
DOI: http://dx.doi.org/10.1590/1678-992X-2020-0021

Sci. Agric. v.78, n.4, e20200021, 2021

ISSN 1678-992X

ABSTRACT: Genomic selection (GS) emphasizes the simultaneous prediction of the genetic 
effects of thousands of scattered markers over the genome. Several statistical methodologies 
have been used in GS for the prediction of genetic merit. In general, such methodologies require 
certain assumptions about the data, such as the normality of the distribution of phenotypic 
values. To circumvent the non-normality of phenotypic values, the literature suggests the use of 
Bayesian Generalized Linear Regression (GBLASSO). Another alternative is the models based 
on machine learning, represented by methodologies such as Artificial Neural Networks (ANN), 
Decision Trees (DT) and related possible refinements such as Bagging, Random Forest and 
Boosting. This study aimed to use DT and its refinements for predicting resistance to orange 
rust in Arabica coffee. Additionally, DT and its refinements were used to identify the importance 
of markers related to the characteristic of interest. The results were compared with those from 
GBLASSO and ANN. Data on coffee rust resistance of 245 Arabica coffee plants genotyped for 
137 markers were used. The DT refinements presented equal or inferior values of Apparent 
Error Rate compared to those obtained by DT, GBLASSO, and ANN. Moreover, DT refinements 
were able to identify important markers for the characteristic of interest. Out of 14 of the most 
important markers analyzed in each methodology, 9.3 markers on average were in regions of 
quantitative trait loci (QTLs) related to resistance to disease listed in the literature.
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Introduction

Coffea arabica, economically speaking the 
most important coffee species, is responsible for 
approximately 60 % of Brazil’s coffee production in 
2017 (ICO, 2018). A number of diseases can affect coffee 
cultivation, amongst which coffee leaf rust (CLR), 
caused by the fungus Hemileia vastatrix, is the main 
disease that causes worldwide harm. The symptoms of 
CLR can be seen on the lower face of the leaf surface, 
in the form of large orange spore masses, leading to 
premature leaf fall and can reduce crop yield by up to 
35 % (Talinhas, et al., 2016). To minimize the damage 
caused by the disease, resistant cultivars have been 
developed through coffee genetic breeding programs 
and in order to increase the efficiency and accuracy in 
the selection of improved coffee crops, molecular tools 
have been incorporated into breeding programs (Barka 
et al., 2017).

Genomic Selection (GS) is used to accelerate the 
breeding process. The models used in GS for predicting 

GEBV, for example, RR-BLUP (Meuwissen et al., 2001) 
and BLASSO (Park and Casella, 2008), are based on the 
assumption of the normality of phenotypic values. In 
order to overcome this limitation, Pérez and Campos 
(2014) proposed the use of Bayesian Generalized Linear 
Regression (BGLR), allowing for the use of GS for 
continuous and discrete models. Although useful, the 
presence of complicating factors such as epistasis and 
dominance make it difficult to use the usual models 
of GS, once their effects have been established as the 
prior in the model.

Another approach to problem prediction is the 
use of machine learning algorithms, such as Artificial 
Neural Network (ANN) (Adetiba and Olugbara, 2015), 
Decision Trees (DT) and related possible refinements 
such as Bagging, Random Forest and Boosting (González-
Recio and Forni, 2011; Ogutu et al., 2011). These 
algorithms make no assumptions about the model. This 
feature of statistical learning allows for the capture of 
complicated factors such as epistasis and dominance in 
prediction models since it is not necessary to know a 
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priori if the data have these effects and do not require 
any assumptions about the distribution of phenotypic 
values.

The aim of this paper was to use the DT and its 
refinements (Bagging, Random Forest and Boosting) 
for predicting the rust resistance of Arabica coffee. 
Furthermore, the estimates obtained were compared 
with those obtained by BGLR and ANN. Finally, the 
importance of markers to rust resistance was evaluated.

