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Abstract: Timely updates of carbon stock distribution are needed to better understand the impacts
of deforestation and degradation on forest carbon stock dynamics. This research aimed to explore
an approach for estimating aboveground carbon density (ACD) in the Brazilian Amazon through
integration of MODIS (moderate resolution imaging spectroradiometer) and a limited number of
light detection and ranging (Lidar) data samples using linear regression (LR) and random forest (RF)
algorithms, respectively. Airborne LiDAR data at 23 sites across the Brazilian Amazon were collected
and used to calculate ACD. The ACD estimation model, which was developed by Longo et al. in the
same study area, was used to map ACD distribution in the 23 sites. The LR and RF methods were
used to develop ACD models, in which the samples extracted from LiDAR-estimated ACD were
used as dependent variables and MODIS-derived variables were used as independent variables. The
evaluation of modeling results indicated that ACD can be successfully estimated with a coefficient
of determination of 0.67 and root mean square error of 4.18 kg C/m2 using RF based on spectral
indices. The mixed pixel problem in MODIS data is a major factor in ACD overestimation, while cloud
contamination and data saturation are major factors in ACD underestimation. These uncertainties in
ACD estimation using MODIS data make it difficult to examine annual ACD dynamics of degradation
and growth, however this method can be used to examine the deforestation-induced ACD loss.

Keywords: aboveground carbon density; random forest; linear regression; MODIS; LiDAR;
Brazilian Amazon

1. Introduction

Forests, which cover approximately 30% of the Earth’s land surface, produce about 75% of the
terrestrial gross primary production and contain 80% of total plant biomass [1], thereby playing
important roles in the global carbon cycle and global climate changes. Among different types of forests,
tropical forests store about half of all forest carbon in the world and play particularly critical roles in
atmospheric carbon sequestration [2]. The Brazilian Amazon has the largest rainforest area, but also
has significant deforestation rates. In 2014, the World Wildlife Fund reported alarming deforestation
rates in the Amazon region during 2001–2012 [3]. Today, 20% of the Amazon forest is gone. Extensive
cattle ranching, large-scale intensive agriculture (mainly soybeans), oil and natural gas exploration,

Remote Sens. 2020, 12, 3330; doi:10.3390/rs12203330 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7198-4607
https://orcid.org/0000-0003-4767-5710
https://orcid.org/0000-0001-5153-545X
https://orcid.org/0000-0001-7748-5497
http://www.mdpi.com/2072-4292/12/20/3330?type=check_update&version=1
http://dx.doi.org/10.3390/rs12203330
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 3330 2 of 25

construction of infrastructure (e.g., hydroelectric dams, roads, mining), and logging have long been
regarded as major factors contributing to deforestation in the Brazilian Amazon [3]. The newly
released data from Brazil’s National Institute for Space Research (INPE) indicate that deforestation in
the Brazilian Amazon since 2014 reached its highest rate in 2018–2019 due to illegal occupation for
economic benefit, resulting in a large area of rainforest being deliberately destroyed [4]. Deforestation
in the Amazon directly influences carbon pools stored in the vegetation. Therefore, accurate estimation
of biomass or carbon density is critical for quantifying carbon stocks and dynamics, and for sustainable
forest management in the Amazon [5]. Remote sensing techniques enable rapid mapping of forest
distribution and assessment of biomass over large areas at relatively low cost, and have become the
most important tools for quantifying biomass at scales ranging from local to regional and global [6,7].

Many studies on forest aboveground biomass (AGB) estimation have been conducted around
the world using different modeling algorithms and sensors, such as optical, microwave, and light
detection and ranging (LiDAR) data, as well as combinations of different data sources [6–10]. Of the
sensor data sources, LiDAR is regarded as the most accurate for AGB estimation because it is able to
provide accurate forest structure measurements [11–13]. LiDAR metrics and extraction methods vary,
depending on the platforms (spaceborne, airborne, terrestrial), scanning patterns (profiling, scanning),
laser return signals (discrete or full waveform), and footprint sizes (small, medium, large) [14–17].
Among LiDAR sensors, the discrete-return, small-footprint airborne LiDAR sensor is the most widely
used in AGB estimation [5,18]. Two approaches are used for predicting AGB from discrete LiDAR
returns: single-tree based, which is operated at the tree level; and area-based, which is operated at
the stand or plot level [19,20]. The area-based approach has become a standard and widely accepted
method for accurate forest attribute estimation at the plot level [21,22]. With this approach, the LiDAR
metrics for both horizontal (e.g., canopy cover) and vertical (e.g., mean height, percentile heights,
standard deviation, and relative frequencies) dimensions are commonly generated from laser returns
or a canopy height model (CHM) is constructed from the returns within a defined ground area
(stand or plot) [23,24]. Although the discrete small-footprint airborne LiDAR sensor can generate
accurate AGB estimates, it is constrained to small areas due to the high cost of data acquisition,
sophisticated processing, and large volume of point clouds [25–27]. The spaceborne LiDAR sensor
—the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and Land Elevation Satellite
(ICESat)—has proven valuable for AGB estimation [28,29]. ICESat-1 GLAS has recoded full waveforms
over large footprints (~65 m) [30], and GLAS data are available for 2003 to 2009. The recently launched
ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) and Global Ecosystem Dynamics
Investigation (GEDI) have improved ability to capture forest structures and have great potential for
AGB estimation [31–34]. However, the spaceborne LiDAR satellites cannot provide wall-to-wall AGB
estimates because of their spatially discrete characteristics, thus they are usually combined with other
remotely sensed data, such as Landsat and moderate-resolution imaging spectroradiometer (MODIS)
data [31,33–35].

