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Abstract
Key message A multiparental random mating population used in sorghum breeding is amenable for the detection 
of QTLs related to tropical soil adaptation, fine mapping of underlying genes and genomic selection approaches.
Abstract Tropical soils where low phosphorus (P) and aluminum (Al) toxicity limit sorghum [Sorghum bicolor (L.) Moench] 
production are widespread in the developing world. We report on BRP13R, a multiparental random mating population (MP-
RMP), which is commonly used in sorghum recurrent selection targeting tropical soil adaptation. Recombination dissipated 
much of BRP13R’s likely original population structure and average linkage disequilibrium (LD) persisted up to 2.5 Mb, 
establishing BRP13R as a middle ground between biparental populations and sorghum association panels. Genome-wide 
association mapping (GWAS) identified conserved QTL from previous studies, such as for root morphology and grain 
yield under low-P, and indicated the importance of dominance in the genetic architecture of grain yield. By overlapping 
consensus QTL regions, we mapped two candidate P efficiency genes to a ~ 5 Mb region on chromosomes 6 (ALMT) and 9 
(PHO2). Remarkably, we find that only 200 progeny genotyped with ~ 45,000 markers in BRP13R can lead to GWAS-based 
positional cloning of naturally rare, subpopulation-specific alleles, such as for SbMATE-conditioned Al tolerance. Genomic 
selection was found to be useful in such MP-RMP, particularly if markers in LD with major genes are fitted as fixed effects 
into GBLUP models accommodating dominance. Shifts in allele frequencies in progeny contrasting for grain yield indicated 
that intermediate to minor-effect genes on P efficiency, such as SbPSTOL1 genes, can be employed in pre-breeding via allele 
mining in the base population. Therefore, MP-RMPs such as BRP13R emerge as multipurpose resources for efficient gene 
discovery and deployment for breeding sorghum cultivars adapted to tropical soils.

Introduction

Crop adaptation to tropical soils relies on tolerance to mul-
tiple abiotic stresses rather than to a single stress condition. 
Hence, populations amenable for the simultaneous detection 
of favorable alleles at multiple tolerance loci and for select-
ing transgressive progeny are needed. Here, we explore the 
potential of using BRP13R, a sorghum multiparental ran-
dom mating population (MP-RMP) constructed based on the 
nuclear male sterility gene, ms3 (Webster 1965), for such an 
endeavor. Populations such as BRP13R are commonly used 
in recurrent selection schemes in crop pre-breeding, which 
may potentially narrow the gap between gene discovery and 
applications in cultivar development.

Acidic soils (pH ≤ 5) are prevalent in the tropics and sub-
tropics, occupying more than half of the world arable lands 
(Von Uexküll and Mutert 1995). In sub-Saharan Africa, 
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where sorghum is a staple food, 25% of the soils are acidic 
(FAO 2015; Tully et al. 2015). The highly weathered nature 
of acidic soils results in enrichment of aluminum (Al) and 
iron (Fe) oxides in the soil clay fraction (Shaw 2001), which 
is a central aspect leading to multiple abiotic stresses that 
significantly reduce crop yields, and hence food security 
worldwide (reviewed by Magalhaes et al. (2018)).

Under low pH, Al solubilizes into its ionic form,  Al3+, 
which damages the root system and impairs root growth 
(Kochian 1995) into deeper soils layers. Therefore, Al tox-
icity reduces grain yield due to restricted uptake of mineral 
nutrients and water (Foy et al. 1993). Due to Al toxicity in an 
acidic soil, we showed that sorghum grain yield was reduced 
by about 23% or one ton  ha−1, compared to an adjacent non-
Al-toxic field site (Carvalho et al. 2016). Phosphorus (P) 
diffusion on tropical soils is strongly constrained due to the 
formation of stable complexes between P and soil Al and 
Fe oxides (Marschner 1995; Lynch 2011), leading to very 
low-P availability for crop uptake. Furthermore, P diffu-
sion is severely limited by reductions in soil water content 
on tropical soils, even when those that are still not nearly 
enough to cause drought stress (Ruiz et al. 1988). Hence, 
for non-irrigated crops cultivated on acidic soils, P stress 
is also a common limiting factor during the crop growth 
cycle. Therefore, acidic soil impact on crop yields results 
from a rather complex interplay of different abiotic stresses, 
which is further worsened by the often ubiquitous occur-
rence of drought stress. In terms of sorghum adaptation to 
low-P conditions, we have previously established that grain 
yield under low-P largely reflects P acquisition efficiency, 
which is the most important P efficiency component in sor-
ghum (Bernardino et al. 2019). Among root traits, total root 
surface area (SA) and root diameter (RD) are important for 
grain yield under low-P availability in the soil (Hufnagel 
et al. 2014; Bernardino et al. 2019).

Some of the molecular determinants and related physi-
ological mechanisms that contribute to sorghum adaptation 
to acidic tropical soils have been revealed. The Al-activated 
citrate transporter, SbMATE, which mediates sorghum Al 
tolerance by promoting Al detoxification via citrate release 
into the rhizosphere (Magalhaes et al. 2007), has been shown 
to increase grain yield by over one ton  ha−1 for both sor-
ghum lines and hybrids harboring superior SbMATE alleles, 
when grown in an Al-toxic soil (Carvalho et al. 2016). In 
addition, SbMATE-specific single nucleotide polymorphism 
(SNP) markers have been associated with grain yield under 
low-P availability in West Africa, suggesting a pleiotropic 
effect of SbMATE also enhancing P acquisition (Leiser et al. 
2014). We also found that sorghum homologs of the rice 
(Oryza sativa) serine/threonine receptor kinase, phosphorus-
starvation tolerance1 (OsPSTOL1) (Gamuyao et al. 2012), 
were associated with root morphology changes, such as 
increased root surface area, leading to grain yield increases 

under low-P availability in the soil (Hufnagel et al. 2014; 
Bernardino et al. 2019). In addition, either quantitative trait 
loci (QTLs) or anonymous SNP loci associated with abiotic 
stress tolerance in sorghum (Mace and Jordan 2011; Leiser 
et al. 2014; Parra-Londono et al. 2018; Mace et al. 2019), 
including stay green QTLs that enhance grain yield under 
drought stress (Harris et al. 2006; Sabadin et al. 2012), are 
expected to lead to the isolation of novel abiotic stress toler-
ance genes in sorghum.

In order to efficiently integrate multiple abiotic stress tol-
erance loci into sorghum breeding, detection strategies and 
appropriate target populations should be carefully designed. 
Provided that proper attention is directed to the occurrence 
of false positives, the population flexibility provided by 
association mapping approaches (Yu and Buckler 2006) 
can facilitate tolerance loci detection directly on the breed-
er’s germplasm, within a multi-allelic context, which can 
facilitate progeny selection. In the case where inferences are 
made directly in the target population, more readily avail-
able applications for crop improvement can be expected 
(Breseghello and Sorrells 2006). Although they explore a 
narrower allelic range with in general less resolution, genetic 
mapping using biparental crosses, such as with recombi-
nant inbred lines (RILs), is an important complementary 
approach to association mapping, particularly by providing 
higher detection power for quantitative trait locus (QTL) 
(Breseghello and Sorrells 2006). A middle ground between 
biparental crosses and association panels in terms of popu-
lation structure, genetic diversity, the number of traits that 
can be investigated, resolution and power are provided by 
multiparental populations, such as Multiparent Advanced 
Generation Intercross populations (MAGIC) (Mackay and 
Powell 2007; Stadlmeier et al. 2018). Eight-parent MAGIC 
populations have been shown to capture a high proportion of 
the allelic diversity available in the German wheat breeding 
gene pool (Stadlmeier et al. 2018) and have been deemed 
adequate for high-resolution mapping of quantitative trait 
loci (Mackay et  al. 2014). Nested association mapping 
(NAM) approaches, where diverse founders are crossed to 
a common parent to produce sets of mapping populations, 
minimize genetic background effects on QTL detection and 
increase detection power (Yu et al. 2008). Such approaches 
have been shown to lead to more consistent detection of 
phenology QTL compared to association mapping in sor-
ghum (Bouchet et al. 2017), and to enhance detection of 
putative multiple small-effect alleles influencing flowering 
time (Mace et al. 2013).

We focus here on exploring the consequences of enhanced 
recombination via randomly mating multiple parents repeat-
edly throughout the genesis of BRP13R, focusing on simul-
taneously detecting loci related to abiotic stress tolerance 
by GWAS and deploying previously identified tolerance 
loci into a pre-breeding pipeline. In the context of BRP13R, 
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we also investigate the potential of genomic prediction as a 
tool to assist sorghum breeding efforts with the final goal 
of selecting progeny with broad adaptation to tropical soils 
with low-P availability and Al toxicity.