Materials and Methods

Genotypes
The population evaluated consisted of two 

progenitors, the Timor Hybrid UFV 443-03 (resistant 
to rust), cultivar Catuai amarelo IAC 64 (UFV 2148-57) 
(susceptible to rust), the hybrid F1 and 245 F2 plants. The 
UFV 443-03 is an important rust resistant source used in 
breeding programs, and Pestana et al. (2015) identified at 
least two major genes associated with resistance coffee 
to three isolates of H. vastatrix. 

Inoculation of plants
The experiments were carried out in Viçosa, MG, 

Brazil (20°45’37” S, 42°52’4” W, altitude of 648 m). The 245 
F2 plants were inoculated with uredospore of pathotype 
001 of H. vastatrix. The inoculation was conducted 
according to the methodology described by Capucho et 
al. (2009). The evaluation of symptoms (phenotyping) was 
performed during May, June and Aug 2009, comprising 
the first, second and third repetition, respectively. The 
score scale described by Tamayo et al. (1995) was used. 
The highest score obtained in the tree repetition was used 
for the next analysis. Plants that received score one (no 
symptoms) and score two (small chlorotic injuries) were 
considered resistant. If attributed a score of three, four, 
five or six, the phenotypes were considered susceptible. 
Score three corresponded to a plant that contained large 
injuries without sporulation, score four to large chlorotic 
injuries with small sporulation occupying less than 
25 % of the area, score five to injuries with sporulation 
occupying from 25 to 50 % of the area and score six to 
injuries with sporulation occupying more than 50 % of 
the area (Figure 1). 

Genotyping of plants
Genotyping was carried out in the years 2010, 

2011 and 2012, with 137 markers (74 AFLP, 58 SSR, 
4 RAPD, and 1 specific primer) (Pestana et al., 2015). 
The marker data for each individual were coded for 
analyses of genomic selection. For dominant markers 
linked in the coupling phase to a resistant allele of the 
progenitor Timor Hybrid UFV 443-03, the code –1 and 1 
were attributed to the presence and absence of the band, 
respectively. For dominant markers in repulsion (allele 
from the susceptible progenitor Catuai amarelo UFV 
2148-57) 1 and –1 were also assigned to the presence 
and absence of the band, respectively. The codominant 

markers were coded with 0 for heterozygote, –1 for bands 
from the resistant progenitor and 1 for bands from the 
susceptible progenitor (Silva et al., 2017). The genotype 
data quality control used is described in Pestana et al. 
(2015).

In genetic mapping studies, the distance between 
loci pairs can be divided into four classes, tightly linked 
(< 1 cM), moderately linked (1-10 cM), loosely linked 
(11-20 cM) and unlinked (> 20 cM) (Remington et al., 
2001; Maccaferri et al., 2005; Jun et al., 2008). Based on 
Pestana et al. (2015) map, we considered the markers 
with a distance less than 10 cM (tightly and moderately 
linked) as being linked to the QTL region.

Classification tree (CT) and its refinements
To construct a classification tree, the objective is 

to obtain regions R
1, R2, ..., RM that minimize the Gini 

index as given by James et al. (2013):

G p pmk
k

K

mk= −
=
∑ ˆ ( ˆ )1

1

,

where p̂mk represents the proportions of observations in 
the mth region belonging to the kth class. The Gini index 
decreased according to the tree growth that was produced 
by recursive binary splitting. To avoid the model over 
fitting, it is recommended that first, no region have 
more than five observations and second, prune the tree 
using the cost complexity pruning given by Rα(T) = R(T) 
+ α|T| where R(T) is the error rate, |T| the number of 
regions and α the tuning parameter (Hastie et al., 2009). 
Generally a single tree does not have good predictive 
accuracy when compared with other approaches. In 
order to increase the predictive performance of the 
model bootstrap aggregation (bagging), random forest 
and boosting should be used.