At regional and global scales, coarse spatial resolution remotely sensed data are used for AGB
estimation, such as advanced very high resolution radiometer (AVHRR), MODIS, and SPOT (Satellite
Pour l’Observation de la Terre) VEGETATION data. For example, AVHRR normalized difference
vegetation index (NDVI) data have been used in Africa [36] and the Northern Hemisphere (USA,
Canada, Finland, Russia, Sweden, and Norway) for AGB estimation [37]. MODIS, with higher temporal
frequency and improved spectral and spatial resolutions, has become the major data source for AGB
estimation in large areas since 2000 [38,39]. Based on MODIS and forest sample data, an automatic
upscaling approach was used to produce pan-European maps of growing stock and aboveground
woody biomass at a spatial resolution of 500 m [40], while the random forest (RF) algorithm was
used to develop forest AGB maps at 1 km resolution in tropical Africa [41]. In order to improve the
modeling results, a combination of MODIS and non-remote-sensing data (e.g., land cover, climate,
and topographic data) provides better performance in mapping forest biomass. For instance, using
multiple data sources, Blackard et al. [42] used the regression tree approach to map the forest biomass
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in 65 ecoregions in the USA, while Beaudoin et al. [43] used the k-nearest neighbors (kNN) approach
to map forest biomass in Canada.

Because ICESat-1 GLAS provides canopy height features, a combination of GLAS, MODIS,
and ancillary data (e.g., topography, forest inventory data, climate, and land cover data) has been used
to map AGB distribution and carbon density regionally and globally, and the RF approach is often
used to develop AGB estimation models [44–47]. For example, Baccini et al. [45] used a combination
of MODIS, GLAS, and data from the Shuttle Radar Topography Mission (SRTM) to develop forest
biomass maps in pantropical regions at a resolution of 500 m. Hu et al. [46] used MODIS NDVI, GLAS,
climate, and topographic data to estimate global forest biomass at a spatial resolution of 1 km. In
addition to RF, the biomass classification approach was used to map the biomass distribution in the
Amazon basin [48], and a maximum entropy algorithm was used to develop a benchmark map of
forest carbon stocks for tropical regions across Latin America, sub-Saharan Africa, and Southeast
Asia [44]. However, the research results from Baccini et al. [45] and Saatchi et al. [44,48] showed large
uncertainties in biomass estimates in the Brazilian Amazon due to the low number of field observations,
the variability of the remotely sensed products and ancillary data used, and the capabilities of the
prediction models [49,50].

Accurate biomass estimation requires the collection of a sufficient number of representative biomass
reference data samples from field measurements [6,51,52]. However, collection is time-consuming and
labor-intensive, and it is challenge to build models based on limited numbers of sample plots and
remote-sensing-derived variables for large regions [53]. Furthermore, the spatial dimensions of sample
plots used for biomass estimation often vary in their sizes (e.g., 100–10,000 m2) and shapes (square,
rectangle, circle), resulting in mismatches between sample plots and image pixels and eventually
affecting the accuracy of estimates [54,55], especially for coarse spatial resolution remotely sensed data
such as MODIS. To tackle such inconsistencies and mismatches, an intermediate, finer remotely sensed
dataset (e.g., airborne LiDAR, ICESat-1 GLAS) is often introduced and used as a bridge to link field
measurements and coarse-resolution remote sensing data. For example, Saatchi et al. [44] used four
steps to create a benchmark map of forest carbon stocks in tropical regions using MODIS and GLAS
data by: (1) developing models between the ground-measured Lorey’s height and forest biomass
values calculated using allometric equations; (2) inserting Lorey’s height values derived from ICESat
GLAS data into the developed models to obtain a biomass estimate of the GLAS shot; (3) aggregating
biomass estimates of GLAS shots to 1 km resolution cells (the same as for the MODIS product) as an
AGB reference and building a biomass estimation model based on AGB references and variables from
MODIS and ancillary datasets; (4) implementing models to estimate biomass for the entire region.
Li et al. [56] demonstrated the procedure used to upscale predictions of forest biomass, using airborne
LiDAR as a bridge between field measurements and MODIS products, which consists of three steps:
(1) build the relationship between LiDAR metrics, then plot the AGB and use it to generate AGB
estimation maps for the coverage of LiDAR data at a resolution of 25 m; (2) aggregate the AGB maps at
the same spatial resolution of MODIS and use them as the AGB reference to relate MODIS variables
(e.g., NDVI, LAI); (3) develop and implement AGB models at coarse resolutions to predict the AGB for
the entire region. The results indicated that LiDAR can be used as a bridge between MODIS and field
measurements, and that the combination of LiDAR and MODIS has the potential to estimate regional
forest AGB. The use of intermediate datasets enlarged the AGB spatial area available for sampling.

In the Brazilian Amazon, Longo et al. [5] analyzed the aboveground carbon density (ACD) in
intact and degraded forests using forest inventory plots and airborne LiDAR data from 18 sites and
developed ACD estimation models. The results showed that degraded forests have much lower ACD
than intact forests. When comparing ACD estimates from LiDAR with existing biomass maps [45,48],
they consistently overestimated the ACD in degraded forests and underestimated the ACD in intact
forests. These discrepancies indicate the need to integrate airborne LiDAR and other remotely sensed
data such as MODIS to improve biomass estimation at the regional scale, as well as the need to
further analyze the dynamic changes to better characterize deforestation and its contribution to carbon
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emissions. This information will help with regional carbon budgeting and efforts to reduce emissions
from deforestation and forest degradation (REDD). Considering mismatches between sample plot sizes
and MODIS pixel sizes resulting in difficulties in ACD modeling, the availability of LiDAR data across
the Brazilian Amazon makes it possible to extract a sufficient number of samples that can match the
MODIS pixel size. Therefore, the objective of this research was to explore the potential use of MODIS
and a limited number of LiDAR data samples to map forest ACD in the Brazilian Amazon in order to
better understand its spatial pattern. Another objective was to briefly examine the potential factors
that could result in ACD estimation uncertainties. The main aims of this research are (1) to better
understand the ability of using MODIS data for large-area ACD mapping in tropical forest regions, (2)
to better understand the impacts of data saturation and cloud contamination in MODIS data on ACD
mapping performance, and (3) to understand whether ACD dynamics caused by forest disturbance
can be successfully detected.