Materials and methods

Genetic material

The steps in the development of BRP13R are shown in Fig. 
S1. Male sterile plants (ms3ms3) from the Nebraska Random 
Mating Population 3 (NRP3R) were crossed with 100 sor-
ghum fertility restorer (R) lines from the world collection 
selected for grain protein content, giving rise to the Purdue 
Population 3R (PP3R, Robert Schaffert, personal communi-
cation). PPR3 was then subjected to 6 cycles of recombina-
tion to generate the Brazilian Random Mating Population 3 
(BRP3R); subsequently, male-sterile (ms3ms3) plants from 
BRP3R were crossed with 24 R-lines selected for Al toler-
ance, P efficiency and other desirable traits (Table S1). This 
random mating population was designated BRP13R. Fertile 
 F1 plants were self-pollinated to produce  F2 seeds, which 
were recombined (first recombination cycle). Seeds of sterile 
plants were harvested in bulk for the second recombination 
cycle. After the third recombination cycle, approximately 
600 seedlings were phenotyped for Al tolerance in nutrient 
solution.

Al-tolerant plants were selected and transplanted to pots 
in the greenhouse. Fertile and sterile plants were then self-
pollinated or crossed with a composite pollen sample of 
the population, respectively. Seeds were harvested in bulk 
and planted in an isolated field for recombination purposes. 
Seeds derived from the sterile plants produced BRP13R  S0 
progeny. Two hundred and ten fertile  S0 plants, with plant 
height between 100 and 150 cm (Ms3ms3), were self-polli-
nated producing  S0:1 progeny. One fertile plant of each  S0:1 
progeny was self-pollinated, originating  S0:2 progeny.

Phenotyping

Phenotyping in a low‑P soil

Two field experiments were conducted at the experimental 
station of Embrapa Maize and Sorghum, in Sete Lagoas, 
Minas Gerais, Brazil, during the summer season of 2014. 
The two experiments were conducted side-by-side in contig-
uous sub-areas within the same general area and at the same 
time; thus this division was adopted only for operational rea-
sons, given the field area and the lattice design. Therefore, 
there is no noticeable between-experiment difference, except 
for the progeny that composed each experiment (see below). 
The experimental area is a weathered tropical soil with 

low-P availability, containing 2.57 ppm P (± 0.57 standard 
deviation, s.d.) (Mehlich 1) in the top soil (0—20 cm) and 
1.25 ppm P (± 0.30 s.d.) in the subsoil (20—40 cm). Two 
hundred  S0:2 progeny were arranged in two experiments each 
consisting of a 10 (progeny) × 10 (incomplete block) lattice 
design with two added checks per block (BR007 and SC283) 
and three replicates. Each plot consisted of two 3-m rows, 
with 0.45 m between rows and 8 plants  m−1. Fertilization 
was applied as 150 kg ha−1 of 20-00-20 (NPK) at sowing 
and 200 kg ha−1 of urea 30 days after, and the experiments 
were sprinkler-irrigated when necessary.

The traits measured were: grain yield (Gy, ton  ha−1), 
flowering time (FT, days), plant height (PH, cm), plant phos-
phorus content (Pp, ton  ha−1), grain phosphorus content (Pg, 
ton  ha−1), total phosphorus content (Pt, ton  ha−1), plant dry 
matter (PDM, ton  ha−1) and grain dry matter (GDM, ton 
 ha−1). Plant and grain tissues, collected by plot, were dried at 
65 °C until constant weight, ground and homogenized, and 
P content was assessed in 20 g subsamples using inductively 
coupled argon plasma emission spectrometry.

Phenotyping of root system morphology in nutrient 
solution with low‑P availability

Assessment of root system morphology under low-P was 
undertaken in nutrient solution as described by Sousa et al. 
(2012) and Hufnagel et al. (2014) in a randomized block 
design with three replicates. Seeds were sterilized with 
sodium hypochlorite (5%), washed with distilled water and 
germinated in paper rolls. After 4 days, uniform seedlings 
of each progeny were transferred to moistened germination 
papers placed in paper pouches (24 × 33 × 0.02 cm) (Hund 
et al. 2009).

Each experimental unit consisted of one pouch with three 
seedlings per pouch, whose bottom (3 cm) was immersed 
in containers with 5 L of nutrient solution as described by 
Magnavaca et al. (1987) at pH 5.6 and 2.5 µM P. The con-
tainers were kept in a growth chamber for 13 days with 12 h 
of photoperiod, 27 °C day and 20 °C night, and continuous 
aeration.

After 13 days, the root system was photographed with a 
digital camera Nikon D300S SLR, and the images were ana-
lyzed with the RootReader2D (https ://www.plant miner alnut 
ritio n.net/softw are/rootr eader 2d/) software and WinRhizo 
(https ://www.regen t.qc.ca/) software. The traits measured 
were: root length (RL, cm); root diameter (RD, mm); total 
root surface area (SA,  cm2); surface area of super-fine roots 
(SA1,  cm2—0 mm < RD ≤ 1 mm); surface area of fine roots 
(SA2,  cm2—1 mm < RD ≤ 2 mm); surface area of thicker 
roots (SA3,  cm2—2 mm < RD ≤ 4.5 mm); root volume (RV, 
 cm3); volume of fine roots (V2,  cm3—1 mm < RD ≤ 2 mm); 
shoot dry matter (SDM, g); root dry matter (RDM, g); shoot 

https://www.plantmineralnutrition.net/software/rootreader2d/
https://www.plantmineralnutrition.net/software/rootreader2d/
https://www.regent.qc.ca/
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phosphorus content (Ps, g); and root phosphorus content 
(Pr, g).

Al tolerance in nutrient solution

Al tolerance was assessed in nutrient solution by measuring 
Al-inhibition of root growth as described in Caniato et al. 
(2007). Seed sterilization and germination were as described 
above but with a 3-day germination period. After germina-
tion, uniform seedlings were transferred to containers (49 
seedlings per container) in a growth chamber with a pho-
toperiod of 12 h, 27 °C day and 20 °C night temperatures 
under continuous aeration without stress.

After 24 h, the nutrient solution of half of the trays was 
replaced by an identical solution without Al (control con-
tainers), whereas the remaining trays received nutrient 
solution with {27} µM  Al3+ (braces indicate  Al3+ activity). 
Aluminum was supplied as AlK(SO4)2 and the solution pH 
was adjusted to 4.0 with HCl. The experimental design was 
an augmented block, in which seven seedlings constituted 
one experimental plot. Each tray represented one block with 
seven plots, containing also four seedlings Al-sensitive 
(ATF13) and three Al-tolerant (ATF14) as controls.

The initial root length (IRL), the final root length after 
5 days  (FRL5d) and net root growth (NRG = FRL5d − IRL) 
were recorded and relative net root growth (RNRG) was 
calculated by dividing the NRG Al treatment by the NRG 
without Al.

Statistical analysis

The model adopted for traits assessed in a low-P soil was:

yijkl is the phenotypic value of progeny i in the block 
l  of the kth replicate, within the experiment j ; � is the 
overall mean; Ej is the fixed effect of the jth experiment 
(j = 1, 2) ; Rk(j) is the fixed effect of replicate k (k = 1,… , 3) 
in experiment j ; Bl(kj) is the random effect of block l 
(l = 1,… , 10, bl ∼ N(0, �2

b
)) in the replicate k , within the 

experiment j ; Gi is the genetic effect of progeny i , which 
can be defined as:

gi is the random effect of progeny i with ng being the 
total number of progeny (gi ∼ N(0, �2

g
) ; ti is the fixed effect 

of check i with nc being the total number of checks.�ijkl is 
the experimental error for progeny i in the block l of the kth 
replicate within the experiment j , assuming �ijkl ∼ N(0, �2

e
).

The model used for analyzing the hydroponic experi-
ments with low-P conditions was:

yijkl = � + Ej + Rk(j) + Bl(kj) + Gi + �ijkl.

Gi =

{

gi i = 1,… , ng
ti i = ng + 1,… , ng + nc

.

where yij is the phenotypic value of the progeny i 
(i = 1,… , ng) in the block j ; � is the overall mean; Bj is the 
fixed effect of block j (j = 1,… , 3) ; gi is the random genetic 
effect of progeny i(gi ∼ N(0, �2

g
) ; and �ij is the experimental 

error for progeny i in the block j (�ij ∼ N(0, �2
e
)).