The bootstrap aggregation (bagging) consists of 
obtaining B samples with replacement (size equal to 
N) from the data set, thus obtaining B models ( f̂ 1(x), f̂ 2

(x),..., f̂ B (x)) that will be used as individual classifiers. 

Figure 1 – Scale of notes for the evaluation of coffee resistance to 
H. vastatrix.
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A new individual will be classified in the most common 
class among the predictions of the B individual classifiers. 
The random forest (RF) follows the same idea of bagging, 
but uses a smaller number of predictive variables in 
each split. According to James et al. (2013), RF results 
in a process of “decorrelating” the generated trees, 
improving even more the accuracy of predictions. Finally, 
unlike bagging that creates independent trees, boosting 
creates a tree sequentially using information from past 
trees. The boosting classifier H(x) = Σtαtht (x) that seeks 
to minimize functional loss through the optimization of 
the scalar αt (importance assigned to ht (x)) and of the 
individual classifier ht (x) in each iteration t (Freund and 
Schapire, 1999). The individual classifiers ht (x) have 
low classification power, but when used with the H (x) 
ensemble presented good results (Martins et al., 2009).

Artificial Neural Network (ANN)
The ANN architecture used in this work has a 

hidden layer only and uses the backpropagation as a 
learning algorithm (Rumelhart and McClelland, 1986). 
The network structure considers 137 markers as inputs, 
a hidden layer, and the outputs that predict resistance 
or susceptibility of the leaf to rust which is shown in 
Figure 1.

The neurons Wm are generated by a linear 
combination of the input variables Mp (markers). Finally 
the output variable Yk is generated as a function of linear 
combination of the neurons Wm as follows:

W X m Mm m m
T= + =σ α α( ), , ,...0 1 2

T W k Kk k k
T= + =β β0 1, ,...,

Yk = gk(T), k = 1, …, K

in which W = (W1, W2, …, Wm), T = T1, T2, …, Tk.
The activation function used in ANN was the 

sigmoid, σ(υ) = 1/(1 + e–υ), and the output function the 
softmax,

g T
e k

e l
k

T

l
K T

( ) =
∑

. 

The weights (α0m, αm; m = 1, 2, …, M) and (β0k, βk; k 
= 1, 2, …, K) are unknown parameters of the network 
responsible for adjustments to the ANN model to training 
set. As a measure of adjustment we use the cross-entropy
R y f xi

N
k
K

ik k i( ) log ( )θ = −∑ ∑= =1 1 with backpropagation res-
ponsible for its minimization. The numbers of neurons 
in the hidden layer were chosen based on considering a 
maximum error of 15 %, at most, for the validation test.

Bayesian Generalized Linear Regression
The genomic selection method based on Bayesian 

generalized linear regression (Pérez and de los Campos, 
2014) was also used for predicting GEBV. The model is 
given by:

ˆ ... ...Y X X j j q= + + + + + +µ β β µ µ1 1 1

where m is the intercept, Xi the predictor matrices, Xj 

= {xijk}, βjk the vectors of effects associated with the 
columns of Xj and mq={mq1 ..., mqn} the vectors of random 
effects. In this study, since the phenotypic values 
present a categorical distribution (rust resistance), the 
probit link was used (Pérez and Campos, 2014) where 
the probability of each category is linked to the linear 
predictor according to the following link function:

P(yi = k) = Φ(ηi – γk) – Φ (ηi – γk–1)

where Φ(.) is the standard normal cumulative 
distribution, ηi the linear predictor and γk the threshold 
parameters, where γ0 = –∞, γk ≥ γk–1, γk = ∞.

Training and validation sets
The data set was divided into two parts: training 

set and validation set. The training set was kept with 
the same individuals for modeling all the methodologies, 
composed of 70 % of each class (172 observations), taken 
at random, while the remaining 30 % (73 observations) 
were used in the validation set. In the literature, the 
percentages used in the training set vary between 60 
and 90 % as seen in Gianola et al. (2011) and González-
Camacho et al. (2012).