2. Materials and Methods

2.1. Study Area

The Brazilian Legal Amazon Region, which consists of the States of Roraima, Amapá, Amazonas,
Pará, Acre, Rondônia, Mato Grosso, Tocantins, and part of Maranhão, was selected as our study area
(Figure 1). It covers about 5.2 million km2 and occupies 59% of Brazil’s land area [57]. The region
includes three biomes: Amazon, encompassing the largest contiguous area of tropical forests on Earth;
Cerrado, the Brazilian savanna, which occupies portions of Mato Grosso and Maranhão, and all of
Tocantins; and Pantanal, a seasonally flooded savanna in southwestern Mato Grosso [58]. The climate
is characterized by year-round warm temperatures (averaging 25 ◦C, with less than 2 ◦C annual
variation and 5–10 ◦C diurnal variation), with a rainy season between November and March and a dry
season between May and September. April and October are transition months [59]. However, such
an enormous region has different temperature and precipitation regimes, with the northern portion
showing a significant heterogeneity in terms of the distribution of seasonal precipitation and southern
and eastern portions showing a dry season of five months. Amazonian soils are divided into oxisols
(45.5%), ultisols (29.4%), entisols (14.9%), alfisols (4.1%), inceptisols (3.3%), spodosols (2.2%), mollisols
(0.8%), and vertisols (0.1%) [60].
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Large-scale processes of colonization, deforestation, and forest degradation in the Brazilian
Amazon began in the early 1970s, with settlement projects and construction of roads connecting the
region with the southern and northeastern portions of the country. Since 1970, deforestation has
resulted in more than 0.7 million km2 of forest loss [61]. There is a significant uncertainty about the
amount and spatial distribution of forest aboveground biomass in the Brazilian Amazon, but it is
generally above 300 Mg/ha in its central to western portions. Transitional forests in the southern
portions of the region have biomass amounts ranging from 100 to 200 Mg/ha [48]. Forest degradation
has affected the amount of AGB in Amazonian forests, which calls for cutting edge studies on this
topic [5].

2.2. Datasets Used in This Research

In our research, we used two kinds of remotely sensed data, namely airborne LiDAR and MODIS
data, as well as ancillary data (annual land cover maps, 2011–2017) (see Table 1). Airborne LiDAR data
from 23 sites in five states—Acre, Rondônia, Mato Grosso, Pará, and Amazonas—were acquired for
2011–2014 and downloaded from the repository at Brazilian Agricultural Research Corporation [62].
Among the 23 sites, 18 were the same as those used by Longo et al. [5]. The spatial locations of all
sites are illustrated in Figure 1. The airborne LiDAR data for 2011–2014 were acquired at an average
of 850–900 m above ground by Geoid Laser Mapping, Ltd., using the ALTM (Airborne Laser Terrain
Mapper) Orion M-200. We established a minimum return density of more than four points per square
meter for data collection. A detailed description of the LiDAR systems used for surveys can be found
in the paper by Longo et al. [5]. The downloaded point cloud data of each site were processed to
generate a digital terrain model (DTM) and digital surface model (DSM) with a cell size of 1 × 1 m.
The CHM data were obtained by subtracting DTM from DSM.

Table 1. The datasets used in this research.

Dataset Dates Data Source

Airborne LiDAR data 2011–2014 Brazilian Agricultural Research Corporation [62]
MODIS (MCD43A4) 2011–2017 Google Earth Engine platform

Land cover maps 2011–2017 Brazilian Annual Land Use and Land Cover Mapping Project (MapBiomas Project) [63]

The MODIS spectral reflectance from nadir bidirectional distribution function (BRDF) adjusted
reflectance (NBAR) data at a spatial resolution of 500 m (MCD43A4) was used to map the ACD
distribution of the entire Legal Amazon region. Seven BRDF-corrected spectral bands—red (B1—Red;
620–670 nm), near-infrared (B2—NIR; 841–876 nm), blue (B3—Blue; 459–479 nm), green (B4—Green;
545–565 nm), middle infrared (B5—MIR; 1230–1250 nm), shortwave infrared 1 (B6—SWIR1; 1628–1652
nm), and shortwave infrared 2 (B7—SWIR2; 2105–2155 nm)—covering the study area between 2011
and 2017 were processed using the Google Earth Engine (GEE) platform. To minimize the impacts
of clouds on MODIS imagery, a dataset of annually composited cloud-free images was produced by
averaging the values from all images from a certain year for the pixels without clouds; that is, only the
high-quality pixels in all seven bands were extracted.

The annual land cover maps were downloaded from the Brazilian Annual Land Use and Land
Cover Mapping Project [63]. The land cover datasets at 30 × 30 m were developed from Landsat images
using extensive machine learning algorithms through the GEE platform. The original land cover
classification system consists of 21 land cover types under five broad categories: forest, non-forest
natural formation, farming, non-vegetated, and water. The complete description of the project can be
found at MapBiomas [63]. The land cover classification image was recoded as forest and others, then
aggregated into a new dataset, where the pixel size changed from 30 × 30 m to 500 × 500 m using the
majority algorithm, meaning the resampled annul forest image has the same cell size as MODIS data.
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2.3. Strategy of This Research

The framework for mapping the ACD distribution is illustrated in Figure 2, including the following
steps: (1) calculation of ACD for the LiDAR sites based on LiDAR metrics generated from LiDAR point
data; (2) preparation of samples for modeling and validation, which are from the LiDAR-based ACD;
(3) extraction and selection of variables from MODIS data; (4) establishment of ACD models based
on linear regression (LR) and RF approaches; (5) prediction of ACD for entire study area using the
developed model by incorporating the resampled forest image and evaluation of the prediction results.
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2.4. Calculation of Aboveground Carbon Density for the 23 Sites Using LiDAR Data

Longo et al. [5] developed a general ACD model based on airborne LiDAR metrics and ACD
samples from 18 study sites, for which LiDAR metrics and ACD were calculated at a plot size of 50 ×
50 m. The ACD model explained 70% of the variance across forest types. In our research, we applied
this model to predict ACD distributions in the 23 sites. The ACD model is re-expressed as follows:

ACD = 0.20h2.02
m k0.66

h h0.11
5 h−0.32

10 h0.50
IQ h−0.82

100 (1)

where hm is the average height; kh is the kurtosis of the height distribution; h5 and h10 are the 5th and
10th percentile heights, respectively; hIQ is the interquartile range (h75–h25); and h100 is the maximum
height. All of these variables were calculated based on the plot size of 50 × 50 m. The predicted ACD
spatial distributions for 23 sites are illustrated in Figure 3, indicating considerably different ACD
ranges among these sites.

