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Abstract: Sugarcane (complex hybrids of Saccharum spp., C4 plant) croplands provide cane stalk
feedstock for sugar and biofuel (ethanol) production. It is critical for us to analyze the phenology and
gross primary production (GPP) of sugarcane croplands, which would help us to better understand and
monitor the sugarcane growing condition and the carbon cycle. In this study, we combined the data
from two sugarcane EC flux tower sites in Brazil and the USA, images from the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor, and data-driven models to study the phenology and
GPP of sugarcane croplands. The seasonal dynamics of climate, vegetation indices from MODIS
images, and GPP from two sugarcane flux tower sites (GPPEC) reveal the temporal consistency
in sugarcane phenology (crop calendar: green-up dates and harvesting dates) as estimated by the
vegetation indices and GPPEC data. The Land Surface Water Index (LSWI) is shown to be useful to
delineate the phenology of sugarcane croplands. The relationship between the sugarcane GPPEC

and the Enhanced Vegetation Index (EVI) is stronger than the relationship between the GPPEC and
the Normalized Difference Vegetation Index (NDVI). We ran the Vegetation Photosynthesis Model
(VPM), which uses the light use efficiency (LUE) concept and is driven by climate data and MODIS
images, to estimate the daily GPP at the two sugarcane sites (GPPVPM). The seasonal dynamics of
the GPPVPM and GPPEC at the two sites agreed reasonably well with each other, which indicates
that VPM is a powerful tool for estimating the GPP of sugarcane croplands in Brazil and the USA.
This study clearly highlights the potential of combining eddy covariance technology, satellite-based
remote sensing technology, and data-driven models for better understanding and monitoring the
phenology and GPP of sugarcane croplands under different climate and management practices.

Keywords: CO2 eddy covariance flux tower; MODIS images; vegetation photosynthesis model;
vegetation index

1. Introduction

Sugarcane (complex hybrids of Saccharum spp.) is one of the major cash crops in the world [1].
It accounts for 70% of the world’s sugar production [2] and is also a major source of biomass feedstock
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for biofuel (ethanol) production [3,4]. Sugarcane is the largest crop produced in the world in terms of
biomass. According to the agricultural statistics data from the United Nations Food and Agricultural
Organization (FAO), 25.98 million ha of sugarcane produced 1.84 billion tons of sugarcane in 2017.
Brazil and the United States of America (USA) were the top 1st and 9th producer countries of sugarcane
in the world during the period 1994–2017 (Figure S1), accounting for approximately 50% and 2% of the
harvested sugarcane area in 2017, respectively (Figure S2).

Gross primary production (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE)
are the major carbon flux components in the terrestrial carbon cycle. The carbon fluxes of sugarcane
plantations have large uncertainty across the spatial and temporal scales, driven by climate change [5],
agricultural management practices [6–10], and land use change [11,12]. Therefore, there is a need to
observe and predict the phenology and carbon fluxes of sugarcane plantations under diverse weather
and crop management practices with in situ measurement, remote sensing, and biogeochemical models
across various temporal and spatial scales.

The eddy covariance (EC) technique has been widely used to measure the NEE between the
land and the atmosphere, which is then partitioned into GPP and ER based on day and night-time
fluxes [13]. The measured NEEEC data and estimated EREC and GPPEC data have been used as standard
or reference data for the assessment of vegetation phenology and biogeochemical models that estimate
these CO2 fluxes across site, regional, and global scales [14,15]. To date, only a small number of EC
tower sites have been operated to measure the CO2 fluxes of sugarcane plantations [16–21].

Remote sensing data are extensively used to track crop phenology or land surface phenology [22–24],
estimate CO2 fluxes across space and time [25,26], and scale up carbon fluxes across spatial scales [27,28].
Many studies have developed and applied light use efficiency (LUE) models that use vegetation indices
(VI) from optical images and climate data to estimate the daily GPP of vegetation [29–33]. A number
of studies compared GPP data from the LUE models with GPPEC data estimated from EC flux tower
sites [32,34,35]. These studies showed that the maximum light use efficiency parameter is essential for
estimating the GPP in LUE models. The Vegetation Photosynthesis Model (VPM) calculates the daily
GPP (GPPVPM) as the product of the light absorbed by chlorophyll in the canopy (APARchl) and the
light use efficiency [36]. The VPM model has been run to estimate the daily GPP at many EC flux tower
sites [37–46]. To our limited knowledge, very few studies reported information on the phenology and
GPP of sugarcane fields [47], and the VPM model has not been evaluated for sugarcane plantations
yet. Therefore, there is a need to evaluate the VPM model at individual sugarcane EC flux tower sites,
which is a critical step before we use it to estimate sugarcane GPP over years across site, regional, and
global scales.

This study has three objectives: (1) to assess the potential of vegetation indices (NDVI, EVI, LSWI)
in understanding the land surface phenology and physiology of sugarcane crop at individual site, (2) to
evaluate the VPM model’s effectiveness at estimating the GPP of sugarcane croplands at individual
sites, and (3) to quantify the effect of climate and management practices on the GPP of sugarcane
croplands at individual sites over several years.

2. Materials and Methods

2.1. The Description of Study Sites

One sugarcane plantation in southern Brazil and one sugarcane plantation in Louisiana, USA,
were used in this study (Figure 1) based on the availability, quality, and quantity of the EC flux data,
and the detailed sugarcane planting history at these two sites during the period 2000–2018 is shown
in Table S1.
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Figure 1. The longitude and latitude position information of the two sugarcane eddy covariance (EC) 
flux tower sites (red dot) and surrounding landscapes with one respective 500 m Moderate Resolution 
Imaging Spectroradiometer (MODIS) pixel (red polygon). (a) and (c), the USR site, Brazil; (b) and (d), 
the Louisiana site, USA. 