Marker selection
The most important markers are those that 

have a greater influence on the studied trait, whereby 
all individuals in the construction of the models are 
used to select such markers with greater precision. In 
GBLASSO (Generalized Bayesian Lasso) the markers 
with the highest regression coefficients in absolute 
values were defined as the most important markers. In 
the methodologies of Classification Tree and Prune, the 
most important markers are the ones that were used in 
the split of the first nodes. In bagging and random forest, 
we assumed as the most important markers those that 
on average influenced more in the reduction of the Gini 
index. In boosting, the most important markers are those 
that have more relevance in separating the observations 
of one class from the others.

In ANN, the acquiring of the most important 
markers is through the construction of a new ANN 
after canceling the effect of each marker individually. 
The most important marker will be the one that, after 
its annulment, presents a higher apparent error rate 
- APER (Silva et al., 2017). Among the 100 ANN used 
in the genomic selection process the network used to 
determine the importance of the markers was the one 
that presented a lower APER.

We selected the 10 % most important markers (14 
first markers) in each methodology and compared with 
results taken from the literature (Pestana et al., 2015), 
to verify if the methodologies were able to indicate 
markers that are associated with the studied trait.
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Comparison of methodologies
To compare the methodologies, we repeated 

the entire process 100 times. We used the average 
computational cost and the APER confidence interval 
obtained through the validation sets. We also estimated 
the accuracy of each methodology, given by

r
r

hyg
yy

ˆ
ˆ= ,

where rygˆ  is an accuracy estimator proposed by Legarra 
et al. (2008) and Hayes et al. (2009), ryyˆ  the predictive 
ability represented by the phi correlation (Warrens, 
2008) between the phenotype y and the predicted 
genomic breeding values ŷ, g the true breeding value and 
h2 the heritability (Legarra et al., 2008). The heritability 
for coffee resistance to H. vastatrix pathotype 001 
considering the phenotypic data was 0.50 (Pestana et al., 
2015).

We used Cohen’s Kappa coefficient proposed by 
Cohen (1960) to analyze the agreement between the 
methodologies both in classification of the individuals 
(using the training set) and in the identification of 
markers (the 10 most important in each methodology). 
The coefficient of Cohen’s Kappa is given by:

kappa
NAO NAEC
NOA NAEC

−
−

where NAO is the degree of agreement observed, NAEC 
the degree of agreement expected by chance and NOA 
the number of observations analyzed (Resende et al., 
2014).

Computational aspects
Data analysis was carried out on a computer with 

a 3.40GHz core i7 processor and 16GB of RAM using 
the R software 3.40 program. Prediction was facilitated 
through, the nnet function, part of the nnet package in 
ANN which was chosen in recognition of the limitation 
of APER to a maximum of 15 % or a maximum of 5000 
iterations in the validation set. The BGLR function, 
belonging to the BGLR package, was used to estimate 
the Bayesian generalized models, from 100,000 iterations 
with the first 20,000 observations being discarded (burn-
in) and values were saved at every 10 observations 
(thinning). To construct the classification tree we used 
the tree function belonging to the tree package. As part 
of the randomForest package the randomForest function 
was used to construct the model of the Bagging and the 
Random Forest. Finally, the gbm function from the gbm 
package was used to construct the boosting.

Results

The average apparent error rate values obtained 
by adjusting the models under study (DT, decision tree 
with prune – DTP, Bagging, Random Forest, Boosting, 
ANN, GBLASSO) ranged from 19.5 % to 24.9 %. 
Specifically, the lower average APER was obtained by 

taking into account the adjustment of boosting (19.5 %), 
which does not present a significant difference when 
compared with those obtained by adjusting ANN with 
one hidden layer (19.6 %), bagging (19.7 %), random 
forest (20.4 %) and DTP (21.1 %). According to the 95 % 
confidence interval, most of the methodologies, except 
the DT (24.9 %), presented better results (lower APER 
values) when compared to those obtained by GBLASSO 
(22.7 %) (Figure 2). Average accuracy ranged from 30.6 % 
to 60.7 %. Overall all the methodologies outperformed 
GBLASSO, since their accuracy values were higher than 
those presented by GBLASSO, according to the 95 % 
confidence interval. 

