phology: filiform (males) and clavate (female) [22]. After this, adults were fed with 50% honey

solution. The behaviour, before and during mating, of eleven C. noackae unmated couples,

placed individually in transparent polystyrene vials (7.5 cm high x 3.0 cm in diameter), was

observed for one hour under a stereoscopic microscope. The time taken for male and female

C. noackae to find each other and the duration and number of copulations were recorded.

Oviposition behaviour

Ten newly emerged C. noackae unmated or mated females (< 3 hours old) were individualized

in transparent polystyrene vials (7.5 cm high x 3.0 cm in diameter) with a filter paper strip

moistened with 50% honey solution as food. Ten T. peregrinus eggs oviposited on towel paper

strips and up to 24 hours old, were numbered from 1 to 10 and offered to each C. noackae
female for one hour at a temperature of 24 ± 2 ˚C and RH: 60 ± 10%. The eggs in which the

parasitoid inserted the ovipositor were transferred to other individual transparent polystyrene
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vials (3.5 cm high x 2.0 cm in diameter) and stored at the same room conditions, until C.

noackae adult emergence. Thaumastocoris peregrinus eggs were dissected after 30 days to

obtain the number of parasitoids retained therein.

The oviposition behaviour of unmated or mated C. noackae females was observed for one

hour per female under a stereoscopic microscope, timing the period taken to (a) find (contact)

the first host egg; (b) find other host eggs; (c) perform external evaluation of host egg (females

walking on eggs, touching them with antennas and tarsomeres); and (d) insert the ovipositor

in the host. The proportion of eggs with ovipositor insertion (%), parasitism (%), viability (%),

sex ratio and frequency (%) of ovipositor insertion site by C. noackae in the T. peregrinus egg

(side, operculum or opposite the operculum) were also evaluated. The proportion of T. peregri-
nus eggs with ovipositor insertion by C. noackae (Ins), parasitism (P), viability (V) and sex

ratio (rs) were calculated with the following formulas: Ins = [(number of eggs inserted/number

of eggs offered)] � 100; P = [(number of emerged parasitoids + retained parasitoids/number of

eggs offered)] � 100; V = [(number of parasitoids emerged/number of parasitized eggs)] � 100;

rs = number of females/(number of females + number of males), respectively.

The experimental design was completely randomized with two treatments (unmated or

mated females) and 10 replicates (each with 10 T. peregrinus eggs: one female of C. noackae).

Statistical analysis

Before the analysis, data were tested for normality and homoscedasticity of variances. The sta-

tistical analysis was performed using an unpaired t-test (significant p-value< 0.05) and the

Mann-Whitney U test was used as the nonparametric version of the t-test since the datasets

were not normally distributed. A two-way ANOVA was carried out to compare the effects of

mating of C. noackae females and frequency of ovipositor insertion site and interaction effect

between mating of C. noackae females and oviposition sites on frequency of ovipositor inser-

tion sites on T. peregrinus eggs. Data were analysed using Sigma Plot v. 11.0. for Windows

software.

Results

Courtship and mating behaviour

Cleruchoides noackaemales and females mated soon after emergence when placed in polysty-

rene vials, but without defined courtship behaviour. All the pairs mated and the duration of

male-female encounters was 341.6 seconds on average, ranging from 39.0 to 1140.0 seconds in

these vials. The male touched the female with its antennae and, in seconds, assumed copulation

position, coupling and inserting the aedeagus in the reproductive tract of female, which

remained in a walking position, without moving. The male, after mating and during copula-

tion, was aligned in the opposite direction of the female, with the ventral part of the abdomen

facing upwards, leaning its wings on the base of the polystyrene vial. Each C. noackae couple

had only one copulation in one hour. Copulation in C. noackae lasted 39.0 seconds on average,

ranging from 29.0 to 50.0 seconds. After copulation, males and females separated and walked

around the vial.

Oviposition behaviour

Unmated and mated females found the first host egg with a similar delay (t(18) = -0.326,

p = 0.748, Table 1), but mated females took less time to find subsequent host eggs (Mann-

Whitney U = 14.000, d.f. = 1.18, p = 0.013, Table 1). Cleruchoides noackae females circled and

repeatedly touched T. peregrinus eggs with their antennae before ovipositing for similar
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periods between 18.0 to 31.0 and 15.0 to 34.0 seconds for unmated and mated females, respec-

tively (t(18) = 1.326, p = 0.202, Table 1).