2.1.1. The Sugarcane Plantation Site in Sao Paulo, Brazil (USR) 

The sugarcane plantation EC flux tower site (21.6366°S, 47.7897°W) is located at Luiz Antonio 
municipality, Sa ̃o Paulo State, Brazil [18]. Sugarcane varieties (SP81-3250, SP83-2847, and RB86-7515) 
were planted in this site over years. The site is 552 m high above sea level and its soil type is sandy 
soil. The soil and sugarcane stalk yields were representative of southern Brazil [48,49]. The canopy 
height reached approximately 5 m when sugarcane was at the peak of its growing season. The 
distance between the sugarcane planting rows was 1.4 m. The sugarcane plantation field (>400 ha) 
has a gentle slope of <2%, and the close-by vegetation includes pasture, citrus fruit orchards, and 
savanna woodland [49]. Sugarcane is a multi-year ratoon crop, and on average sugarcane fields in 
the region have a cropping cycle comprising one plant crop and four ratoon (regrowth) crops [18,49]. 
At the USR site, the sugarcane plantation was planted in 2003 and replanted in 2007, one year less 
than the average because a low cane stalk yield was observed in the 2007 harvest (day of the year 
149). The detailed agricultural practices can be found in the publication [18].  

2.1.2. The Sugarcane Plantation Site in Louisiana, USA 

The sugarcane plantation site (29.6341°N, 90.8349°W) is located at the Ardoyne Farm in 
Schriever, Louisiana, USA, and is managed by the USDA-ARS Sugarcane Research Unit. The HoCP 
04-83’ variety (reg. no. CV-181, PI 687221) of sugarcane plantation was selected in this site. This site 
(100 ha) has a long-term (50 yr) history of continuous sugarcane production. The study site is 
bordered to the north, east, south, and west by 1200, 1320, 360, and 2000 m of continuous sugarcane 
production fields. The field is graded to 0.2% toward the south. Sugarcane plant rows are spaced at 
1.83 m apart. The soil type is Cancienne silty clay loam (Fluvaquentic Epiaquepts). The sugarcane 
plants usually green up in April and are harvested by December (Figure S3) [50]. 

2.2. Climate and CO2 Flux Data from the Two Sugarcane EC Flux Tower Sites  

2.2.1. The Sugarcane Plantation Site in Sao Paulo, Brazil (USR) 

Figure 1. The longitude and latitude position information of the two sugarcane eddy covariance (EC)
flux tower sites (red dot) and surrounding landscapes with one respective 500 m Moderate Resolution
Imaging Spectroradiometer (MODIS) pixel (red polygon). (a,c), the USR site, Brazil; (b,d), the Louisiana
site, USA.

2.1.1. The Sugarcane Plantation Site in Sao Paulo, Brazil (USR)

The sugarcane plantation EC flux tower site (21.6366◦S, 47.7897◦W) is located at Luiz Antonio
municipality, São Paulo State, Brazil [18]. Sugarcane varieties (SP81-3250, SP83-2847, and RB86-7515)
were planted in this site over years. The site is 552 m high above sea level and its soil type is sandy
soil. The soil and sugarcane stalk yields were representative of southern Brazil [48,49]. The canopy
height reached approximately 5 m when sugarcane was at the peak of its growing season. The
distance between the sugarcane planting rows was 1.4 m. The sugarcane plantation field (>400 ha) has
a gentle slope of <2%, and the close-by vegetation includes pasture, citrus fruit orchards, and savanna
woodland [49]. Sugarcane is a multi-year ratoon crop, and on average sugarcane fields in the region
have a cropping cycle comprising one plant crop and four ratoon (regrowth) crops [18,49]. At the USR
site, the sugarcane plantation was planted in 2003 and replanted in 2007, one year less than the average
because a low cane stalk yield was observed in the 2007 harvest (day of the year 149). The detailed
agricultural practices can be found in the publication [18].

2.1.2. The Sugarcane Plantation Site in Louisiana, USA

The sugarcane plantation site (29.6341◦N, 90.8349◦W) is located at the Ardoyne Farm in Schriever,
Louisiana, USA, and is managed by the USDA-ARS Sugarcane Research Unit. The HoCP 04-83’ variety
(reg. no. CV-181, PI 687221) of sugarcane plantation was selected in this site. This site (100 ha) has
a long-term (50 yr) history of continuous sugarcane production. The study site is bordered to the
north, east, south, and west by 1200, 1320, 360, and 2000 m of continuous sugarcane production fields.
The field is graded to 0.2% toward the south. Sugarcane plant rows are spaced at 1.83 m apart. The soil
type is Cancienne silty clay loam (Fluvaquentic Epiaquepts). The sugarcane plants usually green up
in April and are harvested by December (Figure S3) [50].
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2.2. Climate and CO2 Flux Data from the Two Sugarcane EC Flux Tower Sites

2.2.1. The Sugarcane Plantation Site in Sao Paulo, Brazil (USR)

At the site, a closed-path instrument was used to measure the CO2 flux. The EC flux tower’s
height is 9 m. A detailed description of the EC flux tower measurements was given in a previous
publication [18]. The GPP was calculated as the difference between the observed NEE and the
ecosystem respiration (ER) during daylight hours, which was estimated by a model that uses the
exponential relationships between air temperature and nighttime CO2 fluxes (ER) [51]. We aggregated
the half-hourly photosynthetically active radiation (PAR) and CO2 flux data into the daily sum data.
We further averaged the daily climate and carbon flux data to 8-day period data. In this study, the
climate and CO2 flux data of the whole sugarcane growing season in 2005–2007 at this site was used.
The daily daytime mean air temperature was defined as the average temperature over the period that
has PAR values larger than 10 µmol m−2 s−1.