When comparing the computational cost of the 
techniques to GBLASSO (traditional GWS methodology), 
only the ANN require more computational time, being 
9.20 times slower. The DT was the model with the 
lowest computational cost, being 2850 times faster than 
GBLASSO.

According to Landis and Koch (1977), a Cohen’s 
Kappa coefficient greater than 0.4 can be considered from 
moderate to an excellent agreement estimate between 
the methodologies. In general, the mean Cohen’s Kappa 
coefficient presented positive and high values in the 
classification of genotypes. Comparing the techniques to 
GBLASSO, the methodology with the lowest percentage 
agreement was DT (70.3 %), while RF was the most 
similar methodology as pertains to the classification 
provided by GBLASSO (88.9 %) (Table 1). Considering 
all the methodologies evaluated, the highest percentage 
agreement was observed in the results obtained through 
RF and boosting (93.4 %).

Among the fourteen most important markers 
indicated by each methodology (Table 1), the highest 
percent of Cohen’s Kappa agreement (76.1 %) was 
between GBLASSO and boosting, which presented 
eleven markers in common. The ANN and DT presented 
the lowest percentage agreement (4.5 %), presenting two 
markers in common.

Figure 2 – Apparent error rate (APER) and accuracy at 95 % 
confidence interval (CI) obtained by each adjusted model. The 
dotted lines highlight the limits of CI obtained by GBLASSO. ANN 
= Artificial Neural Network; GBLASSO = Generalized Bayesian 
Lasso; DT = Decision Tree; DTP = Decision Tree with Prune; RF = 
Random Forest.



5

Sousa et al. Genomic prediction by machine learning

Sci. Agric. v.78, n.4, e20200021, 2021

To obtain marker candidates to support the 
selection process, we first considered those indicated 
as most important for at least four methods. The 
approaches that have more markers in common were 
GBLASSO, Bagging, Random Forest and Boosting. Next, 
we analyzed four selected approaches and chose the 
markers which appeared two or more times selecting 
these as the most important markers (those in bold in 
Table 2). The markers 11, 12, 13, 21, 24, 29, 43, 47, 
55, 61, 64, 73, 85, 97, 107 and 128 were considered 
jointly most important in at least two approaches. The 
candidate markers can be used directly for selection 
resistant cultivars. When using the candidate markers 
individually to classify the phenotype, the APER varied 
between 24.1 % and 49.4 % (Table 3). The marker with 
the lower APER (97) is one of the best markers according 
to Table 2. 

The joint importance of these markers was 
also quantified, showing that in GBLASSO they are 
responsible for 30.7 % of the variability of the leaf rust 
resistance. The Bagging, RF and Boosting are responsible 
for 41.7 %, 27.8 % and 55.0 %, respectively (Table 2). 

We compared our statistical approach (Table 2) 
to the QTL mapping of Pestana et al. (2015) QTL. Both 
studies used the same population and markers. According 
to the Pestana et al. (2015) map, four QTLs associated 
with coffee resistance to H. vastatrix pathotype 001 were 
allocated in a tree linkage group (LG), LG 2 (2 QTL), 

Table 3 – Apparent error rate, considering only the candidate 
markers individually.

Marker APER Marker APER
11* 0.3959 55* 0.2857
12* 0.2531 61* 0.2531
13** 0.4939 64* 0.2694
21* 0.2531 73* 0.4531
24** 0.4898 85* 0.2490
29* 0.4898 97* 0.2408
43* 0.2490 107* 0.3184
47* 0.4857 128* 0.4571

Average APER 0.3523
APER = apparent error rate; *Presence of the allele of the resistance 
progenitor; **Presence of the allele of the susceptible progenitor.

