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Abstract Endophytic fungi are capable of infecting
plants without inducing the development of any observ-
able symptoms. Certain fungal species can also coexist
as latent pathogens in their specific hosts. Several spe-
cies of Fusarium have been reported to form an associ-
ation with grasses as endophytes or latent pathogens,
some of which are also mycotoxin producers. In this
study, we aimed to address whether forage grasses could
act as potential reservoirs of species that are pathogenic
to maize (Zea mays). To this end, we performed mor-
phological and phylogenetic analyses of the elongation
factor 1-α (EF-1α) and the second largest subunit
of RNA polymerase II (RPB2) genes and characterized
three fungal strains isolated from Panicum maximum
(cv. Mombaça) as a new phylogenetic species, Fusari-
um gigantea, within the Fusarium fujikuroi species
complex.Moreover, the results of the pathogenicity test,

such as the toothpick inoculation assay, revealed that
these species caused the stalk rot disease in maize when
maintained under greenhouse conditions. This finding
highlights P. maximum as a potential reservoir of this
pathogen and its role as a threat to maize cultivation.

Keywords Forage grass .Fusarium fujikuroi species
complex .Molecular phylogeny .Maize disease

Introduction

Endophytic fungi colonize healthy plant tissues and
affect their physiological functions by modulating the
host plant’s resistance mechanism. This is mediated by
interactions such as hyperparasitism, competition or
antibiosis (Busby et al. 2016). By definition, an
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endophyte cannot cause disease. However, depending
on the host environment, a fungal endophyte might elicit
pathogenicity. Therefore, to establish whether an endo-
phytic fungus has the potential to elicit pathogenicity,
further investigation is necessary to provide functional
proof of endophyte pathogenicity that can validate
Koch’s postulates as well (Photita et al. 2004; Busby
et al. 2016; Górzyńska et al. 2019).

Studies have revealed that several species ofFusarium
are endophytic. However, some of them transform into
aggressive pathogens upon exposure to environmental
stress (Leslie and Summerell 2006). Several Fusarium
species, including those belonging to the Fusarium
fujikuroi species complex (FFSC), are associated with
grasses from natural vegetation and cultivated species
either as endophytes or as pathogens (Leslie et al.
2004). These include F. fujikuroi, an etiological agent
of “bakanae” in rice, which forms an association with
aquatic plants of the genus Echinochloa in rice-growing
areas (Carter et al. 2008), and Fusarium circinatum, a
causal agent of pitch canker of pine trees, which forms an
association with wild grasses such as Holcus lanatus and
Festuca arundinacea (Swett and Gordon 2012; Swett
et al. 2014). Other examples include Fusarium sacchari,
a predominant endophytic species colonizing Oryza
australienses, which is also found to be pathogenic to
maize, rice and sorghum (Petrovic et al. 2013); Fusarium
konzum, which was found to be associated with
Andropogon and Sorghastrum plants found in an ecolog-
ical park in Kansas (Zeller et al. 2003); and Fusarium
coicis andFusarium tjaebata, found to be associated with
wild grasses in Australia (Laurence et al. 2015).

In addition, certain species of FFSC, such as Fusar-
ium verticillioides, Fusarium proliferatum, Fusarium
thapsinum , Fusarium konzum , and Fusarium
subglutinans, have also been shown to produce myco-
toxins and were typically isolated from maize or sor-
ghum crops as well as from North American prairie
grasses (Leslie et al. 2004). Several F. verticillioides
strains were isolated from finger millet (Eleusine
coracana), and these strains have been shown to pro-
duce high levels of fumonisins, a mycotoxin produced
by some species within the F. fujikuroi species complex
(Saleh et al. 2012). The colonization of crops by
mycotoxin-producing members of the genus Fusarium
can result in extensive grain contamination, and can
adversely affect animal and human health, subsequently
leading to mycotoxicosis (Leslie and Summerell 2006;
Petrovic et al. 2013).