The model used for analyzing the hydroponic experi-
ments with aluminum stress was:

where yij is the phenotypic value of the progeny i 
(i = 1,… , ng) in incomplete block j ; � is the overall mean; 
Bj is the fixed effect of incomplete block j (j = 1,… , 35) , Gi 
is the genetic effect of progeny i , which can be defined as:

gi is the random effect of progeny i with ng being total 
number of progeny (gi ∼ N(0, �2

g
) ; ti is the fixed effect of 

check i with nc being the total number of checks; and �ij is 
the experimental error for progeny i in the block j , assuming 
�ij ∼ N(0, �2

e
).

Fixed and random effects were tested using the Wald 
statistics (Wald 1943) and the likelihood ratio test (LRT) 
(Neyman and Pearson 1928), respectively, considering a 5% 
significance level (α). For all statistical models, the genetic 
effect of progeny was first taken as random for estimating 
the genetic variance component ( �2

g
 ) via restricted maximum 

likelihood (REML) and the heritability coefficient of each 
trait. The effect of progeny was then considered as fixed for 
estimating the adjusted means using best linear unbiased 
estimators (BLUEs) using the ASReml-R package (Butler 
et al. 2009). Generalized heritabilities ( h2 ) were estimated 
as proposed by Cullis et al. (Cullis et al. 2006):

where vBLUP is the average variance of the difference 
between two best linear unbiased predictions (BLUPs). Per-
son’s correlation coefficients (Pearson 1895) were estimated 
based on adjusted means using the package Hmisc (Harrell 
Jr 2015) in R software (R Core Team 2016).

Genotyping

Genomic DNA was isolated from 500 mg of vegetal tissue 
(eight plants per progeny), as described by Saghai-Maroof 
et al. (1984). DNA samples were genotyped by sequencing 
(Elshire et al. 2011). DNA fragments (“reads”) obtained dur-
ing genotyping were aligned against the sorghum reference 

yij = � + Bj + gi + �ij,

yij = � + Bj + Gi + �ij,

Gi =

{

gi i = 1,… , ng
ti i = ng + 1,… , ng + nc

.

h2 = 1 −
vBLUP

2�2
g

,
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genome (version 2.1), using the Burrows Wheeler Aligner 
(BWA) (Li and Durbin 2009) software and SNP calling was 
performed with the GBS pipeline (Glaubitz et al. 2014) 
in TASSEL V (Bradbury et al. 2007).  S0:2 progeny were 
genotyped with SbPSTOL1- and SbMATE-specific markers 
(Caniato et al. 2014; Hufnagel et al. 2014) using the Allele-
Specific PCR genotyping system (KASP, LGC genomics) 
(Robinson 2006).

Marker imputation

Missing data were imputed with Beagle (Browning and 
Browning 2007), which has been reported to show higher 
imputation accuracy for heterozygous populations and 
reduced computation time compared to other procedures 
(Nothnagel et al. 2009; Swarts et al. 2014).

At least two reads from different sister chromatids are 
needed for correctly calling a heterozygous genotype (Swarts 
et al. 2014). Thus, the probability of miscalling heterozygous 
genotypes is related to the read depth and can be estimated 
as P(AA|Aa) + P(aa|Aa) = 0.5n + 0.5n, where AA and aa rep-
resent genotypes homozygous for the most and least frequent 
alleles and n is the sequencing depth (Swarts et al. 2014). 
Based on that, for heterozygous genotypes with read depth 
5, 6 and 7, miscalling percentages are 6.25%, 3.125% and 
1.5625%, respectively. As the median read depth prior to 
imputation in BRP13R was 5, while selecting genotypes 
with read depth > 5 leads to enhanced imputation accuracy 
for heterozygotes, it also decreases the total number of mark-
ers left for GWAS. We thus set out to identify the impu-
tation conditions that would balance the trade-off between 
imputation accuracy and the total number of markers left. 
Imputation accuracy was first calculated by selecting loci 
with read depths ≥ 5, 6 and 7, window sizes (i.e., physical 
distance used for haplotype inference) between 10 Kb and 
10 Mb and with no filtering for missing data or selecting loci 
with at most 25%, 50%, 75% missing data.

Accuracy tests were performed with a total of 146,306 
biallelic and polymorphic GBS SNPs. Masking was under-
taken by randomly replacing twenty percent of data that 
had genotypic information (homozygous and heterozygous 
classes) for missing data. Upon imputation, accuracy was 
calculated by comparing imputed genotypes with the “real,” 
observed genotypes. Finally, loci with MAF < 0.01 were 
eliminated.

Population structure and relatedness

The genetic relationship or kinship matrix (K) was obtained 
by the identity-by-state approximation, proposed by Endel-
man and Jannink (2012), with TASSEL V (Bradbury et al. 
2007). Genetic divergence between progeny was calculated 
in R (R Core Team 2016) based on the Euclidean distance 

and clustering was undertaken with the unweighted pair 
group method with arithmetic mean (UPGMA) method 
(Sokal and Sneath 1963). We also undertook a princi-
pal component analysis based on 43,825 SNP markers to 
investigate the degree of population structure remaining in 
BRP13R after recombination using the pcaMethods package 
(Stacklies and Redestig 2016) in R.

Linkage disequilibrium

Linkage disequilibrium (LD) was calculated for each sor-
ghum chromosome using squared genotypic correlations 
between pairs of loci (r2) (Weir 2008) with the Hmisc pack-
age in R. To assess the extent of LD per chromosome, we 
first selected SNPs under significant LD based on a t test 
(α = 0.05) corrected for multiple tests based on the Bonfer-
roni correction for the total number of pairs of SNP loci 
(0.05/[total number of SNPs × (total number of SNPs-1)/2]). 
We then plotted the r2 values of SNPs under significant LD 
as a function of the physical distance between pairs of SNPs. 
The extent of LD was determined as the physical region 
beyond which average r2 reached constant, basal levels.

Association mapping

Adjusted means (BLUEs) for the different traits were used 
for GWAS. The association mapping analyses were per-
formed only with markers whose genotypic classes showed 
frequencies above 0.05, totaling 24,485 markers. We fitted 
models with no correction for population structure nor relat-
edness (naïve model), including the kinship matrix (K), pop-
ulation structure (Q, with PC1 scores), or jointly incorporat-
ing population structure and relatedness (Q + K). The best 
model was chosen based on the Akaike information criterion 
(AIC) (Akaike 1973), the Bayesian information criterion 
(BIC) (Schwarz et al. 1978) and on Type-I error simulation 
via inspection of the quantile–quantile (q–q) plots of the p 
values from association analysis plotted against cumulative 
p values. For each locus, the GWAS model includes domi-
nance as the phenotypic deviation between the heterozy-
gous class and the mean of the two homozygous classes. 
The significance threshold for GWAS was determined with a 
Bonferroni correction (Bland and Altman 1995), calculated 
by dividing an alpha level of 0.05 by the number of inde-
pendent genome blocks based on the estimated LD extent 
per chromosome.

Genomic selection (GS)

Genomic selection was undertaken for grain yield (Gy, 
 ha−1), plant height (PH, cm), plant dry matter (PDM,  ha−1) 
and aluminum tolerance (RNRG). The genomic best linear 
unbiased prediction (GBLUP) models examined were:
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1. Model 1—GBLUP with the Additive genomic relation-
ship matrix (GBLUP-A) estimated by the method pro-
posed by Van Raden (VanRaden 2008);

2. Model 2—Model 1 incorporating the Dominance 
genomic relationship matrix (GBLUP-AD) estimated by 
the method proposed by Vitezica et al. (Vitezica et al. 
2013);

3. Model 3—GBLUP-A incorporating Gene-specific SNP 
markers, for SbPSTOL1 and SbMATE (Caniato et al. 
2014; Hufnagel et al. 2014), as Fixed cofactors with 
additive genetic effects (GF-GBLUP-A);

4. Model 4—Model 3 incorporating the dominance 
genomic relationship matrix, and gene-specific SNP 
markers, for SbPSTOL1 and SbMATE, as fixed cofac-
tors with both additive and dominance genetic effects 
(GF-GBLUP-AD);

5. Model 5—GBLUP-A with SNP markers associated with 
different traits by GWAS as fixed cofactors with additive 
genetic effects (GWAS-GBLUP-A);

6. Model 6—Model 5 incorporating the dominance 
genomic relationship matrix and SNP markers asso-
ciated with different traits by GWAS as fixed cofac-
tors with both additive and dominance genetic effects 
(GWAS-GBLUP-AD).