Cleruchoides noackae females inserted their ovipositor into a T. peregrinus egg immediately

after evaluating it. During oviposition, females kept their antennae parallel to the abdomen

with no wing movements and vertically lowered and raised the abdomen, characterizing ovi-

position. The time between ovipositor insertion and removal by unmated or mated C. noackae
females ranged from 2.3 to 11.9 and from 2.6 to 5.9 minutes, respectively (Mann-Whitney

U = 34.000, d.f. = 1.18, p = 0.391, Table 1).

Most C. noackae females parasitized once per T. peregrinus egg, but some parasitized on the

same egg more than once (a superparasitism condition), and one mated female did not find

eggs for oviposition within one hour. Unmated or mated C. noackae females inserted their ovi-

positor in more than 50% of the T. peregrinus eggs offered (t(18) = -0.411, p = 0.686, Table 2)

and most of them inserted eggs and effectively parasitized during the evaluation period (one

hour/female) (t(18) = -0.596, p = 0.576, Table 2).

Cleruchoides noackae viability between mated and unmated females was similar (Mann-

Whitney U = 46.500, d.f. = 1.18, p = 0.790, Table 2) and only one adult emerged per egg.

Unmated females of C. noackae only produced males and mated females produced both males

and females, with a higher frequency of females (Mann-Whitney U = 0.000, d.f. = 1.18, p<
0.001, Table 2).

The mating of C. noackae females and frequency of ovipositor insertion site on T. peregri-
nus eggs had no significant interactions (two-way ANOVA; F = 2.777, d.f. = 2.56, p = 0.072,

Table 3). Mating had no impact on the oviposition site preferences for C. noackae females

(two-way ANOVA; F = 0.000, d.f. = 1.56, p = 1.000, Table 3), but oviposition site between

them differed (two-way ANOVA; F = 50.891, d.f. = 2.56, p<0.001, Table 3). Unmated females

preferred to insert the ovipositor laterally to the egg, followed by the operculum and least

opposite the operculum (F = 28.133, d.f. = 2.29, P< 0.001, Table 3). Mated females preferred to

insert the ovipositor equally on egg sides and on operculum and least on opposite side of oper-

culum (F = 25.232, d.f. = 2.26, p<0.0001, Table 3).

Table 1. Time period (mean ± standard error) to find the first egg, other eggs, time to ovipositor insertion (minutes), and egg evaluation (seconds) by Cleruchoides
noackae (Hymenoptera: Mymaridae) female on Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) eggs.

Female First egg (min)a Other eggs (min)b Evaluation (s)a Insertion (min) b

Unmated 15.2 ± 4.79NS 3.8 ± 2.20� 24.4 ± 1.56NS 5.1 ± 1.09NS

Mated 17.1 ± 3.69 0.8 ± 0.05 21.2 ± 1.85 3.6 ± 0.31

Significant differences as determined by the unpaired t-test (a) or Mann-Whitney U test (b) are indicated with � (p<0.05) and non-significant differences with NS.

https://doi.org/10.1371/journal.pone.0239285.t001

Table 2. Eggs inserted (%), parasitism (%), viability (%) and sex ratio of offspring (mean ± standard error) of unmated and mated Cleruchoides noackae (Hymenop-

tera: Mymaridae) females on Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) eggs during one hour of evaluation.

Female Eggs inserted (%)a Parasitism (%)a Viability (%)b Sex ratio of offspringc

Unmated 59.00 ± 7.66 NS 55.00 ± 7.78 NS 97.13 ± 1.89 NS 0.00 ± 0.00

Mated 64.00 ± 9.45 62.00 ± 9.52 75.98 ± 12.12 0.68 ± 0.02

Significant differences as determined by the unpaired t-test (a) or Mann-Whitney U test (b) are indicated with � (p<0.05) and not significant differences with NS. (c):

Treatments not analyzed, because there is no variation among unmated data (only male production).

https://doi.org/10.1371/journal.pone.0239285.t002

PLOS ONE Ovipostion behaviour of Cleruchoides noackae

PLOS ONE | https://doi.org/10.1371/journal.pone.0239285 October 2, 2020 5 / 12

https://doi.org/10.1371/journal.pone.0239285.t001
https://doi.org/10.1371/journal.pone.0239285.t002
https://doi.org/10.1371/journal.pone.0239285


