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RESUMO 

Introduzimos um modelo de autômato celular representando a difusão da intensificação do gado 

de corte considerando a preferencia do fazendeiro. Nos também analisamos as propriedades 

teóricas do modelo e a sensibilidade dos principais parâmetros. O modelo representa a dinâmica 

de adoção de dois sistemas de manejos, intensivo (𝜙)  e extensivo(ξ). Foi calculado a 

probabilidade do estado mudar como uma função de proporção de vizinhos em cada estado e a 

preferencia relativa por 𝜙 ou ξ. O modelo inclui o efeito da inercia (𝐼), isso é, a resistência (ou 

dificuldade) inerente do produtor de mudar o seu estado dado um pedaço de terra, e três tipos 

diferentes de comportamento de adoção (AB). O primeiro (AB1) esta associado aos primeiros 

que adotam que são exclusivamente guiados pela sua percepção de vantagem a mudança 

tecnológica; o segundo (AB2), esta relacionado com a aversão a riscos, por isso provável que a 

mudança de estado é voltado para os sistemas com maior frequência na vizinhança 
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(influenciadores), i.e “comportamento de manada” e o terceiro (AB3) é o comportamento que 

considera o efeito interativo da percepção de vantagem e dos influenciadores. 

Para fornecer informações para o uso e calibração, executamos uma análise de sensitiva dos 

parâmetros de velocidade de adoção, o estado de equilíbrio e padrões espaciais. A análise 

revelou que o nível de agregação espacial esta relacionado com os valores relativos do conjunto 

de parâmetros. 

 

ABSTRACT 

We introduce a cellular automata model representing the diffusion of technological 

intensification of beef cattle considering farmer’s preferences.  We also analyze the theoretical 

properties of the model and the sensitivity of key parameters. The model represents the 

dynamics of adoption of two types of management systems, intensive (𝜙) and extensive (ξ). 

We compute the probability of state change as a function of the proportion of neighbors in each 

state and the relative preference for 𝜙 or ξ. The model includes the effect of inertia (𝐼), that is, 

the inherent resistance (or difficulty) of a producer to change the state of a given plot of land, 

and three different types of adoption behaviors (AB). The first  (AB1) is associated to “early 

adopters” that are exclusively guided by their perception of advantages of technological change; 

the second  (AB2), is related to high risk aversion, so most probable change of state is towards 

the systems with the highest frequency in the neighborhood (influencers), i.e. “herd behavior”; 

and the third (AB3) is a behavior that considers the interactive effect of advantage perception 

and influencers. 

To give insights for use and calibration, we ran sensitivity analysis of parameter values of speed 

of adoption, equilibrium state, and spatial state patterns.. The analysis revealed the level of 

spatial aggregation is associated to the relative values of the parameters set. 

 

INTRODUCTION 

Brazil is a major global agricultural player and has an ambition to balance growing 

production with environmental costs (de Oliveira Silva et al. 2018). Particularly beef cattle 

production has long been linked the loss of biodiversity and greenhouse gas (GHG) emissions, 

mainly because of methane (CH4) emitted by the around 200 million heads (M hd) via enteric 

fermentation process and associated natural conversion for grazing pastures. In the past, 1975 

to 1996, beef cattle production was based on extensive grazing, characterized by low input 

management and low-quality pasture with limited carrying capacities. Along that period, 

increases in production were highly correlated with pasture expansion (Martha Jr 2012). 
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However, at least since 1996 the production pattern has changed and beef cattle has embarked 

on an intensification era, and production growth is now explained by gains in productivity of 

both pasture and animal performance. Animal growth rates are due to improved genetics 

through breeding and the use of on-pasture supplements and feedlot systems. Pasture 

productivity gains are due to better management, via pasture improvement/restoration by 

chemical and mechanical treatment in the soil. As opposed to extensive systems, these 

productivity measures characterize intensive systems. Despite Brazil has already embarked on 

an intensification era extensive cattle ranching, and underutilized pastures remain 

representative in many regions of the country, meaning current average stocking rates are far 

relatively low, around 1.1 head/ha (IBGE, 2015). 