Table 1 – Average time in seconds (diagonal) with the standard error in parentheses, average of Cohen’s Kappa coefficient between the 
classifications (above the diagonal) and Cohen’s Kappa coefficient between the most important markers of each methodology (below the 
diagonal).

Models ANN GBLASSO DT DTP Bagging RF Boosting
ANN 355.92 (22.10) 76.4 % 69.0 % 73.5 % 78.7 % 77.8 % 81.1 %
GBLASSO 44.3 % 38.68 (5.55) 70.3 % 77.2 % 83.1 % 88.9 % 86.4 %
DT 4.5 % 20.4 % 0.01 (0.01) 83.1 % 78.3 % 73.5 % 73.7 %
DTP 0.0 %* 23.0 % 23.0 % 0.14 (0.02) 85.7 % 81.0 % 81.7 %
Bagging 28.4 % 44.3 % 20.4 % 23.0 % 4.10 (0.22) 89.4 % 89.1 %
RF 28.4 % 52.3 % 12.5 % 23.0 % 68.2 % 3.21 (0.12) 93.4 %
Boosting 44.3 % 76.1 % 20.4 % 23.0 % 68.2 % 68.2 % 13.63 (0.33)
ANN = artificial neural network; GBLASSO = generalized Bayesian Lasso; DT = decision tree; DTP = decision tree with prune; RF = random forest; *Coefficient lower 
than zero.

Table 2 – Fourteen most important markers indicated by each methodology.
ANN GBLASSO DT DTP Bagging RF Boosting
M M Importance M M M Importance M Importance M Importance
2 43 0.037619 43 43 97 0.129982 43 0.046065 97 0.13016
24 73 0.032772 97 97 43 0.083155 97 0.042635 43 0.093231
25 61 0.031536 7 - 61 0.043129 61 0.039375 61 0.066988
63 97 0.030817 86 - 47 0.030975 64 0.024595 47 0.037109
67 11 0.029281 84 - 73 0.030622 12 0.02182 55 0.031592
77 12 0.024199 34 - 12 0.023706 11 0.018815 12 0.029706
125 29 0.022077 73 - 55 0.020561 21 0.017176 29 0.027303
26 24 0.02205 94 - 115 0.020464 59 0.015569 11 0.024407
29 55 0.021031 118 - 19 0.0204 29 0.014864 128 0.020311
55 128 0.020407 52 - 101 0.014927 47 0.013759 73 0.020216
61 67 0.019127 74 - 29 0.014906 55 0.01373 64 0.01853
64 21 0.017907 61 - 13 0.013909 82 0.013447 24 0.017379
73 107 0.017566 20 - 64 0.013803 85 0.013072 85 0.01679
11 68 0.017554 23 - 85 0.012589 13 0.012153 107 0.016095
Markers in bold are those which appeared two or more times among GBLASSO, Bagging, RF and Boosting. ANN = artificial neural network; GBLASSO = generalized 
Bayesian Lasso; DT = decision tree; DTP = decision tree with prune; RF = random forest; M = marker; underlined marker, marker in a QTL region according to Pestana 
et al., 2015. The importance obtained for the markers is calculated using different criteria in each methodology.
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LG 3 and LG 10. Several markers coincided with our 
approach and the markers flanking the QTL. In Table 2, 
the underlined markers are those that are in any of the 
three chromosomes with QTL.

Discussion

Machine learning algorithms such as those based 
on Artificial Neural Network (ANN), Decision Tree (DT) 
and its refinements Bagging, Random Forest (RF) and 
Boosting were used and tested to predict the genetic 
resistance of coffee to rust. The results obtained were 
compared with those coming from the traditional 
approach to GS studies in which the trait does not 
present a normal distribution, the Bayesian generalized 
linear regression (Figure 2). Finally, the sixteen most 
important markers were selected according to each 
methodology, that is, those markers that exerted greater 
influence in rust resistance (Table 2). 