The LiDAR-derived ACD images with a cell size of 50 × 50 m for all sites were aggregated to a
cell size of 500 × 500 m using an averaging algorithm to match the MODIS data. The new ACD data
were overlaid on the MODIS data for sample plot collection. A systematic sampling approach at one
pixel interval (500 m) was used to collect initial samples for each site. These samples were refined
by overlaying them on the forest map. The samples located at the borders of LiDAR sites and the
non-forest areas were removed so that all selected samples for ACD modeling and validation were
located in the forest regions. Finally, a total of 368 samples were collected. As shown in Figure 3,
the numbers of samples from 23 sites are considerably different because of the sizes and shapes of
LiDAR sites and the forest distributions. The statistical results for these samples are summarized in



Remote Sens. 2020, 12, 3330 7 of 25

Table 2. Based on the statistical results, the ACD values are in the range of 0.3 to 31.6 kg C/m2, with a
mean value of 19.1 kg C/m2 and standard deviation of 7.5 kg C/m2. However, the ACD ranges have
considerably different values among the 23 sites. Some LiDAR sites, such as SFX_A01_2012, have ACD
values of less than 10 kg C/m2, while other sites, such as CAU_A01_2014, have ACD values as high as
over 30 kg C/m2 in some pixels. These different ACD ranges provide reasonably good distribution of
the ACD samples. These samples were randomly separated into two groups: 60% of the samples were
used for modeling and 40% for validation.
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Table 2. Statistics of the collected aboveground carbon density (ACD) samples from different years.
Note: the ACD was calculated based on sample plot size of 500 × 500 m, the same cell size as MODIS.

Year No. of Samples ACD (kg C/m2) Mean (kg C/m2) Standard Deviation

2011 48 17.0–26.1 20.1 1.7
2012 100 7.0–31.6 20.7 6.9
2013 143 1.5–30.5 16.9 7.9
2014 77 0.3–30.3 20.3 8.7

Total 368 0.3–31.6 19.1 7.5

2.5. MODIS Potential Variable Predictors of ACD

One key step in the ACD modeling procedure is to extract suitable variables from MODIS data.
Spectral bands and spectral indices are the most commonly used predictors [7]. Different types of
spectral indices can be used as potential predictors. Most of them are from visible and NIR bands, such
as the ratio vegetation index (RVI), NDVI, soil-adjusted vegetation index (SAVI), modified soil-adjusted
vegetation index (MSAVI), and optimized soil-adjusted vegetation index (OSAVI). The SWIR spectral
band is one of the most important variables in predicting AGB [64–66], and spectral indices containing
SWIR have stronger relationships with AGB [67,68] under complex forest structures. Thus, some
spectral indices derived from SWIR were also calculated. Table 3 lists the spectral indices used in this
research and their calculation formulae. A total of 22 predictor variables were explored, including
seven MODIS BRDF spectral bands and 15 spectral derivations.

Table 3. A summary of equations used for calculation of spectral indices.

Spectral Index Equation Reference(s)

Normalized difference vegetation index (NDVI) NDVI = (NIR − Red)/(NIR + Red) [69]
Difference vegetation Index (DVI) DVI = NIR − Red [70]
Enhanced vegetation index (EVI) EVI = 2.5(NIR − Red)/(NIR + 6Red − 7.5Blue + 1) [71]

Ratio vegetation index (RVI) RVI = NIR/Red [72]
Soil-adjusted vegetation index (SAVI) SAVI = (NIR − Red)(1 + 0.5)/(NIR + Red + 0.5) [73]

Modified soil-adjusted vegetation index (MSAVI2) MSAVI2 = (2NIR + 1 −
√

((2NIR + 1)ˆ2 − 8(NIR − Red)))/2 [74]
Optimized soil-adjusted vegetation index (OSAVI) OSAVI = (NIR − Red)/(NIR + Red + 0.16) [75]

Normalized difference water index (NDWI) NDWI = (Green − NIR)/(Green + NIR) [76]
Normalized difference infrared index1 (NDII6) NDII6 = (NIR − SWIR1)/(NIR+ SWIR1) [77]
Normalized difference infrared index2 (NDII7) NDII7 = (NIR − SWIR2)/(NIR+ SWIR2) [78]

MD75 MD75 = SWIR2/MIR
MD67 MD67 = SWIR1/SWIR2 [79]
MD65 MD65 = SWIR1/MIR
MD62 MD62 = SWIR1/NIR [79]

Albedo Albedo = Red + NIR + Green + MIR + SWIR1 + SWIR2 [67]

Note: Blue, Green, Red, NIR, MIR, SWIR1, and SWIR2 are spectral bands of MODIS data. MDij represents the ith
and jth spectral bands of the MODIS data.

2.6. Identification of Key Variables and Development of Aboveground Carbon Density Estimation Models

The relationships between ACD and MODIS-derived variables were examined using Pearson’s
correlation analysis to understand the potential variables that can be used for ACD modeling. Because
the selection of key variables is a critical step in modeling [6], we used stepwise regression and the RF
approach to identify key variables. Stepwise regression may be the most commonly used approach to
identify key variables for biomass estimation modeling, assuming linear relationships exist between
biomass and independent variables [7]. However, in reality, this assumption may not be true. RF is an
effective tool to rank the importance of independent variables; thus, we can identify key variables for
developing estimation models without the linear relationship assumption. After determination of key
variables, we used LR and RF to develop ACD estimation models.