The genus Panicum originated in Africa and
currently includes approximately 500 species. Of
all species, Panicum maximum Jacq is most prom-
inent owing to its role as a productive forage grass
commonly found in Brazilian markets (Araújo et al.
2013). Recently, endophytic fungi that naturally
colonize and induce asymptomatic infection in the
stalk of P. maximum were isolated from different
locations in Brazil (Maia et al. 2018). Fusarium
strains isolated from P. maximum (cv. Mombaça)
had considerable morphological similarity with
F. verticillioides, which is a widely known patho-
gen of maize that causes root, stalk and ear rot
diseases (Leslie and Summerell 2006). In this
study, we aimed to identify and characterize Fusar-
ium strains isolated from P. maximum and to test
their potential as maize pathogens.

Material and methods

Fungal isolates

In this study, we performed the experiments with three
strains of Fusarium that were isolated during an earlier
study by Maia et al. (2018). Samples were collected
from the asymptomatic plants of P. maximum (cv.
Mombaça) cultivated in the Empresa Brasileira de
Pesquisa Agropecuária Gado de Leite experimental
field, Coronel Pacheco, Minas Gerais, Brazil. Single
spore cultures of the fungal strains were cryopreserved
and deposited in the mycological collection of
Universidade Federal de Pernambuco, Recife, Brazil,
under the following culture accession numbers: CMM
3363, CMM 3557, and CMM 3558.

DNA extraction, amplification and sequencing

All the strains were cultured in 100 mL of 2% (w/v)
malt extract broth (HiMedia Laboratories, Mumbai,
India) for 72 h on a rotary mixer under continuous
agitation at 100 rpm. Genomic DNA was isolated
from fresh mycelia using the Wizard® Genomic
DNA purification kit (Promega, USA) according to
the manufacturer’s instructions. The DNA concentra-
tions were estimated using agarose gel electrophore-
sis, and visual comparison was performed using a 1 kb
DNA ladder (Axygen, USA).
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Partial DNA sequences from the EF-1α gene
were amplified and sequenced using the primers
EF-1 (5′-ATGGGTAAGGARGACAAGAC-3′) and
EF-2 (5 ′ -GGARGTACCAGTSATCATG-3 ′ )
(O’Donnell et al. 1998a). In addition, the RPB2 gene
encoding the second largest subunit of RNA poly-
merase II was amplified and sequenced using the
primers 5F2 (5′-GGGGWGAYCAGAAGAAGGC)
and 7cR (5′-CCCATRGCTTGYTTRCCCAT) (Liu
et al. 1999; Sung et al. 2007). The PCR were per-
formed using the GoTaq Colorless Master Mix kit
(Promega, USA). The amplification conditions were:
94 °C for 90 s, 35 cycles at 94 °C for 30 s, 62 °C for
45 s and 72 °C for 1 min, followed by a cycle at
72 °C for 5 min for EF-1α gene; 94 °C for 90 s,
40 cycles at 94 °C for 30 s, 55 °C at 90 s and 72 °C
for 2 min, followed by a cycle at 72 °C for 5 min for
RPB2 gene. The amplified fragments were purified
using the Wizard® SV Gel and the PCR Clean-Up
System (Promega, USA). For the sequencing reac-
tions, the samples were prepared using the Big Dye
V3.1 kit (Applied Biosystems, USA), as recom-
mended by the manufacturer, and analyzed with
3500xL DNA Gene t i c Ana lyze r (App l i ed
Biosystems, USA).