Additive and dominance genomic relationship matrices 
were calculated using the R package AGHmatrix (Amadeu 
et al. 2016). For models incorporating GWAS or gene-spe-
cific SNPs as fixed cofactors (models 3–6), SNPs within the 
same LD block were removed from the estimation process of 
the genomic additive and dominance relationship matrices. 
LD blocks were defined based on the estimated LD extent 
per chromosome. The general model fitted was:

where y(p × 1) is a vector of adjusted means via BLUE, 
obtained by correcting the phenotypic progeny means for 
nuisance variables from the experimental design, for p 
progeny; � is the overall mean; af  and df  are the vectors 
of additive and dominance fixed effects, respectively, for g 
SbPSTOL1 and SbMATE genes, af (g × 1) , or s GWAS SNPs, 
af (s × 1) ; ar(p × 1) is the vector of random additive genetic 
effects of p progeny, with ar ∼ N(0,A�2

a
) ; dr(p × 1) is the 

vector of random dominance genetic effects of p progeny, 
with dr ∼ N(0,D�2

d
) ; and e(p × 1) is the vector of residuals, 

with e ∼ N(0, I�2
e
). X1(p × g or p × s) , X2(p × g or p × s) , 

Z1(p × p) and Z2(p × p) are incidence matrices for their 
respective effects, 1 is a vector of ones (p × 1) , A and D 
are p × p additive and dominance genomic relationship 
matrixes, respectively, and I is a p × p identity matrix.

To avoid bias that could artificially inflate accuracy esti-
mates, the SNP markers included as fixed effect cofactors 

y = �1 + X1af + X2df + Z1ar + Z2dr + e,

in the genomic selection models v–vi were selected based 
on one hundred rounds of GWAS, using different popula-
tions constructed from randomly sampled 160 BRP13R 
progeny in each round. SNP loci with association signals 
exceeding the Bonferroni threshold in more than half of the 
GWAS rounds were selected as fixed cofactors. For genomic 
selection, BRP13R was randomly split into training/valida-
tion sets, and four distinct population sizes were compared: 
100/100, 120/80, 140/60 and 160/40. The different GS mod-
els were fitted considering 100 replicates for each size of the 
training/validation sets. Then, the optimum size of training/
validation sets was selected based on the maximization of 
the predictive accuracy, which was calculated as the correla-
tion between the adjusted means obtained by BLUE and the 
predicted means via GBLUP models. For that, the adjusted 
means via BLUE of 40, 60, 80 or 100 progeny (depend-
ent of the validation population size) taken at random were 
masked and compared to the predicted means using the 
GBLUP models. All analyses were performed with ASReml-
R (Butler et al. 2009). Only markers whose genotypic classes 
showed frequencies above 5% were used.

Results

Trait correlations and heritability estimates

We focused on the following performance traits on a low-P 
tropical soil field site: grain yield, plant dry matter and 
plant height assessed under low-P availability in the soil. 
In addition, we assessed root morphology traits related to 
P acquisition and Al tolerance in nutrient solution and Al 
tolerance was assessed based on relative net root growth 
(RNRG) in hydroponics. Heritability estimates for root 
diameter and total root surface area were 0.37 and 0.51, 
respectively, 0.61 for grain yield and 0.57 for plant dry mat-
ter (PDM) (Table S2). Additionally, Al tolerance assessed 
in controlled conditions was highly heritable (0.73). Grain 
yield was highly correlated both with grain P content (Pg, 
r = 0.76) and total P (Pt, r = 0.63), as well as with plant dry 
matter (PDM,  r = 0.56) (Table S3).

Genotyping‑by‑sequencing (GBS) and marker 
imputation

Single nucleotide polymorphism (SNP) markers distributed 
genome-wide were genotyped via GBS (Elshire et al. 2011). 
Before imputation, the median number of reads per geno-
type (read depth) was 5. About half of the reads had a depth 
between 1 and 5, and 43% of the reads had depths exceed-
ing 6 (Fig. S2). There was a tendency of higher read depth 
toward the end of the sorghum chromosomes compared to 
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the centromeres, and average minor allele frequency (MAF) 
was in general low.

For genotypes covered by 5 reads, the probability of GBS 
to mistakenly call as homozygous a heterozygous genotype 
is 0.0625 (Swarts et al. 2014). Due to the partially hete-
rozygous nature of half-sib progeny in BRP13R, we only 
kept homozygous genotypes with read depth ≥ 6 to mini-
mize miscalling of heterozygotes (expected miscalling fre-
quency = 0.03), while keeping adequate marker coverage in 
the genome. We then replaced 20% of known genotypes by 
missing data (i.e., masking) and imputed missing data with 
Beagle (Browning and Browning 2007). Accuracy for all 
genotypic classes (global accuracy) was very high, about 
97%, irrespective of the imputation window size (Table S4), 
and was the highest for genotypes homozygous for major 
alleles at SNP loci. For imputation, we selected a window 
size of 500 Kb, which maximized imputation accuracy for 
heterozygous genotypes. Inspection of our masking proce-
dure indicated that imputation errors for heterozygous geno-
types occasionally caused them to be imputed as genotypes 
homozygous for the major allele. Therefore, the main effect 
of the incorrect imputation of heterozygotes, which was 
likely due to their lower frequency and sparse distribution in 
the genome, was to reduce the frequency of this class. After 
imputation, BRP13R was found to consist of 20% heterozy-
gous genotypes with and average MAF of 0.14. Imputation 
more than doubled the number of markers, totaling 43,825 
markers, and improved genome coverage, especially in cen-
tromeric regions (Fig. 1a and b).

Linkage disequilibrium

Linkage disequilibrium (LD) was measured using squared 
genotypic correlations between pairs of loci (r2) (Weir 
2008). The number of SNPs under significant LD was plot-
ted as a function of physical distance between pairs of loci, 
and LD extent per chromosome was determined as the physi-
cal distance after which average r2 values reached constant, 
basal levels (Fig. S3). Based on this method, LD was found 
to decay in a remarkable homogeneous way across chromo-
somes, with LD extending to 2.5 Mb on average (± 0.5 Mb, 
Fig. 1c). LD persisted the longest on chromosome 6 (3.5 Mb, 
Fig. S3), probably due to selection during breeding (Bouchet 
et al. 2017) acting on the linked plant height and maturity 
loci, Dw2 and Ma1 (Sabadin et al. 2012), respectively. The 
shortest LD extent of 2 Mb was found for chromosomes 1, 
2 and 3.

Population structure and relatedness

Population structure may absorb phenotypic variance and 
reduce the detection power in association mapping (Kang 
et  al. 2008). We used an identity-by-state (IBS)-based 

method (Endelman and Jannink 2012) implemented in 
TASSEL V (Bradbury et al. 2007) to assess genetic related-
ness between half-sib progeny in BRP13R (Fig. 2a). The 
progeny kinship coefficients were tightly clustered around 
a mean value of 0.5 (0.5 ± 0.02). Consequently, the kin-
ship heatmap was rather homogeneous, with the absence of 
strongly differentiated groups in the population. Based on 
the kinship heatmap and on UPGMA clustering, five clusters 
were detected, but average kinship for these groups was in 
general only slightly above the population mean (between 
0.53 and 0.58). Group 1 showed an average kinship (0.75) 
that was higher than the population average, but this group 
had only three progeny. Next, we conducted a principal 
component analysis with 43,825 SNP markers and plot-
ted progeny scores for the first two principal components 
(Fig. 2b). The groups detected by UPGMA were in general 
separated by the two principal components, with groups 3 
and 4 tending to overlap. Group 2 was the most well-defined 
group, whereas progeny within the other groups were rather 
disperse. The 24 restorer lines used in the formation of 
BRP13R comprised different morphological races and geo-
graphical origins, which largely govern population structure 
in sorghum (Caniato et al. 2011; Bouchet et al. 2012), as 
well as breeding materials (Table S1). In conjunction, the 
population structure and relatedness results indicate that the 
probable substantial population structure in the initial base 
population was likely dissipated by recombination, resulting 
in little structure left in BRP13R.

Association mapping

Model selection

We initially conducted a series of model selection steps to 
define the most adequate model for GWAS. Inspection of 
the Bayesian Information Criterion (BIC) (Schwarz et al. 
1978) determined that the naïve model (without correction 
for population structure nor relatedness) performed poorly 
in terms of goodness-of-fit to grain yield on low-P soil data 
(BIC = 10,229, Fig. S4). The model including the kinship 
matrix (K) produced a slight decrease in model performance 
compared to the naïve model, which is likely due to the 
highly homogeneous relatedness among BRP13R progeny 
(Fig. 2a). The best performing model (Fig. S4) included the 
first PC of our principal component analysis (PC1, Fig. 2b). 
The PC + K model showed reduced performance compared 
to the PC model, indicating that including progeny scores 
for PC1 alone efficiently captured the remaining population 
structure in BRP13R. Next, for each tested model, the prob-
ability distribution under the null hypothesis was inspected 
based on the quantile–quantile (q–q) plots of the p values 
from association analysis plotted against cumulative p val-
ues (Fig. S4). Consistent with the model fitness results, we 
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observed substantial inflation of type-I error in the naïve 
model compared to the PC, K and PC + K model. Both the 
K and PC + K models showed below-diagonal p values, indi-
cating reduction in detection power caused by the K matrix. 
Therefore, we selected the PC model for GWAS.