The LR model can be expressed as:

y = b0 + b1×1 + b2×2 + · · · + bnxn + ε (2)
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where y is the ACD sample data from LiDAR-estimated ACD data; x1, x2, . . . , xn are prediction
variables derived from MODIS data (spectral bands and spectral indices); b0 is a constant; b1, b2, . . . , bn

are regression coefficients; ε is the error item; and n is the number of variables.
Although different machine learning algorithms, such as artificial neural network (ANN), support

vector machine (SVM), and random forest (RF) [7] algorithms, can be used for ACD modeling, RF is
one of the machine learning algorithms that can effectively handle the high-dimensional variables [80].
Compared to ANN and SVM, RF has advantages in dealing with noisy data in training datasets, using
either discrete or continuous datasets, and requiring much less time for large dataset processing and
algorithm parameter optimization [7]. Therefore, this research used the RF algorithm to develop the
ACD estimation model. Many publications have described the RF theory [81,82], so we do not need
to explain it in detail here. The “randomForest” package in R software was used in this research.
Two critical parameters—number of decision trees (ntree) and number of variables used in each node
(mtry)—needed to be optimized. The optimized ntree and mtry values were determined when the
smallest root mean squared error (RMSE) was reached through iterative processes of adjusting mtry
and ntree parameters based on training data. In general, mtry was selected as one-third of the number
of variables, while ntree was within the range of 100–5000. Since RF can provide rank the variables by
importance but does not describe the relationships between the variables, Pearson’s correlation analysis
can be used to examine those relationships to remove some variables that have high correlations to one
another. If the correlation coefficients between two variables had 0.85 or higher, one was dropped and
RF was conducted again. The procedure was repeated until the minimum number of variables was
achieved, while the RMSE remained stable. The RF algorithm based on the finally selected variables
was used to predict ACD for the entire study area for 2011–2017. In total, 60% of the samples (see
Table 2) were randomly selected to develop the ACD estimation models.

2.7. Evaluation of the Modeling Results

Considering the advantages of spectral indices over spectral bands in reducing environmental
impacts, two data scenarios—spectral indices alone and a combination of spectral bands and
indices—were examined for ACD modeling using LR and RF approaches, respectively. The modeling
results from different data sources and modeling approaches were then quantitatively evaluated
using the coefficient of determination (R2), RMSE, and relative RMSE (RMSEr) [7,83]. This research
used all validation samples from the sites for all years between 2011 and 2014 for overall assessment;
meanwhile, an evaluation was also conducted for individual prediction results from 2012, 2013, and
2014 using the available validation samples. In total, 40% of the samples were randomly selected for
use as validation samples.

2.8. Impacts of Deforestation on Aboveground Carbon Dynamics

After developing the annual ACD distribution maps between 2011 and 2017 using the best
ACD estimation model, we examined the annual ACD change and analyzed the impacts of forest
disturbance on ACD dynamics. Considering the uncertainty in estimations, we mainly focused on the
analysis of whether ACD change due to deforestation can be detected and how different deforestation
rates can be reflected in the ACD change. The deforestation rate here is defined as the ratio of the
number of deforested pixels to the total number of pixels within the window size of 17 × 17 pixels in
Landsat-derived forest maps, corresponding to one cell in MODIS data. Therefore, based on the annual
land use and land cover dataset developed from Landsat data for 2011–2017, we recoded these data as
forest and non-forest and selected typical regions in which to identify deforestation sites with various
rates. The deforested areas were linked to annual ACD estimation results to analyze the impacts of
various deforestation rates on ACD estimates. The procedure to conduct this analysis is illustrated in
Figure 4.
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Figure 4. The strategy of linking deforestation images to ACD estimates to examine the impacts of
deforestation rates on ACD dynamics: (1) annual deforestation image compiled from Landsat images
in 2011–2017; (2) two plots with a window size of 17 × 17 pixels showing deforestation rates; (3,4)
ACD estimates in 2012 and 2013, respectively, using random forest based on spectral indices from the
MODIS data.

3. Results

3.1. Analysis of the Relationships between Aboveground Carbon Density and MODIS-Derived Variables

The correlation coefficients between ACD and MODIS variables (Table 4) indicate that individual
spectral bands have significantly negative correlations with ACD, of which SWIR2 has the highest
r value of −0.74, followed by red and SWIR1 bands, with r values of −0.65 and −0.63, respectively.
The selected spectral indices also have significant correlation with ACD, either negative or positive.
MD75 has the highest r value of −0.68, followed by NDII7 and albedo, with r values of 0.66 and −0.63,
respectively. This result indicates that SWIR2 and spectral indices containing SWIR2 have higher
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correlations with ACD than other spectral bands or spectral indices, which is similar to results from
previous studies based on Landsat imagery in the Brazilian Amazon [67].

Table 4. Correlation coefficients (r) between MODIS variables and aboveground carbon density.

Spectral Bands r Spectral Indices r

Red −0.645 ** NDVI 0.488 **
NIR −0.423 ** DVI −0.308 **
Blue −0.326 ** EVI 0.408 **

Green −0.521 ** RVI 0.413 **
MIR −0.529 ** SAVI 0.488 **

SWIR1 −0.633 ** MSAVI2 0.493 **
SWIR2 −0.739 ** OSAVI 0.493 **

NDWI −0.297 **
NDII6 0.448 **
NDII7 0.656 **
MD67 0.522 **
MD62 −0.457 **
MD65 −0.475 **
MD75 −0.680 **

Albedo −0.634 **

** Correlation is significant at the 0.01 level. Abbreviations in this table are provided in Table 3.

3.2. Analysis of Aboveground Carbon Density Estimation Models

The best models using LR and RF based on spectral indices alone and combinations of spectral
indices and spectral bands (Table 5) indicate the important roles of the red spectral band and the
spectral indices containing SWIR2 in both LR and RF models. Considering R2 values, two data sources
have similar performance, but the variables are slightly different, especially for the LR models. When
spectral bands and indices were used together in the LR model, red and SWIR2 bands had more
important roles than the spectral index based on beta values.

Table 5. Comparison of modeling effects between different algorithms and among different scenarios.

Data Method Variables and Regression Models R2 Beta

Spectral indices alone
LR −131.121 + 345.893MSAVI2 − 0.005Albedo +

129.794NDWI − 96.3MD75 0.59 0.513, −0.428, 0.303, −0.226

RF EVI, Albedo, MSAVI2, MD62, MD75, DVI, MD67 0.96

Combination of spectral
bands and indices

LR 161.892 − 0.102Red − 0.039SWIR2 + 118.35NDWI 0.60 −0.578, −0.421, 0.277

RF EVI, Red, Albedo, MD62, NDWI, DVI, MD75, MD67 0.96

Note: LR and RF represent linear regression and random forest, respectively.