To increase beef cattle productivity, the government supports the adoption of intensification 

measures. Those include the restoration of degraded pasture (de Oliveira Silva et al. 2015, 2017; 

Negra et al. 2014). Research show that intensified system is more profitable and more 

sustainable, as GHG emissions per kg of beef is reduced (de Oliveira Silva et al. 2017; De 

Oliveira Silva et al. 2018, 2016). However, there are several barriers of technology adoption, 

including the lack of technical information and support, skilled labour, access to rural credit, 

land registration issues and a risk aversion by behaviour by famers (Strassburg et al. 2014). 

Optimization approaches usually assume a rational decision maker, e.g., adoption of 

intensification technology is a function of economic return and/or risk alone. These methods 

have been applied to understand economic return and environmental impacts of intensification 

of livestock systems in Brazil (Cohn et al. 2014) but they are not able to explore factors other 

than profit maximization inherent to the decision process of technology adoption. Thus, 

understanding the influence of geographical specificities, farmers preferences and networking 

on the adoption of intensification measures is essential to complement traditional approach of 

maximization of economic returns. Addressing the barriers of adoption and technology 

diffusion is essential to support governmental policies targeting reduction of deforestation via 

the sustainable intensification of livestock in Brazil (MOZZER et al 2011, 2015). Unfortunately, 

applying technology diffusion models to the intensification of livestock production in Brazil is 

a highly underexplored, most of the time is used with deforestation (KAIMOWITZ ,2008) or with 

agriculture (Gil et at 2015, 2016; CORTNER et at 2019). This work develops a spatially explicit 

model of technology diffusion using a cellular automata (CA) approach that introduces farmer’s 

preferences in addition to the network effect. We use historical data to calibrate the model and 

apply it to explore the barriers and the intensification of beef cattle systems in Brazil. 
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METHODS 

Cellular Automata modelling and implementation 

A cellular automata (CA) is a discrete dynamical system, space, time, and the states of 

the system are discrete values. Each point in a regular spatial lattice, or cell  is associated with 

a state within the a domain called alphabet. The states of the cells in the lattice are updated 

according to a local rule. That is, the state of a cell at a given time depends only on the previous 

of the cell and its neighbors.  

A cellular automata is characterized by some fundamental properties. The lattice of cells, 

representing the structure or geometry of the grid of cells. The dimension of the lattice of cells 

can be one, two, or three dimensions in Euclidean space. Discrete States, a cell can assume 

only a finite number of possible states. Local interactions, a state of a cell can only be 

influenced by its neighbors. Discrete dynamics, every cell update at the same discrete time, 

according to a transition rule at the model. 

In this paper, we use a two-dimensional lattice and the Moore-neighborhood (KRETZ, 2005), 

consisting of the central cell and the eight adjacent cells 

We assume each cell is a plot of land which can assume three different states. The “inactive 

state” coded as “0” are cells not used for grazing, e.g. a mountain, a river, a city, cropland which 

are unavailable for state change. State “1” represents an extensive livestock plot; and state “2” 

represents an intensive livestock plot, where pastures are well managed, animals are 

supplemented and/or fedloted. The cells in the borders of the latice are assumed as inactives. 

We use a transition function 𝑓 to compute the probability of state change of a plot in time step 

t, (𝐶𝑡) to the next one 𝐶(𝑡+1): 

𝐶(𝑡+1) = 𝑓(𝐶𝑡(𝑖)|𝑖 ∈ 𝑁(𝑟)), (1) 

Where 𝑁(𝑟) is the set of neighbor cells of the cell 𝑟,  

Changing a plot from extensive to intensive state is a “big decision” which demands significant 

investments, more demanding management and long-term consequences for the individual and 

the land. For that reason, individuals facing changes in type of management tend to be reluctant 

to change both because of giving up a possibly acceptable current state and the fear of failure 

(i.e. low perception of control). To account for the trend of the farmer to remain in the current 
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state, we used the consept of “inertia” for the transition rule. The transition rule is then given 

by: 

𝑓(𝑁𝜙, 𝐸𝜙) = 𝐼𝑚𝑖𝑛 + 𝑘 (1 − 𝑒
(−𝜆(𝛼∗𝑁𝜙+𝛽∗𝐸𝜙+𝛾∗𝑁𝜙∗𝐸𝜙))