Phylogenetic analysis

The quality of the nucleotide consensus sequences was
assessed, and the sequences were assembled using
SeqAssem (Hepperle 2004). The edited sequences were
compared with those retrieved from the GenBank data-
base of the National Center for Biotechnological Infor-
mation, using the Basic Local Alignment Search Tool
(BLAST) program (http://http://www.ncbi.nlm.nih.
gov/cgi-bin/BLAST/). The sequences obtained in this
study were deposited in the GenBank database under the
following accession numbers EF-1α: KY490537
(CMM 3557), KY490538 (CMM 3558), KY490539
(CMM 3363); RPB2: MT188557 (CMM 3557),
MT188558 (CMM 3558), MT740293 (CMM 3363).
The sequences of the reference strains of species
belonging to the FFSC that were available in the
GenBank database were used for the analyses
(Online Resource 1). Multiple sequence alignment of
each gene was performed using Clustal W and were
further evaluated using MEGA X (Kumar et al. 2018).
The maximum Parsimony (MP) analysis was performed
for each locus separately and the combined dataset (EF-

1α+ RPB2) using the Tree Bisection and Reconstruc-
tion software. The consistency and retention indices
were estimated as a measure of homoplasy in the
dataset. The most suitable substitution model was deter-
mined based on the lowest Akaike Information Criterion
(AIC) using MEGA X (Kumar et al. 2018). The maxi-
mum likelihood (ML) analyses were conducted using
TN93 + G for the combined dataset (EF-1α + RPB2).
Initially, the analysis was performed by generating a
tree using the BioNJ tool, and the subsequent heuristic
search was conducted with the Nearest-Neighbour-
Interchange option. The robustness of the topology
was assessed using 1000 bootstrap replicates that were
run by theMP andMLmethods.Fusarium inflexum and
Fusarium oxysporum were used as the outgroups for
this analysis.

Examination of morphological characters

Morphological characterization was performed accord-
ing to the methods described by Leslie and Summerell
(2006). The macroscopic characteristics of fungal
growth were evaluated based on the observation of the
potato dextrose agar (PDA) medium. The morphology
and colour of the colonies were noted after the cultures
were maintained for 10 d at 20 °C and 12 h photoperi-
odic conditions maintained using continuous fluores-
cent light. For the evaluation of the mycelial growth
rates, the cultures were kept in the dark at 25 °C and
examined after 4 d. The micromorphological character-
istics were examined after cultivating the strain on syn-
thetic nutrient-poor agar medium (SNA; Nirenberg
1976) along with sterilized carnation leaves for 14 d at
25 °C under a 12 h photoperiod maintained using cool
white fluorescent light.

Identification of mating types by PCR

The mating type of each strain was determined through
PCR by using primers specific to the mating
idiomorphs, with the primer sets Gfmat1a and Gfmat1b
for MAT1–1, and Gfmat2c and Gfmat2d for MAT1–2
(Steenkamp et al. 2000). The PCR were performed
using the GoTaq Colorless Master Mix kit (Promega,
USA). The amplification conditions were: 95 °C for
90 s, 30 cycles at 95 °C for 30 s, 55 °C for 45 s, and
72 °C for 1 min, followed by a cycle at 72 °C for 5 min
for both MAT regions. The amplified fragments were
evaluated in agarose gel stained with GelRed under UV
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light and recorded using the Gel Logic 200 imaging
system (Kodak, USA).

Pathogenicity test

The seeds of the maize hybrid DKB 390 were surface
treated with 2% (v/v) NaClO for 10 min and rinsed in
sterile distilled water. One seed was sown at a depth of
1 cm in sterilized soil contained in 15 L pots and
cultivated in the greenhouse under natural photoperiodic
conditions at 30 °C until the seedlings reached the
phonological stage V7. The stalks were inoculated at
approximately 10 cm above the soil level by inserting a
sterile toothpick tip overgrown with mycelia of the
Fusarium strains CMM 3363, CMM 3557, CMM
3558, and one positive control - F. verticillioides strain
CMM 3131 (Scauflaire et al. 2012; Costa et al. 2019).
Sterile toothpicks without a fungal inoculum were in-
cluded as a negative control. The experimental setup
included five replication for each treatment in a
completely randomized blocks design. The plants were
collected 30 d after inoculation, and the stalks sectioned
longitudinally for the examination of the necrotic region
around the point of insertion.