3.3. Comparative Analysis of Aboveground Carbon Density Prediction Results

Evaluation of the modeling results (Table 6) indicates that the combination of spectral indices
and bands slightly improved the overall ACD estimation when LR was used but did not when using
RF. Overall, the RF-based algorithm using spectral indices provided the best performance, with an R2

value of 0.67 and RMSE of 4.18 kg C/m2. When the developed models were used for ACD prediction
for 2011–2017, the accuracy assessment results based on individual years from 2012 to 2014 indicate
that the RF-based approach, using either spectral indices alone or a combination of spectral indices
and bands, provides slightly better estimation results for 2012 and 2013 than the LR-based models do.
However, the estimation performances were similar for LR and RF in the 2014 estimations.
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Table 6. Evaluation of modeling results using linear regression and random forest algorithms based on
spectral indices or a combination of spectral indices and bands.

Validation Samples Year Method

Spectral Indices Alone Combination of Spectral Bands and Spectral Indices

R2 RMSE
(kg C/m2)

RMSEr
(%) R2 RMSE

(kg C/m2)
RMSEr

(%)

All samples All
years

LR 0.60 4.93 25.41 0.60 4.63 23.85
RF 0.67 4.18 21.53 0.66 4.22 21.76

Single year

2012
LR 0.42 5.61 26.49 0.41 5.50 25.97
RF 0.58 4.61 21.79 0.53 4.84 22.86

2013
LR 0.73 4.37 25.17 0.74 3.71 21.39
RF 0.79 3.23 18.60 0.82 3.06 17.63

2014
LR 0.72 4.91 25.72 0.71 4.91 25.72
RF 0.75 5.00 26.23 0.73 4.96 26.00

The scatterplots and residuals (see Figure 5) show the similar performances of the LR and RF
models based on either spectral indices or a combination of spectral indices and bands; that is,
ACD estimates and reference data have linear relationships (Figure 5a1–d1). Overestimation and
underestimation, which are obvious for each model, are different in the LR and RF modeling results
(Figure 5a2–d2). For example, the overestimation is slightly better in RF-based modeling results
compared to the LR-based estimation; this is especially obvious when the ACD is between 10 and
15 kg C/m2. The comparison of the two modeling results indicates that both methods have different
advantages. For example, the LR is better in reducing the underestimation problem, especially when
the ACD is greater than 25 kg C/m2, while RF is better in reducing overestimation. Figure 5 shows
that the RF model has relatively less prediction ability than the LR model when the ACD is high,
for example greater than 25 kg C/m2.

This analysis is based only on the overall performances of different modeling results with two
data scenarios and two algorithms, and cannot determine the performances at different ACD ranges.
As summarized in Table 7, the ACD modeling results show the highest RMSEr values of 116.8–158.7%
when the ACD is less than 10 kg C/m2, implying poor performances of these models for ACD prediction
within that range. In contrast, the ACD predictions have the lowest RMSE values of 2.57–2.89 kg
C/m2 and lowest RMSEr values of 11.3–12.7% when the ACD is 20–25 kg C/m2, implying the good
performance of each model in this range. Although RF based on spectral indices alone provided
the best modeling performance, for ACD values greater than 25 kg C/m2, the LR model based on
spectral indices alone provided better estimation than RF-based models, implying different effects
of datasets and modeling algorithms on ACD estimations and a relationship between ACD ranges
and performance.
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Table 7. Accuracy analysis of aboveground carbon density (ACD) modeling results based on different
ACD ranges.

ACD
(kg C/m2)

Linear Regression Random Forest

Spectral Indices Alone Combination Spectral Indices Alone Combination

RMSE RMSEr RMSE RMSEr RMSE RMSEr RMSE RMSEr

Overall 4.93 25.41 4.63 23.85 4.18 21.53 4.22 21.76
<10 7.85 158.70 6.84 138.30 5.86 118.62 5.77 116.77

10–15 7.06 38.42 6.35 36.32 4.51 30.13 4.91 32.24
15–20 4.49 24.53 3.63 19.84 3.71 20.25 3.55 19.41
20–25 2.89 12.70 2.67 11.72 2.61 11.46 2.57 11.31
>25 4.22 15.55 5.10 18.79 5.10 18.79 5.24 19.29

Note: Combination here means the combination of spectral bands and indices. The units for RMSE and RMSEr are
kg C/m2 and %, respectively.

3.4. Spatial Distribution of Predicted Aboveground Carbon Density

Since the RF model based on spectral indices performed best, this model was used to predict
the ACD distribution values for the entire study area in 2011 and 2017. As illustrated in Figure 6,
all predicted ACD images have similar spatial patterns; that is, high ACD pixels were mainly distributed
in the northern, western, and central parts, which were mainly over 20 kg C/m2, while low ACD pixels
(<10 kg C/m2) were located in the southern and eastern parts due to deforestation. Comparison of the
spatial patterns of ACD distributions indicates that the ACD values of many forested pixels in the
northern area might be underestimated due to the cloud contamination problem, involving mixed
pixels consisting of forest and clouds.

3.5. Aboveground Carbon Change Caused by Deforestation

In the Amazon basin, it is very important to know how much ACD could be lost due to
deforestation, in addition to understanding whether the MODIS-derived ACD estimates can respond
to different deforestation rates. As shown in Table 8, the ACD value dropped rapidly when the
deforestation rate reached 44.9% (e.g., plot b) or higher (e.g., 56.3% in plot d and 58.2% in plot e).
However, for low deforestation rates (e.g., 33.6% in plot f and 38.7% in plot e), the ACD values did not
change significantly; that is, the amount of ACD change was less than the RMSE value. This situation
implies that when the deforestation area is close to or more than one-half of the cell size of the MODIS
pixel, such deforestation can be reflected by the significant drop over two successive years in the ACD
estimates; however, when the deforestation size is small relative to a MODIS pixel, the ACD dynamics
are not sensitive to such changes. As shown in plot f, the annual ACD estimates in 2012 and 2013 were
19.0 kg and 19.7 kg C/m2, respectively, although a small amount of deforestation (5.9%) occurred in this
period; a similar case was found in plot d, where a deforestation rate of 33.6% occurred between 2011
and 2012, however the ACD only dropped by 0.2 kg C/m2 from 7.8 to 7.6 kg C/m2. Comprehensive
analysis of Tables 7 and 8 and the annual ACD maps (Figure 6) indicates that the annual ACD change
cannot effectively respond to forest disturbance or growth due to the annual ACD change being less
than the RMSE amount. For instance, when the ACD is less than 10 kg C/m2, the RMSE can be as
high as 5.86 kg C/m2, or when the ACD is greater than 25 kg C/m2, the RMSE can be 5.10 kg C/m2