2.2.2. The Sugarcane Plantation Site in Louisiana, USA

At this site, an integrated open-path infrared gas analyzer was instrumented with the tower [16].
The calculation of the GPP, nighttime ER, and daytime ER with the fitted exponential equations
followed the same procedure as the previous study [51]. We used a similar method to aggregate the
daily and 8-day period data from the half-hour data, as was done for the Brazil site. In this study, we
used the data of the entire sugarcane growing season in 2017 at this site.

2.3. MODIS Land Surface Reflectance Data and Calculation of Vegetation Indices during 2000–2018

The MODIS instruments onboard both the Terra and Aqua satellites acquire images with different
spatial resolutions and 36 spectral brands. Seven spectral bands were primarily used for vegetation
and land surface measurements, including blue (459–479 nm), green (545–565 nm), red (620–670 nm),
near infrared (841–875 nm, 1230–1250 nm), and shortwave infrared (1628–1652 nm, 2105–2155 nm).

The MOD09A1 Collection 6 product provides 8-day estimates of surface reflectance of seven
spectral bands at 500 m spatial resolution. A detailed description of MOD09A1 is given at https:
//lpdaac.usgs.gov/products/mod09a1v006/. The MOD09A1 data are available in the Google Earth
Engine (GEE), a powerful satellite image editing platform [52,53]. After the data quality control of
the MOD09A1 files, we used land surface reflectance data to calculate the Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI)
(Equations (1)–(3)). The algorithm documented in the previous publication [54] was used to gap fill the
bad quality NDVI and EVI observations. We used times series MODIS data for these two sugarcane
sites during 2000–2018, based on the geographical sites (latitude and longitude) of the sugarcane sites.
The seasonal and interannual variation of three vegetation indexes during 2000–2018 for these two
sugarcane sites is shown in Figure S4.

NDVI =
NIR−Red
NIR + Red

, (1)

EVI = 2.5×
NIR−Red

NIR + 6×Red− 7.5× Blue + 1
, (2)

LSWI =
NIR− SWIR
NIR + SWIR

. (3)

2.4. NCEP Climate Data

The National Centers for Environmental Prediction (NCEP) - Department of Energy (DOE)
NCEP/DOE Reanalysis-2 climate dataset was used in our global simulation of VPM model published
in Scientific Data paper [55]. The daily climate variables (air temperature, precipitation, and downward

https://lpdaac.usgs.gov/products/mod09a1v006/
https://lpdaac.usgs.gov/products/mod09a1v006/
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shortwave radiation) were downscaled to 500 m using a nonlinear spatial interpolation method [56].
In this study, we used the same climate data for the global VPM simulations and used the daily
minimum, mean, and maximum air temperature (◦C), precipitation (mm), and downward shortwave
radiation (W m−2) for the pixels covering the two sugarcane sites. The 8-day climate data were obtained
by calculating the averages of the minimum, mean, and maximum air temperature, precipitation, and
downward shortwave radiation over an 8-day period, which is the same temporal resolution as the
MODIS data product. A previous study [57] showed a comparison between the NCEP radiation data
with in situ radiation measurements at 37 AmeriFlux sites and reported a bias correction factor of 0.8.
In this study, we applied this factor to adjust the radiation data. Many studies have indicated that
PAR is just a proportion of the SR, and the conversion from SR to PAR ranges from 0.45 to 0.50 [58–60].
In this study, we use the mean PAR/SR ratio (0.48) as the conversion ratio [61]. The seasonal dynamics
and interannual variation in air temperature (◦C), precipitation (mm day−1), and PAR (mol m−2 day−1)
during 2000–2018was shown in Figure S5.

2.5. VPM Model and Simulation

2.5.1. VPM Model

The VPM model estimates the daily GPP by multiplying the amount of PAR absorbed by
chlorophyll in the crop canopy (APARchl) and the light use efficiency [37,38]. The model equations are
the following:

GPP = εg ×APARchl, (4)

APARchl = FPARchl × PAR. (5)

The fraction of PAR absorbed by chlorophyll in the canopy (FPARchl) is estimated as a linear
function of EVI [55]:

FPARchl = 1.25× (EVI − 0.1). (6)

The effects of air temperature and water on the maximum light use efficiency (ε0) are calculated
as:

εg = ε0 × Tscalar ×Wscalar. (7)

The parameters εg and ε0 refer to the light use efficiency and maximum light use efficiency (µmol
CO2 µmol−1 photosynthetic photon flux density (PPFD) or g C mol−1 PPFD), respectively. The Wscalar
and Tscalar scalars represent the effects of air temperature and water on the light use efficiency of
vegetation, respectively. The maximum light use efficiency (LUE) parameter values are obtained from
a literature survey and/or analysis of NEE, GPP, and PAR data from CO2 EC flux tower sites [62].
In this study, we used 0.075 mol of CO2 mol−1 PPFD (0.9 g C mol−1 PPFD) as the parameter ε0 for
sugarcane (C4 plant), based on the findings of an early study of the CO2 uptake and quantum yield of
photosynthesis in different sugarcane clones at leaf scale [63]. In that study, the authors investigated
how leaf nitrogen content affects the quantum yield at the leaf scale for a variety of sugarcane plants,
and they found that quantum yield is a linear function of leaf nitrogen content and reached 0.075 mol
of CO2 mol−1 PPFD when the leaf nitrogen content is the largest value in the experiment. In this
study, we assume that this quantum yield value at the leaf scale is the maximum LUE parameter at the
ecosystem scale.