Genome‑wide association mapping

The significance threshold for GWAS was based on the 
Bonferroni correction for multiple tests (Bland and Altman 
1995). The number of independent tests was defined based 
on the extent of linkage disequilibrium estimated for each 

sorghum chromosome (Fig. S3) and the resulting   − log(p) 
threshold was 3.74 (alpha = 0.05). As an additional false 
positive control, GWAS was performed only with markers 
whose genotypic classes showed frequencies above 5%. The 
GWAS profiles for the selected traits are shown in Fig. 3 and 
the additive and dominance effects for the respective associ-
ated SNPs, in addition to effects for SNPs associated with 
different auxiliary traits, are shown in Table S5. We found in 
total 78 significant SNP loci (Fig. 3), within which 18 SNPs 
associated with grain yield on low-P soil were distributed 
across all sorghum chromosomes, except for chromosome 
7. A local, pairwise LD analysis for SNPs located within 

Fig. 1  Chromosome distribu-
tion of SNP loci before and 
after imputation and link-
age disequilibrium decay. a 
Unimputed data. A maximum 
of 20% missing data per site 
and read depth ≥ 6 were allowed 
and the dataset contained 
20,506 SNPs. b Imputed dataset 
with Beagle (Browning and 
Browning 2007). A maximum 
of 50% missing data per site 
was allowed and the window 
size was 500 Kb. The imputed 
dataset contained 43,825 SNPs. 
Blue points in panel (b) depict 
imputed markers. Both panels 
show the distribution of bial-
lelic, polymorphic loci, without 
insertions and deletions, with a 
read depth ≥ 6 and MAF ≥ 0.01. 
Mb: megabase pairs. c Genomic 
linkage disequilibrium decay in 
BRP13R. The histogram shows 
the mean, genomic frequency of 
loci under significant LD, which 
was measured as squared geno-
typic correlations (r2) between 
pairs of SNP loci (Weir 2008). 
A thin line was used to connect 
the difference between the 
proportion of loci in significant 
LD of the current and previous 
chromosome physical interval 
(distance in Mb). The Fisher 
exact test was used to assess 
significance followed by a Bon-
ferroni (α = 0.05) multiple test 
correction. The thick red line 
above the x-axis indicates the 
LD extent, defined as the physi-
cal distance where the average 
r2 values reached constant, basal 
levels
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the same general physical region indicated that 16 of the 
18 grain yield QTLs are in linkage equilibrium, hence pos-
sibly constituting independent loci. The grain yield effect 
for the associated SNPs varied from 110 to 430 kg ha−1 
and explained 6.78 to 12.41% of the phenotypic variance. 
About 65% of the SNPs whose effect could be partitioned 
between dominance and additivity (i.e., all three genotypic 
classes were present) had predominantly dominant effects 
(Table S5). This strongly contrasts with Al tolerance, which 
was controlled largely by SNPs acting additively. The SNP 

with the highest association signal and effect on Al tolerance 
is located at position 71.1 Mb on chromosome 3 and co-
localizes with the major Al tolerance gene, SbMATE (Magal-
haes et al. 2007). SbMATE has been previously shown to 
control Al tolerance in hydroponics and in the field in a 
semi-dominant and additive way, respectively (Magalhaes 
et al. 2004; Carvalho et al. 2016). The effects for SNPs asso-
ciated with total root surface area were evenly partitioned 
into additive and dominance, whereas those associated with 
root diameter (RD) acted mostly in an additive manner.

Association mapping with gene‑specific markers

We genotyped BRP13R with a set of SbMATE-specific 
markers and SNPs within the AltSB locus where SbMATE is 
located (Magalhaes et al. 2004, 2007), which were strongly 
associated with Al tolerance (Caniato et al. 2014). Genotyp-
ing was also performed with markers tagging SbPSTOL1 
genes, which are sorghum homologs of rice phosphorus-
starvation tolerance1 that have been previously associ-
ated with root morphology and/or grain yield under low-P 
(Hufnagel et al. 2014). For gene-specific marker loci, the 
genotypic means for grain yield (Fig. S5a) and the associa-
tion results (Fig. S5b) support a functional role of SbMATE 
and SbPSTOL1 genes in BRP13R. SbMATE SNPs (in red 
in Fig. 3), in addition to other GBS SNPs near SbMATE 
(Sb03g043890) at position 71.1 Mb, were highly asso-
ciated with Al tolerance (RNRG, Fig. S5b and Table S5, 
respectively). The association probabilities for SbPSTOL1 
SNPs with grain yield under low-P availability in the soil 
in BRP13R were in the same general range detected pre-
viously in a diverse sorghum association panel (Hufnagel 
et al. 2014). Furthermore, inspection of adjusted phenotypic 
means indicated that the SbPSTOL1 alleles increasing grain 
yield reported in Hufnagel et al. (2014) were consistently 
associated with grain yield advantage in BRP13R (Fig. S5a). 
For example, within the SbPSTOL1 gene Sb03g006765, the 
SNP loci (favorable allele in parenthesis), 1912 (A), 1998 
(C), 2042 (G), 2067 (G), 2073 (C) and 2141 (T) were in 
complete LD in Hufnagel et al. (2014). In BRP13R, grain 
yield means for all the favorable alleles was consistently 
higher than that of the respective alternate alleles (Fig. S5a). 
In addition, although the association signal for this SNP was 
below significance, the A allele at the 1.541 SNP within 
Sb03g031680 increased grain yield in Hufnagel et al. (2014) 
and the grain yield mean for this allele was again higher than 
the alternative allele in BRP13R (Fig. S5a), pointing toward 
functionality of Sb03g031680 in BRP13R.

Next, we compared the positions of the QTLs detected in 
BRP13R to those previously detected in a large RIL popula-
tion (Bernardino et al. 2019) and observed many instances 
of likely QTL conservation in the two populations (Table S6 
and Fig. S6). QTLs detected in BRP13R coincide with those 

Fig. 2  Genetic relationship and population structure in 200 BRP13R 
progeny estimated with 43,825 SNP markers. a The kinship matrix 
was calculated with TASSEL (Bradbury et al. 2007) using an identity 
by state (IBS, (Endelman and Jannink 2012)) method and displayed 
as a heatmap and the frequency distribution of genetic relationship 
values are depicted (left). The unweighted pair group method with 
arithmetic mean (UPGMA) clustering of BRP13R progeny based on 
Euclidian distances is shown above the kinship heatmap. A colored 
scale was used to depict five differentiated groups. b Graphical dis-
play of progeny scores obtained by principal component analyses 
(PCA). Progeny belonging to the five groups identified in a were 
depicted by the same colors. The percentages of variance explained 
by the two PCs are shown in the axis titles
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in the RILs, but BRP13R QTLs were more comprehen-
sive genome-wide, covering regions were QTLs were not 
found in the RILs, either by single- or by multi-trait map-
ping (Fig. S6). Co-localized QTLs for grain yield within a 
15 Mb window were found on chromosomes 1 (50–65), 4 
(55–70 Mb), 6 (35–45 Mb), 8 (55–60 Mb), 9 (45–60 Mb) 
and 10 (5–20 Mb). We also found co-localized QTL for grain 
yield and P content under low-P availability, such as a QTL 
for grain P content (Pg) on chromosome 1 (5–25 Mb), and 
grain yield/P content QTL on chromosomes 1 (55–65 Mb), 
3 (0–5 Mb), 4 (0–10 Mb), 6 (0–5 Mb), 7 (0–10 Mb), 8 
(55–65 Mb), 9 (55–60 Mb) and 10 (5–20 Mb). Over half of 
the grain yield QTL detected in BRP13R co-localize with 
root morphology QTL, mainly with QTL for root surface 
area and occasionally with root diameter QTL, which sup-
ports the importance of root morphology in P acquisition 
on low-P soils (Bernardino et al. 2019). We detected more 
QTLs for root surface area in BRP13R in comparison with 

the RIL analyses, but clear instances of conserved QTL were 
also observed, for example, at 60–70 Mb on chromosome 2 
and at 5–15 Mb and 65–75 Mb on chromosome 3, among 
other cases. Our design did not allow for the study of GxE. 
Leiser et al. (2012) looked at GxE for sorghum grain yield 
in multi-environment trials and found GxE to be small. The 
GxL (Genotype x Location) and GxY (Genotype x Year) 
variance components were 13% and 23%, respectively, of 
the genotype variance component. GxE in that study was 
mainly affected by the amount of annual rainfall, which 
was not a problem in our irrigated trials. Because of that, 
the  − P environments were considered as one population 
in the Leiser et al. (2012) study, and there was also tight 
correspondence between genotypic performance under  − P 
and + P conditions. Hence, in a condition such as that, as 
our phenotypic traits were assessed with reasonable preci-
sions based on our heritability estimates, we do not expect 
dramatic impacts of additional trials, particularly for QTL 