Results

Phylogeny

The phylogenetic trees for each locus were constructed
separately, and single trees were generated for EF-1α
(Online Resource 2) and RPB2 (Online Resource 3). The
fungal strains CMM 3363, CMM 3557 and CMM 3558
formed a monophyletic clade. The tree for the combined
dataset (EF-1α+RPB2) of MP and ML contained the
same major clades as those observed in the MP tree (Fig.
1). The strains CMM 3363, CMM 3557 and CMM 3558
formed a well-supported monophyletic group. Therefore,
these were considered to form a new phylogenetic spe-
cies belonging to the FFSC.

Taxonomy

Fusarium gigantea M.P. Melo, S.S.C. Guimarães &
P.G. Cardoso, sp. nov.; Fig. 2.

MycoBank: MB 836349.
Etymology: Refers to the size of the macroconidia.

Holotype: Brazil, State of Minas Gerais, municipality
of Coronel Pacheco, experimental field of

the Empresa Brasileira de Pesquisa Agropecuária
Gado de Leite; dried culture on PDA, isolated from
asymptomatic stem of Panicum maximum, 2015, col-
lected by Natalia Costa Maia – VIC 47412.

Ex-type culture, CMM 3557. GenBank accession
numbers: EF-1α =KY490537; RPB2 =MT188557.

Colonies on PDA showing radial mycelial growth
rates of 3.2 mm day−1 at 20 °C in the dark. Colony
color on PDA violet to salmon (Fig. 2a). Reverse
pigmentation on PDA purple (Fig. 2b). Aerial myce-
lium generally abundant, loose to sometimes dense
floccose, white on SNA (Fig. 2c). Reverse pigmen-
tation on SNA yellow in the middle and a yellowish-
white at the margins (Fig. 2d). Aerial conidiophores
erect, occasionally prostrate, formed abundantly,
sporulation by simple or branched monophialidic
(Fig. 2e) and polyphialidic conidiogenous cells (Fig.
2f). Phialides cylindrical, 9.7 25.3 μm × 1.3 3.2 μm,
producing microconidia chain and held in false heads
(Fig. 2g). Chlamydospores solitary or in chains,
formed abundantly in hyphae, measured 3.3–12 μm
(Fig. 2h-i). Microconidia ovoidal, mostly 0-septate,
from 4.8 12.3 μm × 1.7 2.8 μm, occasionally 1–2
septate (Fig. 2j-l). Sporodochial conidiophores irreg-
ularly branched or unbranched, phialides producing
conidia that accumulate into cream to orange-colored
masses on the carnation leaf. Sporodochial conidia,
mostly falcate, contained a few pronounced apical
cells and foot-like basal cells, 3–11 septate, 11.2–
107.5 μm × 1.9–5.0 μm (Fig. 2k-l).

Additional specimens examined: BRAZIL, Minas
Gerais, Coronel Pacheco, isolated from the asymptom-
atic stem of Panicum maximum, 2015, collected by
Natalia Costa Maia, CMM 3558; BRAZIL, Minas
Gerais, Coronel Pacheco, isolated from the asymptom-
atic stem of Panicum maximum, 2015, collected by
Natalia Costa Maia, CMM 3363.

Phylogenetic differentiation: This species is dif-
ferentiated from other species of the Fusarium
fujikuroi complex by phylogenetic analyses of its
EF-1α and RPB2 gene sequences and the concate-
nate dataset (EF-1α + RPB2).

Morphological differentiation: This species is mor-
phologically different from the other species of the
FFSC due to the production of long macroconidia with
the presence of a 3–11 septa.
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Fig. 1 Maximum parsimony
best-tree phylograms for the EF-
1α + RPB2 sequences showing
relationships among species be-
longing to the FFSC complex.
Strains from this study are indi-
cated in bold. Branch lengths are
proportional to the distance. The
numbers on the nodes indicate the
MP and ML bootstrap values
above 70% (MP/ML). Ex-type
and ex-neotype strains are indi-
cated by T and NT, respectively
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Identification of mating types

All strains were identified asMAT1–2 (Online Resource
4). Therefore, it was not possible to perform the sexual
compatibility tests between strains.