We calculated the effect of the air temperature on photosynthesis (Tscalar) using Equation (6):

Tscalar =
(T − Tmin)(T − Tmax)

[(T − Tmin)(T − Tmax)] −
(
T − Topt

)2 . (8)

In Equation (8), Tmin, Topt, and Tmax are the minimum, optimal, and maximum air temperature of
photosynthesis, respectively. The Tmin and Tmax parameters for these two sugarcane sites were set to
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be −1 ◦C and 48 ◦C, using the same parameter values of the cropland biome in the publication [55].
The site-specific optimum air temperature (Topt) parameter was estimated by the relationship between
the GPPEC or vegetation index (NDVI, EVI) and the daily mean air temperature and daytime mean air
temperature. This procedure was already used to estimate the optimum air temperature parameter
in studying the carbon fluxes of paddy rice fields [64] and grasslands [65]. According to the results
in Section 3.2, the Topt parameter value is approximately ~25 ◦C (both GPP-based and VI-based) at the
Brazil sites and ~28 ◦C (GPP-based) or ~25 ◦C (VI-based) at the USA site.

We calculated the effect of water on photosynthesis (Wscalar) and this was estimated by the LSWI,
and the maximum LSWI during the plant growing season is assumed to be the LSWImax:

Wscalar =
1 + LSWI

1 + LSWImax
. (9)

2.5.2. VPM Simulations with the Climate Data from the EC Flux Tower Sites

We used the climate data from the EC flux tower sites to run the VPM simulations (GPPVPM-Site).
The half-hourly air temperature and PAR data were aggregated to daily and 8-day datasets for the
model simulation. The resultant GPPVPM-Site data were compared with the GPPEC data.

2.5.3. VPM Simulations with Climate Data from the NCEP Dataset during 2000–2018

We used the NCEP reanalysis 2 dataset to run VPM simulations (GPPVPM-NCEP) [55]; see Section 2.4
for more details. We calculated and analyzed the resultant GPP data (GPPVPM-NCEP) and quantified
the effect of weather on the GPP of sugarcane croplands during 2000–2018 at these two sugarcane sites.

2.6. MODIS GPP and NPP Data Product (MOD17)

The MOD17A2 Gross and Net Primary Productivity (GPP/NPP) product provides daily GPP
estimates, and the product uses the light-use efficiency model (PSN) [56]. A description of the
MOD17A2 product is given in the website https://lpdaac.usgs.gov/products/mod17a2hv006/. We used
the time series GPP data (GPPMOD17A2) for these two sugarcane sites during 2000–2018. In this
study, we compared the GPPMOD17A2 with the GPPEC, GPPVPM-Site, and GPPVPM-NCEP. The seasonal
dynamics and interannual variation of the GPPMOD17A2 during 2000-2018 for two sugarcane sites is
shown in Figure S6.

3. Results

3.1. The Seasonal Dyanmics of Climate, Vegetation Indices, and GPP at the Two Sugarcane Tower Sites

Figure 2 shows that the seasonal dynamics of the daily mean air temperature, PAR, and rainfall at
the two sugarcane sites over several years. The Brazil site has wet and dry seasons, and the daily mean
air temperature is above 15◦C over the year (Figure 2a). The USA site has a temperate climate and
a moderately cold winter (Figure 2b). The seasonal dynamics of the PAR, air temperature, and rainfall
were similar, with the peaks in mid-summer at the site (Figure 2b).

The land surface phenology (LSP) includes the start of the growing season (SOS), the end of
growing season (EOS), and the growing season length (GSL). The seasonal dynamics of the vegetation
indices (NDVI, EVI, and LSWI) at the two sites reveals the LSP metrics in terms of the canopy structure
and the process of crop development during the growth season (Figure 3a,b). At the Brazil site, the
vegetation indices started to green up and rise rapidly in May 2005, reaching their maximum value
in December 2005, then suddenly dropped to <0.4 (NDVI), <0.1 (EVI), and <0 (LSWI) by May 2006
(Figure 3a). The sugarcane plants were harvested while the sugarcane plant leaves were still green.
Using the criteria of EVI > 0.1 and LSWI > 0, the VI-based start of the growing season (SOS) was
in mid-May 2005. Using the criteria of EVI < 0.1 and LSWI < 0, the end of the growing season (EOS)
was in May 2006. The growing season length (GSL) was approximately 12 months. New sugarcane

https://lpdaac.usgs.gov/products/mod17a2hv006/
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plants were planted in 2006, and the NDVI, EVI, and LSWI increased again in October 2006 and
reached their peak by February in 2007 (Figure 3a). At the USA site, the vegetation indices started to
rise rapidly in late April, reached their maximum value by August, and gradually dropped to <0.4,
<0.1, and <0 by December 2017, respectively (Figure 3b). Using the same criteria (EVI > 0.1, LSWI > 0;
EVI < 0.1, LSWI < 0), the VI-based SOS and EOS of sugarcane at the USA site were April and December,
respectively, and the GSL was about 8 months. The differences in the VI-based SOSVI, EOSVI, and
GSLVI between these two sites are largely determined by the air temperature and management practice
(e.g., harvest time) (Figure 2).Remote Sens. 2020, 12, 7 of 22 
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steadily in May 2005, when the GPPEC was larger than 1 g C m-2 day-1; it had a maximum level in 
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C/m2/day, the GPP-based SOS of the sugarcane was in mid-May in 2005 and the EOS was in May 
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Figure 2. The seasonal variation in the daily mean air temperature (oC), rainfall, and photosynthetically
active radiation (PAR) at the two sugarcane EC tower sites (8-day interval). (a) Brazil site, 2005–2007;
(b) Louisiana site, USA, 2017.