The use of methods based on machine learning 
(ML) for predicting genetic resistance to leaf rust in 
Coffea arabica were efficient, since all models (except 
DT) presented lower APER values and higher accuracy 
values when compared with the results obtained by 
GBLASSO (Figure 2). Furthermore, the accuracy values 
provided by bagging and ANN were higher than the 
estimated heritability of the trait (h2 = 0.50) presented 
by Pestana et al. (2015).

The worst performance of DT when compared with 
its refinements can be attributed to this methodology 
which suffered from high variance in terms of prediction 
(James et al., 2013). Hastie et al. (2009) emphasized that 
the DT’s low predictive accuracy can be improved by 
the use of ensemble methods such as bagging, random 
forest and boosting (Breiman, 2001). These strategies 
combine multiple DT to reduce the variability.

According to the APER and Accuracy values 
(Figure 2) bagging presented equal or better results 
than those observed in RF which uses a number 
of predictors in the split of each node less  
than the bagging. This modification in the numbers 
of predictors that occurs in RF aims to break the 
correlation between the trees constructed in each 
iteration in order to increase the predictive capacity of 
the model (Hastie et al., 2009). According to James et 
al. (2013), using a restricted number of predictors in 
RF, will be advantageous if there are many correlated 
predictor variables. In this study, only 1.6 % of the 
markers presented a strong correlation between 
themselves, which explains why RF does not improve 
results in relation to bagging. Additionally, since 
rust resistance is an oligogenic trait (Bettencourt and 
Rodrigues Jr., 1988), the framework of RF, whereby 
the division of the nodes in the DT is performed using 
a small random number of markers, it is possible that 
certain nodes can have chosen only markers that are 
not associated with the trait, explaining the lower 
performance of RF compared with bagging.

The methods based on ML were used under the 
GS focus in many studies, such as that adopted by Ogutu 
et al. (2011). In this study, the authors compared the 
predictive ability of RF, boosting and support vector 
machine (SVM) to predict Genomic Estimated Breeding 
Values (GEBV) through simulated data, and confirmed 
this to be the best performance to the detriment of 
the other two methods. Gianola et al. (2014) evaluated 
and proved that the GBLUP (Genomic Best Linear 
Prediction) predictive capacity can be improved by 
bagging. They verified that the use of bagging in 
the GBLUP, in addition to improving the predictive 
performance of the method, made it more robust in 
relation to the over fitting of the data. Such an approach 
was also used with success in the studies of Abdollahi-
Arpanahi et al. (2015) and Mehrban et al. (2017), in 
which they proved the efficiency of the use of bagging 
together with the GBLUP in the prediction of GEBV 
for chicken and bulls of the Jersey breed respectively. 
Ornella et al. (2014) used many classification algorithms 
for the genomic prediction of maize and verified that 
those methodologies are a promising alternative for 
GS in the breeding of plants. Different from these 
studies, the methodologies evaluated in this study were 
compared with the results of BGLR, which contemplate 
the qualitative nature of the trait evaluated in modeling. 
Out of the several methods of machine learning, only 
ANNs were compared with the BGLR in the presence 
of a qualitative nature (Silva et al., 2017), as the ANNs 
are more efficient in predicting rust resistance in Coffea 
arabica. 

The high percentage of agreement between the 
methodologies may indicate that the study trait (leaf 
rust resistance) does not present complicating factors to 
modeling such as the presence of great dominance and 
epistasis, which require the use of more complex models 
(Table 1). Despite the similarity, it should be emphasized 
that the models based on ML are flexible and do not 
depend on an a priori specification adjustment of the 
model, which makes it easier to contemplate such 
complicated factors (Silva et al., 2017). In terms of 
computational cost, the methods based in ML (except 
ANN) present a great advantage when compared to 
GBLASSO, since GBLASSO uses Markov chain Monte 
Carlo methods that require the construction of large 
chains (Table 1). 