Fig. 3  GWAS profiles for grain 
yield (Gy, ton  ha−1), plant 
dry matter (PDM, ton  ha−1), 
root morphology traits and Al 
tolerance. The root morphology 
traits, root diameter (RD, in 
mm) and total surface area (SA, 
in  cm2), were assessed after 
13 days in nutrient solution with 
low-P. Al tolerance was meas-
ured by relative net root growth 
after 5 days of ± Al exposure in 
nutrient solution with an  Al3+ 
activity of {27} µM at pH 4.0. 
Colored in red are SNPs within 
the AltSB locus where SbMATE 
is located and within SbMATE 
itself (Caniato et al. 2014). 
The negative log of p values 
( − log10(p)) were obtained 
with a GWAS model including 
principal component 1 (PC1, 
Fig. 2b). The horizontal line in 
blue depicts the significance 
threshold based on the Bonfer-
roni correction for multiple, 
independent tests (alpha = 0.05), 
which was defined based on the 
extent of LD for each sorghum 
chromosome
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detection. Furthermore, finding significant conservation of 
grain yield QTL in two population contexts that are very 
different in terms of allele diversity, population structure 
and linkage disequilibrium provides support for the QTL 
detected in BRP13R.

Genetic makeup of selected progeny

Next, we explored the genetic constitution of BRP13R prog-
eny selected for grain yield using a 10% selection pressure 
for high (designated henceforth as top 10% for simplicity) 
and low (bottom 10%) grain yield (Fig. 4). This analysis 
was undertaken with markers associated with grain yield via 
GWAS (Fig. 4a) as well as with our gene-specific markers 
for SbSPTOL1 genes and SbMATE (Fig. 4b). The frequency 
of heterozygotes for SNP loci associated with grain yield 
was much higher in the top 10% of the BRP13R progeny 
compared to low-yielding progeny, whereas fewer loci 

homozygous for the favorable alleles were present in top 
10% progeny (Fig. 4a). In addition, the top 10% group had 
much fewer progeny that were homozygous for the inferior 
allele. In conjunction, these results are consistent with the 
predominance of dominance effects for SNPs associated 
with grain yield and suggested a relevant role of overdomi-
nance on grain yield (Table S5). In fact, while the results 
in Table S5 indicated that dominance deviations were very 
common for loci associated with grain yield (7 in 12 SNPs), 
4 of those loci apparently act strictly in an overdominant 
fashion (Table S7). For all those 4 loci, the p values con-
trasting the two homozygous classes were not significant (p 
values ranging from 0.54 to 0.99), suggesting the absence 
of additive effects and strict overdominance.

In contrast, for gene-specific markers, both loci that are 
homozygous for the favorable allele as well as heterozy-
gotes were more frequent in top 10% progeny compared to 
low-yielding progeny (Fig. 4b). The frequency of loci in 

Fig. 4  Genotypic makeup of BRP13R progeny selected based on 
superior and inferior grain yield assessed on a low-P soil. A 10% 
selection threshold was imposed to select 20 progeny each with the 
highest (top 10%) and lowest (bottom 10%) grain yields on a low-P 
soil. The adjusted grain yield means for BRP13R and for the prog-
eny in the top (T) and bottom (B) groups are shown in the histogram 
cartoon (top right). For each BRP13R progeny, homozygous geno-
types for superior (SS) and inferior (II) alleles and heterozygotes 

(S/I) are depicted for: a SNP loci significantly associated with grain 
yield (Fig. 3) and (b) SNPs previously associated with Al tolerance 
(Caniato et  al. 2014) and grain yield under low-P (Hufnagel et  al. 
2014) within the AltSB locus or SbPSTOL1 genes (Sb03g006765, 
Sb03g031670, Sb03g031680, Sb03g031690 and Sb03g031700), 
respectively. Genotypic frequencies for the “top” and “bottom” prog-
eny are shown in the respective bar charts
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homozygosity for the inferior allele was, in turn, higher in 
the low-yielding progeny. We also looked at allele frequen-
cies per gene and calculated frequency shifts between high- 
and low-yielding BRP13R progeny as Δf (Fig. S7). Based 
on this analysis, all SbPSTOL1 genes showed increased 
frequency of the favorable allele in high-yielding progeny. 
This frequency divergence was the highest in Sb03g006765 
and Sb03g31680 and neglectable for the Al tolerance gene, 
SbMATE. An analysis of molecular variance confirmed that 
the high and low-yielding groups differed for allele frequen-
cies (p < 0.10) for both GWAS- and gene-specific loci within 
the SbPSTOL1 genes, Sb03g006765, Sb03g031680, which 
are associated with the highest Δf for grain yield (Fig. S7).

Genomic selection

Due to the intrinsically quantitative nature of sorghum adap-
tive traits to abiotic stresses on tropical soils, we explored 
the adequacy of BRP13R for genomic selection (GS), tar-
geting grain yield under low-P availability in the soil. For 
that, we used models that accommodate dominance effects 
to take advantage of the residual heterozygosity in the mul-
tiparental population. We also studied whether the inclusion 
of loci associated with grain yield by GWAS as fixed effects 
(GWAS-SNPs) could increase prediction accuracies via 
GBLUP. To avoid artificially inflating accuracy estimates, 
the population used for GWAS to identify SNP cofactors 
was different than that used for genomic selection. First, 
SNP loci most frequently associated with grain yield after 
multiple rounds of GWAS, conducted in different BRP13R 
subsets of randomly sampled 160 progeny, were selected 
as cofactors. Then, for genomic selection, BRP13R was 
randomly split into training and prediction sets, which con-
sisted of 100/120 and 100/80 progeny, respectively. Genomic 
selection was also undertaken in multiple rounds, varying 
the constitution of the training and the prediction sets across 
rounds. Accuracy was calculated as the correlation between 
the adjusted and the predicted means via BLUE and GBLUP, 
respectively, for grain yield.

In the absence of dominance effects and fixed cofac-
tors (GBLUP-A), prediction accuracy varied from 0.22 for 
grain yield to 0.35 for Al tolerance (RNRG) and the traits 
with the highest heritability (plant height and Al tolerance, 
h2 =  ~ 0.75) also showed the highest accuracies (Fig. 5 and 
Table S8). Inclusion of dominance effects (GBLUP-AD) 
increased prediction accuracies for grain yield and plant 
dry matter, but only slightly. There was no advantage in 
using gene-specific markers for SbPSTOL1 and SbMATE 
as cofactors (GF-GBLUP-A and -D) except for Al toler-
ance, where accuracy was increased in GF-GBLUP-A. 
In general, when used as fixed cofactors, SNPs associ-
ated with the different traits via GWAS (GWAS-GBLUP) 
increased prediction accuracies, except for plant dry matter. 

The highest prediction accuracies of 0.28, 0.53 and 0.45 
for grain yield, plant height and Al tolerance, respectively, 
resulted from the GBLUP model which included dominance 
effects and GWAS-SNPs as cofactors (GWAS-GBLUP-AD). 
The strongest impact of including GWAS-SNPs as cofac-
tors was observed for plant height and appears to be closely 
related to the presence of underlying loci with dominance 
effects. Although there was no advantage in including domi-
nance effects in the absence of GWAS-SNPs (GBLUP-A 
vs GBLUP-AD), dominance increased prediction accura-
cies from 0.40 to 0.53 in the presence of GWAS-derived 
cofactors (GWAS-GBLUP-A vs. AD). Strikingly, accura-
cies increased by 90% after inclusion of GWAS-SNP cofac-
tors in the presence of dominance effects (GBLUP-AD vs. 
GWAS-GBLUP-AD).

Discussion

Gene discovery and sorghum breeding 
with a multiparental random matting population

Different from populations such as some recombinant 
inbred lines and diverse association panels, the multiparen-
tal, partially selfed random mating population (MP-RMP), 
BRP13R, is intrinsically a breeding resource. BRP13R has 
been designed to dynamically incorporate into a pre-breed-
ing pipeline new sources of alleles for desirable agronomic 
traits and to allow for the identification of transgressive 
progeny accumulating favorable alleles at multiple loci, 
particularly those related to sorghum adaptation to tropical 
soils, where abiotic stresses are common.