The seasonal dynamics of NEEEC and GPPEC at the two sites reveal the phenology of sugarcane
croplands from the perspective of ecosystem function (Figure 3c,d). At the Brazil site, the GPPEC

rose steadily in May 2005, when the GPPEC was larger than 1 g C m−2 day−1; it had a maximum
level in December 2005 and decreased to zero by May 2006 (Figure 3c). Using the criterion of
GPP >= 1 g C/m2/day, the GPP-based SOS of the sugarcane was in mid-May in 2005 and the EOS was
in May 2006, which corresponds well with the growing season delineated by the vegetation indices.
The GPPEC started to increase again after the onset of the rainy season in October 2006 [18] and reached
the maximum in February of 2007 (Figure 3c). At the USA site, the GPPEC rose rapidly in April
(GPPEC larger than 1 g C m−2 day−1), had a maximum value in August, and decreased to zero by
December (Figure 3d). Using the criterion of GPP ≥ 1 g C/m2/day, the GPP-based sugarcane growing
season at the USA site ranged from April (SOS) to December (EOS) (Figure 3d), which corresponds
well with the growing season by the vegetation indices (Figure 3b). The growing season length
(GSL) of the sugarcane, defined as the number of days with a GPPEC larger than 1 g C m−2 day−1,
lasted approximately 12 months at the Brazil site and 8months at the USA site. The differences in the
GPP-based SOSGPP, EOSGPP, and GSLGPP between these two sites are largely determined by the air
temperature and management practice (e.g., harvest time) (Figure 2)

3.2. Estimation of the Site-Specific Optimum Air Tmeperature (Topt) for GPP at the Two Sugarcane Sites

We assessed the biophysical performance of the vegetation indices at the sugarcane sites in terms
of the GPP dynamics. Figure 4 shows the correlation between the GPPEC and vegetation indices (NDVI
and EVI) during the sugarcane growing seasons at the two sites. The GPPEC has slightly stronger
linear relationships with EVI (R2 = 0.68 at the Brazil site and R2 = 0.79 at the USA site) than with the
NDVI (R2 = 0.52 at the Brazil site and R2 = 0.76 at the USA site) (Figure 4). The slightly lower R2



Remote Sens. 2020, 12, 2186 8 of 20

values at the Brazil sugarcane sites is in part attributed to the effect of frequent cloud cover and shadow
on vegetation indices during the rainy season, as evidenced by the relatively large variation in the
vegetation indices (Figure 2a).
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Figure 4. The connections between the estimated gross primary production(GPPEC)and two vegetation
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We evaluated the effects of air temperature on the GPPEC by the relationships between the GPPEC

and the daily daytime mean air temperature and daily mean air temperature at the two sites (Figure 5).
At the Brazil site, the GPPEC increased as the daily daytime mean air temperature or daily mean air
temperature increased and reached its plateau at ~25 ◦C (Figure 5a,c). At the USA site, the GPPEC
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increased as the daily daytime mean air temperature or daily mean air temperature increased and
reached its plateau at 28 ◦C (Figure 5b,d).Remote Sens. 2020, 12, 10 of 22 
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We further investigated the effect of air temperature (daily daytime mean air temperature, daily
mean air temperature) on the vegetation indices (NDVI and EVI) (Figure 6). The NDVI and EVI rose
with the daily daytime mean air temperature and reached their plateau at 25 ◦C at the Brazil location
and 25 ◦C for the USA location (Figure 6a,b). The NDVI and EVI were positively correlated with the
daily mean air temperature and reached their plateau at 25 ◦C at the Brazil site and 28◦C at the USA
site (Figure 6c,d).

For simulations of the VPM model (see Section 3.3), the optimum air temperature (Topt) at the
Brazil site is set at 25 ◦C (both GPP-based and EVI-based) and the optimum air temperature (Topt) at the
USA site is set 28 ◦ C (GPP-based) or 25 ◦C (EVI-based), respectively, as part of a model sensitivity test.

3.3. Seasonal Dynamics of GPP as Simulated by the VPM Model with the Climate Data from the EC Flux
Tower Sites (GPPVPM-Site)

The seasonal dynamics of the GPPEC and GPPVPM-Site at the two sites agreed reasonably well with
each other (Figure 7). At the Brazil site, the GPPVPM-Site increased rapidly in May 2005, maximized
in December 2005, and fell below 1 g C m−2day−1 by May 2006 after the harvesting of the sugarcane
(Figure 7a). The GPPVPM-Site remained very small from May to October in 2006, and then rose in October
and decreased by May in 2007 (Figure 7a). At the USA site, the GPPVPM-Site increased from April,
reached maximum its value at August, and dropped by late December. The maximum daily GPPVPM-Site

was slightly lower than the GPPEC for July–August (Figure 7b).
There are strong linear relationships between the GPPEC and GPPVPM-Site in the sugarcane growing

seasons at the two sites (Figure 7c,d). The linear regression models between the GPPEC and GPPVPM-Site