Pathogenicity test

After 30 d of inoculation, the maize stalks were
sectioned longitudinally, and the necrotic region that
developed around the insertion point was observed in

the stalk samples inoculated with the positive control
- F. verticillioides (CMM 3131), and with each of the
three F. gigantea strains (CMM 3558, CMM 3363,
and CMM 3557) (Fig. 3a-d). Furthermore, a region
of dark tissue was observed around the insertion
point of the sterile toothpick in the negative control
(Fig. 3e). Koch’s postulates were fulfilled by re-
isolation of the pathogen from inoculated plants,
and the same morphological characteristics were ob-
served in the newly inoculated maize samples as in
those inoculated originally.

Fig. 2 Morphology of F. gigantea: a. Front colony on PDA
medium. b. Reverse colony on PDA medium. c. Front colony on
SNA medium. d. Reverse colony on SNA medium. e. Long
monophialide. f. Polyphialides in the aerial mycelium. g. Long

monophialides producing microconidia in false heads and chains.
h-i. Chlamydospores. j. Microconidia. k-l. Macro and
microconidia. Scale bars = 10 μm

Eur J Plant Pathol (2021) 159:95–104100



Discussion

This study provides the first report of a new phyloge-
netic species, F. gigantea, belonging to the FFSC that
causes an asymptomatic infection in P. maximum and
stalk rot in maize. Therefore, this species can be consid-
ered a potential grass pathogen and will be of particular
relevance in maize cultivation in Brazil. The identifica-
tion of pathogens is generally based on the evaluation of
their morphological characteristics. Consequently, the
possibility of erroneous identifications remains. There-
fore, it is necessary to conduct a systematic survey in
maize plantations in the main regions of production and
identify the potential pathogens using the phylogenetic
species recognition (PSR) methods (Taylor et al. 2000).
The sequencing of EF-1α gene has been denoted as the
marker of choice for the identification of species be-
longing to the FFSC using PSRmethods as it is a single-
copy gene containing significant genetic information on
closely related species (Geiser et al. 2004). EF-1α has
been recommended as a standard in Fusarium species
identification methods, particularly in cases in which the
morphological and mating tests are insufficient for di-
agnosis (Leslie and Summerell 2006; Kvas et al. 2009;
Stielow et al. 2015; Al-Hatmi et al. 2016). Besides EF-
1α, other genes, such as RPB2 and the beta-tubulin
gene, have been used for the establishment of species
phylogeny in the FFSC owing to the reasonable degree
of sequence variation among multiple taxa (Moussa
et al. 2017).

Based on the multigenic analysis, the species of
the FFSC are grouped into three major groups,
called African, Asian, and American clades
(O’Donnell et al. 1998b). The authors resorted to
biogeography to explain the origin of these groups.
The African clade is the group that represents the
greatest diversity of species in the F. fujikuroi com-
plex, which produce chlamydospores and pseudo-
chlamydospores - characteristics not shared by the
species of the Asian and American clades (Leslie
and Summerell 2006; Kvas et al. 2009). In our
study, F. gigantea exhibits morphological character-
istics that are considerably similar to F. nygamai,
which belongs to African clade, like the formation
of microconidia in chains, polyphialides, and pro-
duction of chlamydospores. However, the presence
of macroconidia with up to 11 septa is an important
morphological marker to distinguish this new spe-
cies, since that species of the FFSC produce
macrocon id ia wi th 3–7 sep ta (Les l i e and
Summerell 2006).