(Table 7). On the other hand, high deforestation rates indeed resulted in significant changes in ACD
estimates, implying that the ACD estimates using MODIS data can be used to evaluate the ACD loss
due to deforestation when the deforested area reaches one-half of the pixel size of MODIS data, i.e.,
250 × 250 m.
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Table 8. Annual aboveground carbon density (ACD) dynamics caused by different deforestation rates
from estimates using MODIS data based on the best model.

Year
Plot a Plot b Plot c Plot d Plot e Plot f

Rate ACD Rate ACD Rate ACD Rate ACD Rate ACD Rate ACD

2011 0.0 15.4 0.0 22.2 0.0 14.5 0.0 7.8 0.0 10.4 0.0 22.3
2012 0.0 14.2 0.0 22.1 0.0 16.3 33.6 7.6 0.0 7.4 0.0 19.0
2013 0.0 15.1 0.0 24.9 61.3 3.2 56.3 3.4 0.4 9.0 5.9 19.7
2014 80.1 3.8 44.9 4.0 71.9 4.4 94.1 4.4 38.7 10.7 5.9 21.0
2015 84.4 4.3 55.1 4.0 100.0 4.3 95.3 4.3 58.2 4.3 5.9 22.9
2016 85.2 4.3 55.1 8.3 100.0 4.3 95.3 4.3 58.2 4.4 5.9 21.9
2017 89.8 4.4 55.1 6.0 100.0 4.4 95.3 4.4 79.3 4.4 5.9 21.1

Note: Rate is the deforestation rate within a pixel size of 500 × 500 m (one pixel in MODIS data).

4. Discussion

Various factors could cause uncertainties in the estimation of biomass or carbon stocks [23,49].
Such factors could be the ACD reference data calculated from field measurements using allometric
equations; the big regional differences in mean wood density among different tree species; various
disturbances such as wind blow-downs, droughts, and deforestation that influence forest species
composition and structures; the variables used for ACD modeling; and the relevant algorithms [23,84].
However, some factors such as different wood density and disturbance are often ignored in large-scale
estimation of the carbon budget [85,86] because of difficulties in quantifying their impacts on modeling
effects. In this section, we mainly discuss the uncertainties caused by data saturation, mixed pixels,
cloud contamination, overfitting problems, and selection of data sources and modeling algorithms. We
also provide a brief discussion of the advantages and limitations of this study.

4.1. Overestimation and Underestimation Problems

In AGB estimation, overestimation and underestimation are common when using Landsat images;
that is, overestimation when AGB is relatively small (e.g., less than 40 Mg/ha) and underestimation when
AGB is relatively high (e.g., 150 Mg/ha) [87–89]. This research also confirmed that ACD estimation
has similar problems to MODIS data—overestimation when ACD is less than 10 kg C/m2 and
underestimation when ACD is greater than 25 kg C/m2, as shown in Figure 5. The saturation problem
in MODIS data is also obvious, as shown in Figure 7, resulting in considerable ACD underestimation.
Additionally, the coarse spatial resolution in MODIS data produced a serious mixed pixel problem,
especially in the transition areas between forest and deforestation areas, resulting in considerable ACD
overestimation. This situation implies the challenge of ACD estimation using MODIS data alone and
indicates the necessity to incorporate other data sources in ACD modeling.

In addition to the data saturation and mixed pixel problems, the selection of a suitable modeling
algorithm is also needed to reduce overestimation and underestimation problems. The machine
learning algorithms often have an overfitting problem, resulting in high estimation uncertainty when
the AGB is relatively high (e.g., greater than 120 Mg/ha) or low (e.g., less than 40 Mg/ha), as shown
in subtropical AGB modeling using Landsat imagery [87,88]. This research on ACD estimation in a
tropical region using MODIS data also confirmed this problem. The overfitting problem is common
and cannot be completely eliminated, which is especially serious when the training sample is not large
enough. When few samples are used, SVM may provide better modeling results than RF, but when a
large number of samples are available, RF can reduce the overfitting problem through boosting and
bagging technologies compared to other machine learning algorithms [7,88]. Therefore, it is important
to increase the number of training samples. Airborne LiDAR data, especially when an unmanned
vehicle is used, provide an important source of quickly and copiously collected samples for model
development and validation. As shown in Figure 5, RF has a more serious underestimation problem
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than LR when ACD is relatively high, but has less of an overestimation problem than LR when ACD
is relatively small, implying that modeling performance corresponds to ACD ranges. This situation
indicates the need to conduct decision-level fusion based on the estimation results from different
modeling approaches to improve estimation accuracy [90].
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the SWIR2 values decrease as ACD values increase; red line shows that even ACD values increase,
SWIR2 values do not show obvious change, meaning the data saturation problem in the MODIS data.

4.2. Impacts of Cloud Contamination on Modeling Performance

The variation of spectral signatures caused by environmental conditions can considerably influence
modeling results, and thus lead to high estimation uncertainties when the model is applied to different
years. As illustrated in Figure 8a, visible bands and MIR are seriously influenced by the cloud
contamination problem; that is, the cloud-contaminated pixels have higher spectral signature values
in MODIS visible bands than cloud-free pixels, while the inverse is true for MIR. The NIR, SWIR1,
and SWIR2 bands are less influenced by the cloud problem. Because of the different impacts of cloud
contamination on spectral signatures, the spectral indices are also influenced to various degrees,
as shown in Figure 8b. This problem causes serious ACD underestimation, as shown in Figure 9. The
pixels without effects from clouds have similar ACD annual estimations, implying the robustness of
this RF-based model for ACD prediction; however, ACD was considerably underestimated in the
pixels with cloud impacts. The ACD spatial distribution in Figure 6 confirmed this problem—forests
in the north and northeast regions were prone to underestimation in different years due to frequent
clouds, even using the yearly MODIS composite images. The cloud problem makes ACD estimation
difficult when using optical sensor data, especially in the Amazon basin, which has frequent clouds
all year.
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Figure 9. A comparison of predicted annual aboveground carbon density (ACD) for 2011–2017 with
cloud-free and cloud-contaminated pixel conditions.