indicate discrepancy at the Brazil site (2%) and the USA site (25◦C, −9%; 28◦C, −11%). The seasonal
sum of GPPVPM-Site during the growing season defined by the GPPEC at the Brazil site during 2005/2006
and 2006/2007 was 3968 and 2868 g C m−2 yr−1, approximately 1.67% lower than the sum of the
GPPEC in 2005/2006 (4035 g C m−2 yr−1) and 0.95% higher than the sum of the GPPEC in 2006/2007
(2841 g C m−2 yr−1) (Table 1). The seasonal sum of the GPPVPM-Site during the growing season defined by
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LSWI at the Brazil site during 2005/2006 and 2006/2007 was 3913 and 2776 g C m−2 yr−1, approximately
1.01% higher than the sum of the GPPEC in 2005/2006 (3873 g C m−2 yr−1) and 4.53% higher than the
sum of GPPEC in 2006/2007 (2656 g C m−2 yr−1). The seasonal sum of the GPPVPM-Site during the
growing season defined by the GPPEC at the USA site in 2017 was between 1979 g C m−2 yr−1 (25 ◦C)
and 1976 g C m−2 yr−1 (28 ◦C), or 10.06~10.17% lower than the sum of the GPPEC (2200 g C m−2 yr−1).
The seasonal sum of the GPPVPM-Site during the growing season defined by LSWI at the USA site
in 2017 was between 1699 g C m−2 yr−1 (25 ◦C) and 1709 g C m−2 yr−1(28 ◦C), or 9.68~10.25% lower
than the sum of the GPPEC (1893 g C m−2 yr−1) (Table 1).Remote Sens. 2020, 12, 11 of 22 
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(b,d), Louisiana, USA site, 2017.
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Table 1. A summary of the estimated gross primary production (GPPEC) and predicted GPPVPM-Site at
the sugarcane EC tower sites in Brazil and USA during the growing season defined by GPPEC and LSWI,
respectively. GPPEC represents the seasonal sum of the estimated GPP from the sugarcane EC flux
tower sites; GPPVPM-Site represents the seasonal sum of the predicted GPP from the VPM model; a and
b are the seasonal sum the GPPVPM-Site at the USA site when Topt = 25 ◦C and Topt = 28 ◦C, respectively.
GPP%RE represents the relative error, calculated as [(GPPVPM-Site − GPPEC)/GPPEC] × 100.

Sites The growing season
(GPPEC ≥ 1 g cm−2day−1) GPPEC (g cm−2 yr−1) GPPVPM-Site (g cm−2yr−1) GPP%RE

Brazil Site
2005/5/25–2006/5/17 4035.60 3968.45 −1.67

2006/9/30–2007/5/17 2841.62 2868.59 0.95

USA Site
2017/2/10–2017/12/11 a 2200.88 1979.47 −10.06

2017/2/10–2017/12/11 b 2200.88 1976.89 −10.17

Sites The growing season
(LSWI ≥ 0) GPPEC (g cm−2yr−1) GPPVPM-Site (g cm−2yr−1) GPP%RE

Brazil Site
2005/6/18–2006/5/1 3873.65 3913.04 1.01

2006/9/30–2007/5/17 2656.27 2776.70 4.53

USA Site
2017/5/17–2017/11/25 a 1893.16 1699.05 −10.25

2017/5/17–2017/11/25 b 1893.16 1709.79 −9.68

3.4. Interannual Variation in GPP as Simulated by the VPM Model with NCEP Climate Data (GPPVPM-NCEP)

The seasonal dynamics and interannual variation in GPPVPM-NCEP from the VPM model with
the NCEP climate data at the two sites during 2000–2018 reflects the effect of climate (drought) on
the sugarcane GPP (Figure 8). We calculate the annual GPPVPM-NECP of sugarcane plantations as the
sum of all the GPP data with GPPVPM ≥1 g Cm−2 day−1. At the Brazil site, the GPPVPM-NCEP in strong
El Nino years (2009/2010) was the lowest during 2000–2018. At the USA site, the GPPVPM-NCEP had
relatively small interannual variations in 2000–2018 (Figure 8b).

Remote Sens. 2020, 12, 13 of 22 

 

 Brazil Site 
2005/6/18–2006/5/1 3873.65 3913.04 1.01 

2006/9/30–2007/5/17 2656.27 2776.70 4.53 

USA Site 
2017/5/17–2017/11/25a 1893.16 1699.05 -10.25 

2017/5/17–2017/11/25b 1893.16 1709.79 -9.68 

3.4. Interannual Variation in GPP as Simulated by the VPM Model with NCEP Climate Data (GPPVPM-NCEP)  

The seasonal dynamics and interannual variation in GPPVPM-NCEP from the VPM model with the 
NCEP climate data at the two sites during 2000–2018 reflects the effect of climate (drought) on the 
sugarcane GPP (Figure 8). We calculate the annual GPPVPM-NECP of sugarcane plantations as the sum 
of all the GPP data with GPPVPM≥1 g Cm−2 day−1. At the Brazil site, the GPPVPM-NCEP in strong El Nino 
years (2009/2010) was the lowest during 2000–2018. At the USA site, the GPPVPM-NCEP had relatively 
small interannual variations in 2000–2018 (Figure 8b).  

 

Figure 8. Interannual variation in simulated daily gross primary production (GPPVPM-NCEP) (g C m−2 
day−1) from the Vegetation Photosynthesis Model (VPM) model with NCEP climate data at the two 
sugarcane EC tower sites during 2000–2018. (a) Brazil site; (b) Louisiana, USA site. 

Table S2 shows the total GPP estimated by the VPM model and NCEP climate data (GPPVPM-NCEP) 
during the sugarcane growing season from 2000–2018 at the two sites. The total GPPVPM-NCEP at the 
Brazil site varied from 2090 g C m−2 yr−1 in 2009/2010 to 3176 g C m−2 yr−1 in 2005/2006, which is closely 
related to climate variation, especially annual PAR (Figure 9a). The total GPPVPM-NCEP at the USA site 
ranged from 2607 g C m−2 yr−1 in 2011 to 3327 g C m−2 yr−1 in 2004.  