Candidate markers have been used to select leaf 
rust resistance genotypes. Diola et al. (2011) identified 
molecular markers linked to the SH Gene, which is one 
of the major genes that confers resistance to coffee rust 
(Brito et al., 2010). Alkimim et al. (2017) used molecular 
markers to identify coffee plants carrying the genes 
SH3 and other SH genes which also confer resistance 
to coffee rust. Once the phenotype has been considered 
dichotomous (resistant and susceptible) to fit the 
machine learning models, the candidate markers can be 
used directly to select resistant cultivars. For example, 
considering marker 97 as a candidate, the APER was 
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equal to 24.1 %. Although interesting, the joint use of 
markers outperforms the use of markers individually.

According to Pestana et al. (2015), four QTL 
regions are associated with the rust resistance 
pathotype 001, two in LG 2, one in LG 3 and one in LG 
10. Mean disease severity reduction associated with 
the presence of these QTLs range from 17.8 % (QTL 3 
– LG 3) to 31.0 % (QTL 2 – LG 2), both the QTL 3 with 
less effect and the QTL 3 with higher effect. These 
QTLs can be used under a marker-assisted selection 
(MAS) approach, to the introgression of these loci into 
new cultivars with durable resistance of H. vastatrix 
(Pestana et al., 2015). Among the selected markers in 
the ANN methodology, two markers were located close 
to the QTL of the LG 3, two in the LG 10 and one in 
the LG 2. The other markers do not link to any LG or 
are in other LGs with no QTL.

The DT and DTP were also not efficient, as they 
identified only one or two markers linked to the QTL 
of LG 10, respectively (Table 2). The DTP is not an 
interesting strategy for obtaining such information, 
since the prune process removes several markers 
from the prediction process. The other methodologies, 
GBLASSO, bagging, RF and boosting allow for the 
selection of several markers that are near the four QTLs 
previously identified. The RF was the methodology that 
identified more markers linked to the QTLs, six markers 
(12, 13, 21, 29, 47 and 59) linked to the two QTLs of 
LG 2 selected, three markers (43, 61 and 64) linked to 
the QTL of LG 10, and two more markers (55 and 82) 
linked to the QTL of LG 3. The GBLASSO, bagging and 
boosting, identified 7, 9 and 8 markers linked to the LG 
with regions of QTLs, respectively, as we can see in 
Table 2.

Although marker 97 is in the LG 11 that does not 
have a QTL region (Pestana et al., 2015), it was identified 
as an important marker in six methodologies. LG 11 is 
a small LG and with the saturation of the map it can be 
linked to a LG with a QTL region. Another hypothesis is 
the detection of a new QTL region that was not detected 
by Pestana et al. (2015). Both hypotheses are related 
to the increase in map saturation. Different from QTL 
mapping, which requires a higher mapping saturation, 
methodologies based on GS may help to indicate 
important regions in the genome which can contain a 
QTL.

These results indicate that when the refinements 
(bagging, RF and boosting) are applied to the DT, 
provided good alternatives for the determination of the 
markers are associated with a study trait, they have a 
lower computational cost when compared to GBLASSO 
(Table 1). By contrast, the results obtained by ANN 
indicate that the strategy used in this study to determine 
the marker importance through this approach is not 
efficient. The results obtained from the data of this 
study show the superiority of bagging and boosting in 
both the GEBV and the determination of the importance 
of markers (Table 2).

Conclusions

Evaluations of the APER and the accuracy of 
the prediction of leaf rust resistance confirmed that 
all methodologies showed greater effectiveness than 
GBLASSO (except DT in APER), incurring an even lower 
computational cost (except ANN). The DT refinements 
were capable of detecting markers near regions where 
QTLs were identified for the trait study. 
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