) (2) 

𝛼 + 𝛽 + 𝛾 = 1 (3) 

𝑘 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝑒−𝜆
 (4) 

Where, 𝑁𝜙 is the number of neighbors in the system 𝜙 𝐸𝜙is the preference for the system 𝜙, 

𝐼𝑚𝑖𝑛is the minimal inertial probability; 𝐼𝑚𝑎𝑥 is the maximum probability of keeping current 

state (1 is the default value); 𝜆 is a parameter used to calibrate the  speed of convergence to the 

steady-state. The parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 (Eq. 3) are the associated weights of the neighborhood, 

preference and the crossproduct term, respectively. Thus the terms in the exponential represents 

the weight of each type of behavior in a given scenario. 

 In the case a cell has no neighbors in the same system, and the preference for that system is 

zero, 𝑓(0,0) = 𝐼𝑚𝑖𝑛. In the opporsite case, all the neighbors are in the same system and with 

maximum preference for the same system, 𝑓(1,1) = 𝐼𝑚𝑎𝑥. The parameter a (Eq. 4) is derived 

by combinging f(0,0) and f(1,1,). 

Steady-state conditions 

A deterministic cellular automata follows a pattern akin to the second law of 

thermodynamics: starting from a partially disordered state, the system evolves towards a state 

of equilibrium (TAATI , 2018) In our case, this happens when the flow of cells changing from 

state 𝜙 to ξ equals the flow of cells changing from ξ to 𝜙. The flows are given by the number of 

cells in a given state multiplied by their probability of change; i .e.1 − 𝑓(𝑁𝜙, 𝐸𝜙). Therefore, 

we can find the equilibrium point through Equation 5.  

𝑁𝜙 ∗ (1 − 𝑓(𝑁𝜙, 𝐸𝜙)) = 𝑁ξ ∗ (1 − 𝑓(𝑁ξ, 𝐸ξ)) (5) 

𝑁𝜙 + 𝑁ξ = 1 (6) 

𝐸𝜙 + 𝐸ξ = 1 (7) 

Solving equation (5) analytically is impractible so we solve it numerically. 

Evaluation of spatial aggregation  

Spatial patterns are observed when a CA is simulated for an extended time (WOLFRAN, 

1982), with different parameters. We analyse how each parameter affect the spatial dependence 
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patterns through a semivariogram, which shows the variance from data for separated by specific 

distance between points  (ISAAKS; SRIVASTAVA 1989, VIERIA et al. 1983, VIERIA 2002). 

After making the curve adjustment in the semivariogram, we calculate the degree of aggregation 

(𝑔𝑐), given by: 

𝑔𝑐 = (
𝐶1

𝐶0 + 𝐶1 
) ∗ 100 (8) 

Where  𝐶0 is the nugget of the function, 𝐶1 is the semivariogram effect and 𝐶0 + 𝐶1 is the 

asymptotic value of the function. According to Zimback et al. (2001), 𝑔𝑐 > 75% indicate 

strong spatial dependence; 25% ≥ 𝑔𝑐 ≥ 75% moderate spatial dependence and 𝑔𝑐 < 25% 

weak spatial dependence. 

Sensitivity analysis 

We evaluate the sensitivity of model outputs to the parameters 𝛾, 𝛼, 𝛽 𝑎𝑛𝑑 𝜆 in in a 50 

years model runs. We assumed fixed arbitrary values for the preference for the intensive system 

in 𝐸𝜙 = 0.7, and the preference for the extensive system in 𝐸ξ = 1 −  𝐸𝜙. We also assumed 

𝐼𝑚𝑎𝑥 = 1 and 𝐼𝑚𝑖𝑛 = 0.8. We also compared steady-state values simulated and calculated with 

the equation (5).  