Discussion

Male and female Cleruchoides noackae found each other quickly in the vials, 341.6 seconds on

average. This is important because they need to mate quickly after emergence to produce nor-

mal (male & female) progeny, due to the species’ capacity for arrhenotokous parthenogenesis

[24], with only males originating from unfertilized eggs [32, 33]. This behaviour is expected

for pro-ovigenic parasitoids, such as C. noackae, due to their short longevity [25]. The emer-

gence of C. noackaemales and females at the same time [34], and the fact that T. peregrinus lay

their eggs in groups on eucalyptus leaves [35], increases the chance that male and female para-

sitoids meet and mate. The poorly defined courtship behaviour of C. noackae is consistent

with other parasitoids such as Trichogramma dendrolimiMatsumura and Trichogramma papi-
lionisNagarkatti (Hymenoptera: Trichogrammatidae) [36] and Anagrus spp. (Hymenoptera:

Mymaridae), in which males mate with the first female found due to sex pheromone [37].

Females of C. noackae [24] and of Anagrus breviphragma Sokya (Hymenoptera: Mymaridae)

[38] were not receptive to a second copulation, which may be due to the transfer of chemical

substances from male seminal fluid and spermatozoa to the female [39, 40].

The reduced time taken for C. noackae females to find other host eggs after parasitizing the

first one may be due to a process known as associative learning [26]. Egg parasitoids have

developed strategies to find hosts and parasitize them, such as by detection of chemicals (semi-

ochemicals) associated with the host or damaged plant [41–43]. Associative learning may be

related to the perception of chemical (semiochemical) and/or physical (visual or mechanical)

stimuli of the first egg parasitized [44, 45] and the parasitoid’s ability to find, recognize and

accept [26, 29, 43, 46] or reject other hosts [47]. Due to the small size of their hosts, female egg

parasitoids have developed a capacity to respond to these stimuli to decrease recognition time

and increase parasitism capacity in a shorter time [43]. This behaviour pattern was reported

for Anagrus pseudococciGirault (Hymenoptera: Encyrtidae), which, after acquiring experi-

ence, was more efficient in seeking hosts by moving faster and taking less time to handle addi-

tional hosts [48]. Anaphes iole Girault (Hymenoptera: Mymaridae) females with previous

oviposition experience were faster to parasitize Lygus hesperus Knight (Hemiptera: Lygaeidae)

eggs than those without experience [47].

The fact that C. noackae females circled and touched the T. peregrinus eggs repeatedly with

their antennae shows this parasitoid needs morphological, chemical or sensory stimulation

associated with its host to start oviposition [49]. External manipulation of egg by unmated or

mated C. noackae females, a process known as evaluation [26], allows recognition of character-

istics such as form, texture or movement of the host to verify its suitability for oviposition or to

identify non-volatile chemicals released by other females during previous oviposition, thus

avoiding superparasitism [47, 50]. The time spent by unmated and mated C. noackae probing

T. peregrinus eggs with their antennae before inserting the ovipositor was similar to that

reported for C. noackae females evaluated in a plastic petri dish for 30 min taking 35 seconds

for this behaviour at 22 ˚C [51]. However, the external evaluation time taken for a female to

Table 3. Frequency (mean ± standard error) of the ovipositor insertion site per Cleruchoides noackae (Hymenoptera: Mymaridae) unmated or mated female on

Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) eggs.

Female Ovipositor insertion site (%)

Opposite to operculum Operculum Side

Unmated 10.78 ± 2.16 Ac 33.66 ± 4.30 Ab 55.56 ± 4.22 Aa

Mated 3.43 ± 4.13 Ab 46.34 ± 6.02 Aa 50.23 ± 5.57 Aa

Means followed by the same lowercase letter, per line or upper case, per column, do not differ by the two-way ANOVA (Tukey test, p < 0.05).

https://doi.org/10.1371/journal.pone.0239285.t003
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recognize and parasitize a host may decrease with successive egg handling experience [52] and

host age due to internal physical and chemical changes in the eggs [26, 53], and with the recog-

nition of host chemicals or lesions produced during ovipositor insertion [47].