 

Figure 8. Interannual variation in simulated daily gross primary production (GPPVPM-NCEP)
(g C m−2 day−1) from the Vegetation Photosynthesis Model (VPM) model with NCEP climate data at
the two sugarcane EC tower sites during 2000–2018. (a) Brazil site; (b) Louisiana, USA site.

Table S2 shows the total GPP estimated by the VPM model and NCEP climate data (GPPVPM-NCEP)
during the sugarcane growing season from 2000–2018 at the two sites. The total GPPVPM-NCEP at the
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Brazil site varied from 2090 g C m−2 yr−1 in 2009/2010 to 3176 g C m−2 yr−1 in 2005/2006, which is
closely related to climate variation, especially annual PAR (Figure 9a). The total GPPVPM-NCEP at the
USA site ranged from 2607 g C m−2 yr−1 in 2011 to 3327 g C m−2 yr−1 in 2004.
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4. Discussion

4.1. Biophysical Performance of Vegetation Indices for the Sugarcane Plantations

Satellite-based vegetation indices (VIs), including greenness-associated VIs (e.g., NDVI, EVI) and
water-associated VIs (e.g., NDWI or LSWI) [66–68], have been used as proxies for several biochemical
and biophysical variables including leaf area index, canopy chlorophyll content, and gross primary
production [69]. Our results show that at the sugarcane croplands, the linear relationship between
the GPPEC and EVI is slightly stronger than that between the GPPEC and NDVI. Similar results
were reported in other studies of paddy rice fields [44], maize croplands [42], grasslands [41], and
forests [36–38].

Crop phenology or calendar information (e.g., planting date, harvest date) are useful for crop
management, crop yield estimation, and carbon cycle study [70,71]. Several studies used reflectance
and vegetation indices data to track or classify the sugarcane area over several years and predict
the cane stalk yield [72–77]. Time series MODIS-derived EVI data were used to classify sugarcane
croplands in Brazil [72]. The land surface phenology of croplands can be tracked and delineated by the
seasonal dynamics of vegetation indices (NDVI, EVI, and/or LSWI) from the perspective of ecosystem
structure (leaf area index, greenness) [38,39]. Our study shows that NDVI, EVI, and LSWI track the
phenological dynamics of sugarcane croplands. According to the detailed information on sugarcane
cultivation history at the two sites [16,18,50,78], the fields have been used to grow sugarcane for at
least a few decades (Table S1). The time series vegetation index data from MODIS during 2000–2018
(Figure S4) show that the LSWI dropped to <0 when the sugarcane fields were at the harvest stage
at both the sites, which clearly showed that in the fall/winter season the date after the first negative
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LSWI values (<0) corresponds to the harvesting date or the ending date in the plant growing season.
As shown in Figure 3 and Figure S4, the LSWI-based algorithms accurately identified the harvest dates
at the Brazil site and the USA site. This is consistent with our previous studies that used the LSWI to
delineate phenological metrics [42,44,79]. In addition, the land surface phenology of croplands can
also be tracked and delineated by the seasonal dynamic of GPPEC and NEEEC data at the EC flux tower
sites from the perspective of ecosystem function (physiology) [36,37,41]. Our study shows that GPPEC

tracks well the carbon uptake period using a simple criterion (GPPEC ≥ 1 g C /m2/day). It is important
to note that this study demonstrates the temporal consistency in the land surface phenology derived
from these two approaches.

4.2. A Comparison of GPP Estimates from Multiple Data Products (GPPEC, GPPVPM-Site, GPPVPM-NCEP,
GPPMOD17A2, and GPPVPM-Globe)

The simulations of the LUE-based GPP models driven by in situ climate and known C3 or C4
maximum LUE parameters were assessed at multiple crop EC flux tower sites [44,45,80–82]. The results
of this study show that our VPM model has a good performance in modelling the GPP of sugarcane
croplands when using a C4 maximum LUE parameter, site-specific Topt parameter, and local climate
data (GPPVPM-Site) or global climate data (GPPVPM-NCEP). Several global GPP datasets derived from
satellite-based LUE models are also available to the community, including the Terra/MODIS Gross
and Net Primary Production (GPP/NPP) data product (MOD17A2) [56,83] and the GPP dataset from
VPM simulations (GPPVPM-globe) [55]. We compared the seasonal dynamic of the GPPEC, GPPVPM-Site,
GPPVPM-NCEP, GPPMOD17A2, and GPPVPM-Globe at the two sites (Figure 10). The GPPMOD17A2 was much
lower than the GPPEC, GPPVPM-Site, and GPPVPM-Globe during the plant growing season at the two sites
(Figure 10a,b). The scatterplots of GPPMOD17A2, GPPVPM-Site, GPPVPM-NCEP, and GPPVPM-Globe versus
the GPPEC over the plant growing seasons at the two sites showed strong linear correlations between
the GPPEC and other GPP estimates (Figure 10c,d). Using the GPPEC as reference, the GPPMOD17A2

underestimated the GPP by 61% at the USA site and 59% at the Brazil site. The GPPVPM-Globe

underestimated the GPP by 35% at the USA site and 40% at the Brazil site. The large underestimation
by the global data products (GPPMOD17A2 and GPPVPM-Globe) at the two sites can be attributed to the
maximum LUE parameter used in the global simulations. For the MOD17A2 GPP/NPP product, the C3
maximum LUE parameter was used in its model simulation, as the land cover map using (MCD12C1
C55) does not separate the C3 and C4 crops. For the GPPVPM-Globe product [55], the VPM simulations
used a mix of C3 and C4 maximum LUE parameters for croplands and the land cover maps (MCD12C1,
C55). The maximum LUE parameter values of the C4 plants are substantially higher than those of the
C3 plants [84]. The results from this study clearly highlight the urgent need for developing annual
maps of C3 and C4 crops so that model simulations can use the appropriate C3 or C4 maximum LUE
parameter (ε0) for specific crop function types. Such comparison analyses also suggest that the global
GPP data products to estimate the sugarcane GPP at local and regional scales should be used cautiously.