Although the biological concept may also help
for delimiting Fusarium species (Leslie and
Summerell 2006), sometimes it cannot be applied.
For instance, it is impossible to perform a sexual
compatibility test between strains of the same mat-
ing type or sterile strains, as it has been observed in
F. verticillioides and F. thapsinum, if the laboratory
crossing conditions have not yet been optimized, as
occur for F. andiyazi, and if the tester strains are not

Fig. 3 Longitudinal sections of maize stalks with necrotic lesions
around the insertion point of Fusarium infested toothpicks 30 days
after inoculation. a. Positive control F. verticillioides (CMM

3131). b. F.gigantea (CMM 3558). c. F. gigantea (CMM 3363).
d. F. gigantea (CMM 3557). e. Negative control with sterile
toothpick insertion
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available to make the crosses required for
identification(Summerell et al. 2003). In our study,
all strains were identified as MAT1–2, and the
intercrossing between themselves was impossible.
Therefo re , we iden t i f i ed the new spec ies
F. gigantea based on phylogenetic and morpholog-
ical species approaches.

Researches have shown the existence of species of
FFSC obtained from grasses as endophytes, but when
inoculating in cultivated grasses caused diseases.
F. sacchari strains, obtained from asymptomatic wild
rice in Northern Australia, when inoculated in rice,
sorghum, and corn plants, reduced seed emergence
and seedling damping-off (Petrovic et al. 2013). Endo-
phytic F. fujikuroi strains from Echinochloa sp. in Cal-
ifornia induced Bakanae symptoms in rice plants (Carter
et al. 2008).

In Brazil, Brachiaria and Panicum grasses are used
as forage intercrops and cover plants in non-tillage
systems. These plants have been reported to harbour
several Fusarium species (Melo 2014; Carmo 2017).
Fungal species such as F. andiyazi, F. proliferatum,
F. thapsinum, and F. verticillioides have been isolated
from Brachiaria seeds with asymptomatic infection.
Moreover, pathogenicity tests have revealed that these
species can cause stalk rot in maize, sorghum and millet
(Melo 2014). Certain hosts serve as inoculum reservoirs
of different pathogens, rendering them as a threat to
economically important crops. Furthermore,
mycotoxin-producing species are a potential threat to
cultivated grasses (Leslie et al. 2004).

We reported a new phylogenetic species within the
FSSC in Panicum. Carmo (2017) previously reported
other species complexes that are associated with
P. maximum, such as the Fusarium chlamydosporum
species complex, Fusarium incarnatum-equiseti species
complex and Fusarium graminearum species complex.
In Brazil, there are several types of grass species that are
used for biomass production and for grazing. Therefore,
further studies should be undertaken to investigate the
diverse types of Fusarium species associated with trop-
ical grasses to recognize the potential pathogens that
might inhabit natural ecosystems (Walsh et al. 2010).

SeveralFusarium species are pathogenic tomaize, such
as F. verticillioides, F. graminearum, F. proliferatum,
F. subglutinans, (Leslie and Summerell 2006), Fusarium
culmorum, Fusarium crookwellense, Fusarium
avenaceum, and Fusarium temperatum (Lew et al. 1996;
Bottalico 1998; Scauflaire et al. 2011). In our study, the

Fusarium strains CMM3363, CMM3557, and CMM3558
induced the development of maize stalk rot symptoms,
similar to those induced by F. crookwellense, F.
culmorum, F. graminearum, and F. verticillioides upon
inoculation with a pathogen-infested toothpick (Scauflaire
et al. 2012). The findings of this study contribute to the
identification of a possible new etiological agent that is
capable of causing stalk rot in maize, and it might further
contribute to breeding programs for the identification and
development of resistant genotypes. However, the data on
the geographical distribution, frequency, host range and
epidemiology of the F. gigantea and its potential risk as a
mycotoxin producer are not yet available. Therefore, fur-
ther experiments on the identification of pathogenic spe-
cies that affect economically important crops and are
associated with grasses should be undertaken, and species
that act as endophytes should be considered as well.
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