The oviposition of C. noackae immediately after contact with T. peregrinus eggs agrees with

a previous report on this parasitoid, with ovipositor insertion time of 2 to 10 minutes at 22 ˚C

for mated females [51]. Temperature and humidity may have affected time taken for C.

noackae to penetrate T. peregrinus egg chorion and oviposit, since these factors affect host con-

ditions and may modify female parasitoid behaviour [33, 54], as reported for Anaphes nitens
Girault and Anaphes inexpectatusHuber & Prinsloo (Hymenoptera: Mymaridae) on eggs of

Gonipterus platensisMarelli (Coleoptera: Curculionidae), another invasive pest of eucalypts.

The mating, probing and oviposition of these parasitoids were more frequent between 10 and

25 ˚C than at 5 ˚C [55].

Variations in ovipositor insertion time among parasitoid species may be due to differences

in host egg thickness, which affects cuticle penetration time [56]. For example, A. delicatus
inserts its ovipositor in Prokelisia marginata Van Duzee (Homoptera: Delphacidae) eggs for

119.0 seconds (1.9 minutes) [37], a shorter time than that of C. noackae on bronze bug eggs.

Unmated or mated C. noackae females typically performed only one oviposition per T. pere-
grinus egg and returned at most in one previously parasitized egg. This behaviour was also

observed when 20 T. peregrinus eggs were offered to females of this parasitoid in a glass vial

(7.5 cm long x 2.5 cm wide) [24], while frequency of return to and oviposition in the same egg

was higher when five eggs were offered [51]. This behaviour may be associated with increased

fitness and reproductive success [57]. Many females mark the host eggs with chemical sub-

stances before leaving them [58, 59]. This allows other females to recognize internal chemical

changes of parasitized eggs [26], reducing the chance of superparasitism [60]. The non-recog-

nition of co-specific markers and, consequently, the return of female parasitoids to previously

parasitized eggs may be due to pheromone degradation and low oviposition experience of

females [61, 62].

Cleruchoides noackae oviposition soon after emergence is a common pattern for pro-ovi-

genic parasitoids [34], allowing them to produce offspring more quickly. However, parasitoids

may exhibit time and/or egg laying limitations on their hosts, which force them to develop

strategies for host evaluation and oviposition to increase their fecundity and thus, their fitness

[49].

The emergence of one C. noackae adult per T. peregrinus egg is a common pattern for this

species; however, this may vary with host volume, species and quality and may influence para-

sitoid size [63, 64]. The emergence of only one C. noackae individual per T. peregrinus egg can

be explained by the fact that eggs of this pest are 0.48 mm long [65] on average, while C.

noackae are about 0.5 mm long (after emerging) [22]. Thus, there is only room for one per

host egg. A sex ratio of 0.68 (in the progeny of mated females) is an ideal condition for parasit-

oid mass rearing in the laboratory, and for efficacy in the field after release, because females

are responsible for parasitism and can adjust the sex ratio according to host size, age, quality,

competition, temperature and oviposition sequence [66–68] to increase reproductive success.

The preference of C. noackae for insertion sites on the sides and operculum of T. peregrinus
eggs does not appear to be due to the chorion thickness, which is approximately 0.44 mm over

the entire egg surface [65]. However, the operculum presents circular projections, probably

aeromicropyles, and the outer opercular region is smooth in texture, which may facilitate the

penetration of C. noackae ovipositor into the T. peregrinus egg [65].

Failure to detect a statistical difference between mated and virgin C. noackae females in ovi-

position behavior may be due to a limited number of replicates, as the standard errors were rel-

atively large in some instances. However, our number of replicates (n = 10) was similar to
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other published articles, including others that studied C. noackae, such as Mutitu et al. [24],

with n = 10, and Haas et al. [51], with n = 12.

Conclusions

Male and female C. noackae did not exhibit defined courtship behaviour and mated in less

than one hour after making initial contact in transparent polystyrene vials. The time taken to

find the first host, perform an external evaluation and insert ovipositor (oviposition), as well as

percentage of inserted, parasitized and viable eggs were similar for unmated and mated C.

noackae females. Mated females took less time to find other host eggs. Unmated females pro-

duced only males and the sex ratio is female-biased. The results obtained here contribute to

improving strategies for C. noackae rearing and release in biological control programs for T.

peregrinus.
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coris peregrinus in different eucalyptus species and hybrids. Phytoparasitica 2012; 40(3): 223–230.

11. Wilcken CF, Barbosa LR, Soliman EP, Lima ACV, de Sá LAN, Lawson S. Percevejo-bronzeado-do-
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