In order to reduce the cloud contamination problem in the MODIS data, the use of satellite radar
data such as ALOS PALSAR (Advanced Land Observing Satellite/Phased Array type L-band Synthetic
Aperture Radar) L-band and Radarsat C-band data may be an alternative [91,92], however data
saturation in these images cannot improve the ACD estimation performance [93]. The long-wavelength
P-band radar data can reduce the data saturation problem and may be a promising data source for
ACD estimation. However, only limited studies have explored the use of simulated P-band data [94].
More research is needed to examine ACD estimation when satellite radar P-band data are available in
the near future.

4.3. Data Sources and Uncertainties

Various types of spaceborne and airborne sensor data are available, but most belong to optical
sensor data. Landsat may be the most common data source for land cover mapping or biomass
modeling [7]. However, in the Amazon region, cloud cover is a big problem, resulting in difficulty
in collecting cloud-free optical sensor data because of the low revisit period of the Landsat satellite.
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Another problem with using Landsat images in a large area such as the Amazon basin is that Landsat
images from different dates have differing spectral reflectance values due to the impacts of atmospheric
conditions, thus resulting in difficulty developing a biomass or ACD model without sufficient sample
plots for each scene of a Landsat image [6]. Use of synthetic aperture radar (SAR) data can avoid the
atmospheric-induced image acquisition problem, but at present there are no SAR data for public use at
no cost, except the ALOS-1 PALSAR data with 25 m spatial resolution between 2006 and 2011. The
daily available MODIS multispectral data can reduce the impacts of cloud problems, and the relatively
coarse spatial resolution of MODIS is suitable for large-area studies. Therefore, many previous studies
used MODIS data to map biomass distribution in large areas [40–43].

Some previous studies explored the incorporation of ancillary data, such as digital elevation models
and climate data, into MODIS to develop ACD models [42,46], however the poor relationships between
ACD and ancillary data, the data quality, and the spatial resolutions among different data sources
did not significantly improve ACD modeling performance. In particular, improper incorporation of
climate data into remotely sensed data may introduce extra modeling uncertainty due to its very coarse
spatial resolution and the data quality problem itself. Special caution should be taken in the selection of
proper variables from multiple data sources and relevant modeling algorithms. As spaceborne LiDAR
data such as ICESat-2 ATLAS and GEDI have improved quality, incorporation of these data into optical
sensor data (e.g., Landsat, MODIS) may further improve ACD modeling performance [33–35,95].
More research is needed to explore the integration of multiple data sources and advanced modeling
approaches such as deep learning [89,96].

Previous studies have already indicated that the quality of samples used for ACD or biomass
modeling is the most important factor inducing high estimation uncertainty [23,84,96]. Most of the
time, we cannot do much to improve the quality of reference data, except that we can carefully
conduct field measurements of the parameters used for ACD calculation and select proper allometric
equations to calculate ACD for specific trees. Therefore, the critical step is to identify proper variables
from multiple data sources and modeling approaches to develop the ACD estimation model [7,89].
Through analysis of major factors influencing ACD modeling uncertainty, we can better design an
ACD modeling procedure to optimize each step [7]. Therefore, more research is needed to identify
major factors influencing ACD estimation uncertainty, although it will be a challenge to quantitatively
specify the various contributors.

4.4. Implication and Limitation of MODIS-Based ACD Modeling

This research indicates that the RF-based model can estimate ACD annually when we use the
selected MODIS-derived variables and that the spatial distribution patterns look reasonable (Figure 6).
Additionally, the MODIS data have advantages in ACD modeling over Landsat images in tropical
regions considering the cloud problem and data availability. However, the high uncertainty when
ACD is relatively high or low make it difficult to conduct dynamic ACD analysis annually, because
the ACD estimation uncertainty may be higher than the real ACD change caused by disturbance or
growth between two years, as confirmed in Table 8.

Since time series of Landsat and MODIS data are available, some previous research has explored
the possibility of incorporating time series features into forest biomass and ACD dynamics [10,97,98].
However, rarely have studies successfully implemented ACD dynamics, considering the current
technological status and limitations of optical sensor data [99]. The key is to considerably reduce the
estimation uncertainties so that the ACD estimation error is less than the annual ACD change caused
by growth or disturbance.

5. Conclusions

This research explored the integration of MODIS and LiDAR data for mapping of the ACD spatial
distribution in the Brazilian Amazon. A comparative analysis of ACD modeling results using LR
and RF based on spectral indices alone and on the combination of spectral indices and spectral bands
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indicates that overall the RF model based on spectral indices alone provided the best ACD estimation
performance, with an R2 of 0.67 and RMSE of 4.18 kg C/m2. However, both LR and RF have different
advantages and disadvantages; RF has better estimation performance than LR when the ACD is
relatively small, such as less than 15 kg C/m2, while LR has slightly better extrapolation ability than
RF, especially when the ACD is greater than 25 kg C/m2. Cloud contamination and data saturation
are the major factors resulting in ACD underestimation, while the mixed pixel problem due to coarse
spatial resolution is the major factor resulting in overestimation. Overfitting is another factor resulting
in ACD over- or underestimation problems. More research is needed to reduce these problems by
incorporating other data sources, such as canopy height features from the ICESat-2 ATLAS and GEDI
data and ancillary data such as DEM and climate information, as well as by increasing the number
of samples for modeling, especially the number of samples for very small or very high ACD values.
Use of LiDAR data, especially by extensively using unmanned aerial vehicles in the near future, is an
effective way to considerably increase the number of samples for modeling and validation. Use of
satellite radar P-band data in the near future will solve the cloud problem in the Amazon Basin and
may play an important role in improving ACD estimation.
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