RESULTS 

Model results 

 Figure 2 shows the comparison of proportion in different set of parameters. When β is 

maximum, the model converges slightly faster as the model becomes closer to deterministic 

behavior and have the highest value of intensive proportion. We noticed 𝜆 is related with the 

proportion in each system, so higher 𝜆 higher the difference between the proportion of the 

management system, furthermore, shows that bigger λ longer it takes to reach the equilibrium 
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Figure 1 - a) Proportion of intensive System b) Proportion of extensive System 

157



Figure 2 shows the dynamics of extensive and intensive management systems’ adoption over 

time. The simulated value when reaches the equilibrium is approaching the calculated value, 

with this result we can use the equation (5) to calculate the value of equilibrium without doing 

the simulations. Also, equilibrium values agree with Figure 1 simulation, i.e., values around 0.2 

and 0.8 for extensive an intensive. However, the smallest λ do not reaches equilibrium faster 

than the others. 

 

 

 

 

 

 

 

 

Figure 3 shows the spatial deposition of the plot of the land. We noticed that when β is high, 

the states are more randomly spread in space while a high 𝛼 or 𝛾 tend to produce secure spatial 

aggregation as the influence of the neighborhood are taken into account in the automata. We 

can notice that λ is not related with spatial aggregation. 

 

 

 

 

 

 

 

 

 

Figure 2 - Simulation of -a)γ=1,β=0,α=0 e λ=1 b)γ=0,β=1,α=0 e λ=1 c)γ=0.5,β=0.5,α=0.0 e λ=1 d)γ=0.4,β=0.3,α=0.3 e 

λ=1 e)γ=0.4,β=0.3,α=0.3 e λ=3 f) e)γ=0.4,β=0.3,α=0.3 e λ=0.1 
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Figure 3– a) Initial Grid – Final Grid with the parameters b)γ=1,β=0,α=0 e λ=1 c)γ=0,β=1,α=0 e λ=1 

d)γ=0.5,β=0.5,α=0.0 e λ=1 e)γ=0.4,β=0.3,α=0.3 e λ=1 f)γ=0.4,β=0.3,α=0.3 e λ=3 g) )γ=0.4,β=0.3,α=0.3 e 

λ=0.1 
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Geostatistics 

The spatial aggregation differences shown in Figure 4 ware analyzed through the 

semivariogram technique for 6 different sets of parameters, 𝑆1 = (γ = 1, β = 0, α = 0 e λ = 1), 

𝑆2 = (γ = 0, β = 1, α = 0 e λ = 1), S3 = (γ = 0.5, β = 0.5, α = 0 e λ = 1), 𝑆4 = (γ = 0.4, β =

0.3, α = 0.3 e λ = 1), 𝑆5 = (γ = 0.4, β = 0.3, α = 0.3 e λ = 10),𝑆6 = (γ = 0.4, β = 0.3, α =

0.3 e λ = 0.1). For 𝑆1, 𝑆4 𝑎𝑛𝑑 𝑆5 the exponential curve presented best fit while for S2 and S3 

the spherical curve was best. As the dataset for 𝑆3 𝑎𝑛𝑑 𝑆4 were similar, we combined the two 

in only one regression was made for them.  

With the semivariogram plotted and using the equation (11), we have the following levels of 

aggregation degree: 𝑔𝑐(𝑆1) = 5.74, 𝑔𝑐(𝑆2) = 1.17, 𝑔𝑐(𝑆3_𝑆4) = 7.29, 𝑔𝑐(𝑆5) = 10.11,

𝑔𝑐(𝑆6) =   9.09, so 𝑔𝑐(𝑆2) is the lowest value because 𝛽 it will not carry any neighborhood 

influence, after that 𝑔𝑑(𝑆1) do not have a high value because it is working only with 𝛾 that 

have some of the preference and neighborhood influence at the same time, besides this two 

value all the other stay close this happens when we added to the model some value to 𝛼. 

 

 

 

    

Conclusion 

 The cellular automata model presented herein contributes to the understanding of farmer 

behavior beyond profit maximization assumptions. By accounting for geographical proximity 

Figure 4- a)Semivariogram S1 b)Semivariogram S2 c)Semivariogram S3 and S4 d)Semivariogram S5 

e)Semivariogram S6 
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of influencers it is able to produce different patterns of spatial dependence, depending on the 

parameters set. The model can also be calibrated for speed of adoption. Future modeling work 

will focus on empirically calibrate the model to different regions of Brazil and on determining 

the economic drivers and psychological influencers of the behavior defined by the parameter 

values.  
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