One significant advantage of BRP13R emerges from its 
power to positionally clone abiotic stress tolerance genes 
whose favorable alleles are present in rather low frequencies 
and are specific to certain subgroups, which is an enormous 
challenge for GWAS approaches (Brachi et al. 2011). The 
Al tolerance gene, SbMATE, has been shown to increase 
grain yield by over one ton  ha−1 on an Al-toxic acid soil 
(Carvalho et al. 2016) and is the major determinant of Al tol-
erance in sorghum. Favorable alleles of SbMATE are rather 
rare and mostly specific mostly to guinea sorghums from 
their primary and secondary domestication centers, in West 
and South East Africa, respectively (Caniato et al. 2011). A 
GWAS approach targeting Al tolerance was performed in a 
diverse and highly structured association panel (Melo et al. 
2019), with a model jointly including population structure 
and relatedness (Yu et al. 2006). Accordingly, many SNP 
loci distributed within most of the sorghum chromosomes 
showed association signals either similar to or even higher 
than the GBS-SNP that showed the highest association sig-
nal in the SbMATE region (Melo et al. 2019). Therefore, 
without previous knowledge, GWAS in the association panel 
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used by Melo et al. (Melo et al. 2019) would have been 
rather inefficient to directly positionally clone SbMATE, as 
many other candidate regions would have to be considered 
for gene discovery and further validation.

Roughly 265,000 SNPs have been considered adequate 
for GWAS approaches in sorghum, even in a highly diverse 
association panel, which was likely based on an average LD 
extent estimated to be under 10 Kb (Morris et al. 2013). 
Nevertheless, this assertion should be viewed with extreme 
caution, as LD coefficients typically show extremely high 
variance (Hedrick 1987) and LD fluctuations in the genome 
are also common due to heterogeneous recombination (Flint-
Garcia et al. 2003). For example, in sorghum, Alencar Figue-
iredo et al. (2008) reported on remarkably variable within-
gene LD, encompassing whole genes (> 4 Kb) for Opaque2, 
intensive intragenic recombination happening within only 

244 bp in Waxy, and very weak LD along Brittle2. Lack 
of salient associations of GBS-SNPs near SbMATE with 
Al tolerance is influenced by the need for population struc-
ture cofactors in the association model, the low frequency 
of Al tolerance and low LD in the SbMATE region, which 
was found to persist to up to around 500 bp, resulting in 
intragenic recombination and great haplotype diversity for 
the Al tolerance gene (Caniato et al. 2014; Hufnagel et al. 
2018). Because rare alleles are not efficiently sampled by 
the skim sequencing of GBS using moderate population 
sizes, SbMATE-specific markers identified via a targeted 
associating mapping approach (Caniato et al. 2014), rather 
than any GBS SNP marker, showed by far the highest 
association signals for Al tolerance in the diverse associa-
tion panel used by Melo et al. (2019). In contrast, using 
BRP13R, an extremely strong and prominent probability 

Fig. 5  Prediction accuracy (r) 
for genomic selection for grain 
yield (Gy), plant height (PH), 
plant dry matter (PDM) and Al 
tolerance (RNRG). Heritabil-
ity (h2) coefficients are shown 
for each trait. GBLUP-A is a 
GBLUP model with an additive 
genomic relationship matrix. 
The inclusion of a dominance 
genomic relationship matrix 
to GBLUP-A gives rise to 
GBLUP-AD. Gene-specific 
markers for SbPSTOL1 and 
SbMATE (GF) and SNPs associ-
ated with the different traits by 
GWAS (GWAS-SNPs) were 
included as fixed cofactors both 
in the presence of an additive 
genomic relationship matrix 
(GF-GBLUP-A and GWAS-
GBLUP-A) or including a 
dominance genomic relationship 
matrix (GF-GBLUP-AD and 
GWAS-GBLUP-AD) associated 
with the progeny random effect. 
Prediction accuracies were 
calculated as the correlation 
between the grain yield adjusted 
means via BLUE and the 
predicted means using GBLUP 
models. Cof. corresponds to the 
number of cofactors, that is, the 
number of GWAS-SNP markers 
fitted as fixed effects, whereas 
R2 is the coefficient of determi-
nation of the full GWAS model 
including all the selected fixed 
effect cofactors for each trait
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peak for association between GBS markers and Al toler-
ance was observed kilobases away SbMATE and, in fact, 
two GBS-SNPs overlapping with SbMATE SNPs (in red in 
Fig. 3) showed even stronger association signals compared 
to the SbMATE-specific markers.

Because r2 reflects statistical power to detect LD (Bald-
ing 2006) and is inversely proportional to the sample size 
required for detection (Zondervan and Cardon 2004; Wang 
et al. 2005), we infer that a much larger population size 
would have been needed to positionally clone SbMATE 
only with GBS markers via GWAS in the diverse associa-
tion panel used by Melo et al. (2019). Alternatively, a GWAS 
approach with only 200 individuals, genotyped with ~ 44,000 
SNPs in BRP13R, would have been enough to directly posi-
tionally clone SbMATE as previously discussed, which con-
trasts with the ~ 235,000 markers and 254 accessions used 
for GWAS by Melo et al. (2019). Hence, BRPR13R appears 
to offset some of the hurdles of other related multiparental 
designs such as MAGIC and NAM populations, some of 
which require long development time and large population 
sizes (Mackay et al. 2014; Bouchet et al. 2017) that can sig-
nificantly constrain phenotyping, particularly in field experi-
ments. The reduced population size in BRP13R leading to 
these results is remarkable, as in the original positional clon-
ing of SbMATE, a 354-member RIL population and over 
2,085  F2 individuals had to be screened (Magalhaes et al. 
2007). This extraordinary advantage of BRP13R over other 
populations is likely associated with its multi-allelic nature, 
intermediate levels of LD compared to highly diverse asso-
ciation panels and biparental populations, highly reduced 
population structure (that may also reduce detection power 
(Kang et al. 2008)) via random mating and selection for 
the target trait, which were all but natural consequences of 
the breeders’ effort to identify transgressive segregants for 
hybrid development.

Genomic selection with BRP13R

Our predictive ability for grain yield in the absence of domi-
nance effects or fixed cofactors, in the range of 0.22, was 
slightly lower than what was reported in previous publica-
tions on this in sorghum (Velazco et al. 2019). However, 
the inclusion of dominance effects and GWAS-derived 
fixed cofactors raised grain yield accuracies to ~ 0.3. This 
indicates that the multiparental, random mating nature and 
the residual heterozygosity in BRP13R do not preclude its 
effective use for genomic selection approaches, particularly 
if markers in LD with major genes with dominant effects 
are identified by GWAS and included in the GS model as 
fixed effects. The most dramatic increase in accuracy was 
achieved with a GBLUP model including dominance effects 
and GWAS cofactors for plant height, yielding maximum 
accuracy of 0.53, which is a value similar to that in previous 

reports (Velazco et al. 2019). In general, modeling SNPs 
in LD with major genes as having fixed instead of random 
effects has been shown to improve accuracies for traits such 
as plant height and flowering time in rice (Spindel et al. 
2016), rust resistance in wheat (Rutkoski et al. 2014) and 
carotenoid levels in maize (Owens et al. 2014).

The fraction of the genetic variance jointly explained by 
the GWAS-derived cofactors in the GBLUP models applied 
to BRP13R varied from 0.13 for grain yield to 0.32 for plant 
height, which showed the highest heritability among all traits 
(h2 = 0.75). Thus, our results in sorghum, particularly based 
on the substantial improvement in plant height prediction 
accuracy with GWAS-derived cofactors, agree with simula-
tions by Bernardo et al. (Bernardo 2014) in maize. Accord-
ingly, these authors concluded that adding fixed cofactors to 
the GS models is helpful, particularly for oligogenic traits 
and when each major gene explains more than 10% of the 
genetic variance.

Validation and deployment of gene‑specific markers 
with BRP13R

Many important traits in plant breeding are quantitative in 
nature and are controlled by several genes, each with mod-
est effects on the phenotype. Due to the large number of 
hypotheses to be tested and the consequent need to correct 
for multiple tests, detecting minor-effect loci is a substantial 
limitation of GWAS approaches, and population sizes in the 
range of thousands may be needed, even for alleles with a 
frequency of 0.15 (Hirschhorn and Daly 2005). From this 
perspective, we set out to explore if and how SNPs discov-
ered by targeted approaches and explaining a much smaller 
portion of the genetic variance could be integrated into a 
pre-breeding pipeline including genomic selection under 
random mating.