4.3. Sources of Errors and Uncertainty in Predicted GPPVPM-site at Sugarcane EC Flux Tower Sites

VPM simulations at the two sugarcane sites have several sources of error or uncertainty, including
in situ climate datasets, time series MODIS vegetation indices, model parameters, and land cover
types within the MODIS image pixels and the footprint of EC flux tower sites. The maximum LUE
parameter values are estimated by various estimation methods and directly affect GPP simulations at
the ecosystem level [85,86]. Several previous in situ studies have reported that the LUE varied under
rain-fed and irrigated conditions—for example, for sugarcane varieties in Sri Lanka, the LUE parameter
ranged between 1.63 and 2.09 g dry biomass MJ-1 under irrigated and between 0.71 and 1.03 g dry
biomass MJ−1 under rain-fed conditions [87]. Another publication reported that the maximum LUE
for sugarcane at tropical region in Australia ranges from 1.7 g dry biomass MJ−1 [88] to 2.0 g dry
biomass MJ−1 [89]. One field experiment in Brazil showed that maximum LUE parameter ranged
between 1.74 and 2.28 g C MJ−1 (0.85–1.12 g C mol−1 PPFD) [90]. In the above-mentioned papers, the
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LUE was calculated using the linear regression between the cumulative radiation intercepted and the
aboveground dry weight. In addition, many studies analyzed the PAR and gross primary production
data to estimate the maximum LUE parameter (LUEGPP) [21]. In the above publication, the LUEAGB or
LUEGPP parameter at two sugarcane sites in Hawaii, USA, were 0.88 ± 0.02 g C MJ−1 (0.43 ± 0.01 g C
mol−1 PPFD) or 1.24 ± 0.22 g C MJ−1 (0.61 ± 0.11 g C mol−1 PPFD) at the site located at a low altitude
and 0.75 ± 0.01 g C MJ−1 (0.37 ± 0.01 g Cmol−1 PPFD) or 1.15 ± 0.15 g C MJ−1 (0.56 ± 0.07 g Cmol−1

PPFD) at the site located at a high altitude. Different LUE definitions should be considered a source
of errors associated with satellite-based GPP estimates. In our study, the maximum LUE parameter
at the Brazil site and the USA site was set to 0.9 g Cmol−1 PPFD, which was slightly lower than the
maize crop (0.92 g Cmol−1 PPFD), another C4 crop in China [79]. The range value of the maximum
LUE parameter for sugarcane cropland indicates the need for the evaluation of the maximum LUE
parameter over diverse sugarcane croplands in the world under different climate conditions and
management practices.Remote Sens. 2020, 12, 16 of 22 
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5. Conclusions

This is the first case study that combines in situ data from sugarcane EC flux towers and satellite
(MODIS) images to estimate the GPP of sugarcane croplands using the VPM model. The sensitivity
analyses between the GPPEC and vegetation indices (NDVI and EVI) at the two sites provide new
insight into the biophysical performance of vegetation indices. The sensitivity analysis between
the GPPEC and temperature variables, including the mean daily air temperature, mean daytime air
temperature, land surface temperature, and the analysis between the EVI and temperature variables
at the two sites provides a reasonable method for finding the optimum air temperature values at
individual sites, which may improve VPM model simulations at the landscape scale. The results
demonstrate that the VPM model performs well in estimating the GPP seasonal dynamics at the two
sugarcane sites. The maximum LUE parameter value in this study (0.9 g C mol−1 PPFD) is reasonable
for applying the VPM model at these sugarcane croplands. The linked analyses of the flux data (GPPEC)
from the EC flux tower sites, predicted GPP (GPPVPM-Site) with in-situ climate data from the EC flux
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tower site, and predicted GPP (GPPVPM-NCEP) with the NCEP climate data clearly demonstrates the
feasibility of the VPM model to estimate and predict sugarcane physiological parameters in different
climate systems. Additional evaluations of the VPM model at other sugarcane EC flux tower sites are
still needed, which would contribute to a better understanding of the potential sources of errors and
uncertainty in the simulations of the VPM model.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/14/2186/s1,
Figure S1: Averaged sugarcane production from the top 10 producer countries in the world (Data source: FAO,
averaged values over the period of 1994-2017); Figure S2: Annual harvested area, production and yield of
sugarcane in Brazil and USA during1961- 2017; Figure S3: Sugarcane production cycle at the Louisiana site,
USA; Figure S4: Interannual variation of three vegetation indices from MODIS during 2000-2018 at the two
sugarcane plantation sites. (a) Brazil site; (b) Louisiana site, USA; Figure S5: Interannual variation of climate
data (air temperature, PAR and precipitation) during 2000-2018 at the two sugarcane plantation sites, derived
from NCEP-DOE Reanalysis 2. (a) Brazil site; (b) Louisiana site, USA; Figure S6: Interannual variation of GPP
data from the MODIS MOD17A2 product during 2000-2018 at the two sugarcane plantation sites. (a) Brazil site;
(b) Louisiana site, USA. Table S1: A detailed information on sugarcane planting history at the two sugarcane sites
during 2000-2018; Table S2: A summary of annual precipitation, mean annual air temperature, annual PAR from
NCEP Reanalysis-2 climate data, and GPP estimated from the VPM model with NCEP Reanalyssi-2 climate data
(GPPVPM-NCEP) during the sugarcane plant growing season at the sugarcane flux tower sites in Brazil and USA.
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