Sorghum homologs of rice Phosphorus-starvation toler-
ance1 (OsPSTOL1) (Gamuyao et al. 2012) were found to 
be associated with root morphology traits that have been 
shown to enhance root P acquisition and grain yield under 
low-P availability in the soil (Hufnagel et al. 2014), and 
co-localized with the respective QTLs in a sorghum RIL 
population (Bernardino et  al. 2019). Six SNPs in total 
LD within the SbPSTOL1 gene, Sb03g006765, in addi-
tion to one SNP within Sb03g031680, which individually 
explained ~ 3–4% of the genetic variance, were associated 
with increases in grain yield of about 154–200 kg ha−1 in 
a diverse sorghum association panel cultivated in a low-P 
soil, which likely results from increases in root surface area 
leading to enhanced P uptake (Hufnagel et al. 2014). We fit 
a linear model for grain yield under low-P including as fac-
tors the three genotypic classes for each SbPSTOL1-specific 
locus (Fig. S5) and found that the association probabilities 
for those SNPs in BRP13R are in the same ballpark as we 
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had found previously (Hufnagel et al. 2014). Although these 
association probabilities were not nearly as close as our 
GWAS threshold in BRP13R, the same six alleles within 
Sb03g006765 and the single allele in Sb03g031680 that 
increased grain yield in the Hufnagel et al. (2014) study 
also resulted in higher grain yield average compared to the 
alternative alleles (Fig. S5), indicating that the SbPSTOL1 
effect on grain yield in BRP13R is sound. In further sup-
port of SbPSTOL1 functionality enhancing grain yield under 
low-P in BRP13R, we found that the allele frequency for 
all SbPSTOL1 SNPs shifted upward, favoring a higher fre-
quency of favorable alleles (positive Δf) (Fig. S7) in the top 
10% lines selected for grain yield compared to low-yielding 
BRP13R progeny. Furthermore, this shift was most dramatic 
for Sb03g006765 (0.13) and Sb03g031680 (0.10), which 
are exactly the two SbPSTOL1 genes that had been previ-
ously associated with grain yield under low-P availability 
in the soil via targeted association mapping (Hufnagel et al. 
2014). In addition, on average, we observed enrichment 
of genotypes homozygous for favorable alleles over prog-
eny homozygous for the unfavorable alleles in high-yield-
ing progeny. This pattern, which was primarily driven by 
Sb03g006765, was reversed in low-yielding progeny, where 
progeny homozygous for the unfavorable alleles predomi-
nate. The predominantly additive gene action that emerges 
from these results is again consistent with our statistical 
analysis (Fig. S5), which shows significance only for addi-
tive effects for gene-specific loci.

Collectively, our findings confirm that genes with more 
subtle effect on the target traits, consequently explain-
ing smaller fractions of the phenotypic variance, such as 
SbPSTOL1 genes, are in principle not useful for boosting 
accuracies in genomic selection approaches as previously 
predicted (Bernardo 2014). Notwithstanding, our genotype 
and allele frequency analyses indicate that such genes identi-
fied via targeted association mapping and other approaches, 
should enter into GS pipelines via allele mining and charac-
terization of the founder germplasm and, if needed, marker-
assisted introgression in the base population.

The allele shift for SNPs tagging the Al tolerance gene, 
SbMATE, was negligible between high- and low-yielding 
progeny and our regression analysis did not detect significant 
associations with grain yield under low-P for SbMATE loci. 
Conversely, our SbMATE markers were highly associated 
with Al tolerance (Fig. S5), as expected. These results can 
be explained by the fact that Al saturation in the soil surface 
was below toxicity levels for sorghum, as we wanted our 
low-P site to isolate the effect of low-P availability from Al 
toxicity on BRP13R performance. A previous study with 
SbMATE-specific markers suggested that citrate release 
mediated by the root plasma membrane SbMATE protein 
may also benefit P uptake and grain yield under low-P avail-
ability in West Africa (Leiser et al. 2014). However, P stress 

on tropical soils occurs via P fixation on the surfaces of 
Al and iron oxides in the soil clays, impairing the diffusive 
flux of P from the soil toward the root surface (reviewed by 
Magalhaes et al. (2018)). Since BRP13R was assessed for 
grain yield in a clay low-P soil under irrigation in Brazil, 
it is possible that a stronger P stress occurred in the West 
Africa experiments, which might have potentiated the effect 
of citrate release mediated by SbMATE on P uptake. In addi-
tion, the SbMATE effect on grain yield in the Leiser et al. 
(2014) study may result from a combined effect of SbMATE 
enhancing both P acquisition and Al tolerance (Leiser et al. 
2014; Magalhaes et al. 2018). While we cannot generalize 
our results due to the complex nature of tropical soils, in 
by far the most widespread situation where Al toxicity and 
low-P availability co-exist on acidic soils, progeny combin-
ing favorable alleles of both SbMATE and SbSPTOL1 genes 
are expected to be more adapted and hence show enhanced 
yield stability.

BRP13R as a multipurpose, integrative resource 
for genomics and plant breeding

We have found reassuring evidence for QTL conserva-
tion between BRP13R and a large RIL population (Ber-
nardino et al. 2019), which were both phenotyped for grain 
yield under low-P availability and root morphology traits 
(Table S6). For example, we have previously reported on 
the presence of a sorghum homolog of the wheat Al toler-
ance gene, ALMT, within a grain yield QTL on chromosome 
6, and of a PHOSPHATE2 (PHO2) homolog co-localized 
with a grain yield QTL on chromosome 9 (Bernardino et al. 
2019). The aluminum-activated malate transporter, ALMT1, 
has been recently shown to influence root growth in low-P 
conditions in Arabidopsis (Mora-Macías et al. 2017), while 
PHO2 has been implicated in maize P efficiency (Du et al. 
2018). In BRP13R, the QTL with the strongest associa-
tion signal for grain yield was located on chromosome 6 at 
37–45 Mb. This region overlaps at 40–45 Mb with the grain 
yield QTL detected both by single- and multi-trait mapping 
in the RIL population, and the overlapping region includes 
the sorghum homolog of ALMT at position ~ 44 Mb. At posi-
tion ~ 57 Mb, PHO2 is near a grain yield QTL in the end 
region of chromosome 9 and is within overlapping QTL for 
P content, grain, root and plant dry matter, in addition to 
plant height in BRP13R.

Some instances of QTLs found exclusively in BRP13R 
may highlight another substantial advantage of such popu-
lation steaming from its residual heterozygosity. Loci act-
ing strictly overdominantly on grain yield are not expected 
to be detected in a homozygous population, such as in 
RILs. Indeed, based on the positions of the 4 SNP loci 
inferred to be acting strictly overdominantly in BRP13R 
(Table  S7), conserved QTL in our RIL population 
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(Bernardino et al. 2019) were in general not found, except 
for S1_613208087 on chromosome 10 (Table S6). Despite 
its largely self-pollinating nature, this supports the impor-
tance of heterosis in sorghum as previously reported 
(Quinby and Karper 1946), which can be caused by over-
dominant loci controlling grain yield (Ben-Israel et al. 
2012). Therefore, in allowing for the detection of such 
loci, the residual heterozygosity present in BRP13R may 
nicely complement QTL mapping approaches in homozy-
gous populations, thereby unlocking overdominance as a 
major contributor to genetic gains in sorghum grain yield.

The cloning of genes important for crop breeding, par-
ticularly the challenging ones with rather minor effects, 
will benefit from integrative approaches that explore com-
plementarities between different types of populations, such 
as recombinant inbred lines, diverse association panels and 
multiparental populations. We can anticipate that such 
integrative resources may balance advantages and draw-
backs of each type of population taken alone, arising from 
historical aspects influencing genetic structure, demogra-
phy and diversity, which ultimately translate into variable 
levels of linkage disequilibrium (Nordborg and Tavaré 
2002). Our study with BRP13R indicates that this type 
of random mating population—where many founders and 
derived progeny were intensively recombined—emerges 
as a multipurpose resource useful both for genomics and 
breeding applications. Such highly recombined multipa-
rental populations increase the chances of cloning impor-
tant genes by GWAS, serving as a vehicle for bridging 
gene discovery and cultivar development via deployment 
of gene-specific markers into pre-breeding efforts. Finally, 
boosted by genomic selection, this approach benefits culti-
var development via selection of progeny transgressively 
accumulating favorable alleles at many loci that are impor-
tant for a broader adaptation to acidic soils, such as those 
conferring Al tolerance and P efficiency.

Electronic supplementary material

Relevant data for genome-wide association mapping and 
genomic selection are available in the Electronic Supple-
mentary Material.
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