



# Multi-trait selection of sweet sorghum (Sorghum bicolor (L.) Moench) genotypes for bioenergy production

Michele Jorge da Silva<sup>1,\*</sup> https://orcid.org/0000-0001-8648-8825

Pedro César de Olieveira Ribeiro<sup>1</sup> https://orcid.org/0000-0002-5094-0127

Ruane Alice da Silva<sup>1</sup>

# Karla Jorge da Silva<sup>1</sup>

https://orcid.org/0000-0002-6069-0619

Robert Eugene Schaffert<sup>2</sup> https://orcid.org/0000-0002-9388-8031

# Rafael Augusto da Costa Parrella<sup>2</sup>

https://orcid.org/0000-0001-6599-7487

<sup>1</sup> Federal University of Viçosa, Av. Peter Henry Rolfs, s/n - Campus Universitário, Viçosa - MG, 36570-900 Brazil.

<sup>2</sup> Embrapa Maize and Sorghum, Rodovia MG-424, Km 45, Caixa Postal 285, Sete lagoas-MG, 35701-970, Brazil.

\*Correspondence: michelejorgesilva@gmail.com

## Received: 26/03/2020; Revised: 12/08/2020; Accepted: 21/08/2020; Published: 04/10/2020

**Highlights:** The papper addresses the Bioenergy production and is important because sweet sorghum is a crop with high potential for bioenergy production

Section: This paper was submitted in Agrarian sciences, a section of the J. Bioen Food Sci.

Competing interests: There is not conflict of interest in the research conducted.

Funding: The authors received no specific funding for this work.

Citation as (APA): Silva, M.J., Ribeiro, P.C.O., Silva, R.A., Silva, K.J., Schaffert, R.E., Parrella, R.A.C. (2020), Journal of bioenergy and food science, 7(4), e2952020. http://doi.org/10.18067/jbfs.v7i4.295

Edited by Dr. Vinicius Batista Campos - Federal Institute of Paraíba, Brazil.

Review processes: 2902020R01 (Brazil) | 2902020R02 (Brazil).



**ABSTRACT** - The global demand for fuel from renewable sources has expanded rapidly in recent years and sweet sorghum is a crop with high potential for bioenergy production. This study aimed evaluate the performance of sweet sorghum hybrids belonging to the Embrapa Milho e Sorgo breeding program in different edaphoclimatic regions of Minas Gerais and to identify promising hybrids for bioenergy production, considering multiple traits of sweet sorghum. The study was conducted in two experimental areas of Embrapa Milho e Sorgo, in Sete Lagoas and Nova Porteirinha. A total of 36 sweet sorghum genotypes were evaluated, with 28 experimental hybrids and eight controls. The evaluated traits were: days from planting to flowering, plant height, fresh biomass yield, juice extraction, total soluble solids and tons of Brix per hectare. Analysis of variance, multiple comparison test, the Williams index of selection and the index suggested by Mulamba & Mock were performed. The results demonstrated the existence of genetic variability among the genotypes of sweet sorghum, demonstrating the possibility of selection fight-performance genotypes superior. The selection indexes employed were efficient in the selection of sweet sorghum hybrids with higher agroindustrial performance. It was possible to identify hybrids of sweet sorghum promising for bioenergy production.

Keywords: Sorghum bicolor (L.) Moench, hybrids, selection index.

# INTRODUCTION

The global demand for fuel from renewable sources has expanded rapidly in recent years due to concerns about reducing the volume of greenhouse gas emissions (Velmurugan et al., 2020; Appiah-Nkansah et al., 2019). Brazil has a tropical climate and high degree in agricultural technology, thus demonstrating a privileged position in relation other countries for the development and use of bioenergy crops (Taufiq-Yap et al., 2020).

Sweet sorghum (*Sorghum bicolor* (L.) *Moench*) is a crop with high potential for bioenergy production to complement sugarcane (Velmurugan et al., 2020; Appiah-Nkansah et al., 2019; Anandan et al., 2012). As sugarcane, sweet sorghum has a stem with high juice volume in fermentable sugars (Velmurugan et al., 2020; Naik et al., 2010; Ratnavathi et al., 2010). In addition, the short cycle (Rohowsky et al., 2013), the possibility of using the same equipment of sugarcane harvesting, milling and processing and the wide adaptability to different locals (Santos et al., 2015; Regassa &Wortmann, 2014).

The sweet sorghum hybrids are obtained from the cross between a male-sterile A (female) line with an R (restorative) line with dominant alleles for the fertility restoration gene (Smith and Frederiksen, 2000). Sweet sorghum hybrids should have favorable agronomic traits and provide quality feedstock that meet the technological demanded by the sugar and alcohol industry, for example, high stem yield capacity, lodging resistance, high percentage of extractable juice, a high total soluble solids content in the stem, resistance to major diseases, drought and flood tolerance, and tolerance to insecticides (Silva et al., 2017; Schaffert et al., 1980). However, these traits may modify throughout the development of the crop, such as the beginning of the accumulation of soluble solids in the stem from flowering to the physiological maturity, which may affect the recommendation of lines and hybrids for industrial planning (Andrade and Oliveira, 1988).

To perform simultaneous selection in plant breeding programs, one strategy is the use of selection indexes, which unites various information, resulting in a selection based on a set of variables, bringing together several traits of interest (Cruz, Regazzi, & Carneiro, 2012). When different selection criteria are considered, the gain prediction for each criterion is important to guide the breeder to select genetic material, maximizing the gain of interest (Rangel et al., 2011).

In view of the above, the objective was to identify and evaluate the performance of hybrids of sweet sorghum, belonging to the Embrapa Milho e Sorgo breeding program, promising for the production of bioenergy in edaphoclimatic regions of Minas Gerais.

# MATERIAL AND METHODS

The experiment was conducted in two experimental units of Embrapa Milho e Sorgo, in Sete Lagoas and in Nova Porteirinha, both municipalities located in the Minas Gerais state, in 2015/2016 crop year. Nova Porteirinha belongs to the northern region of the state of Minas Gerais, at latitude

15°45' S and longitude 43°17' W, typical climate is Aw (tropical with dry winter). The soil of the experimental area is characterized as medium-textured Red-Yellow Latosol. Sete Lagoas is located in the north-central part of the state of Minas Gerais at 19°28' S and 44°15' W, the typical climate is Aw, with dry winters and an average temperature in the coldest month greater than 18°C. The soil of the experimental area is characterized as textured Red-Yellow Latosol.

A total of 36 genotypes of sorghum were evaluated, as 28 experimental hybrids belonging to the Embrapa Milho e Sorgo breeding program (201555B001, 201555B002, 201555B003, 201555B004, 201555B005, 201555B006, 201555B007, 201555B008, 201555B009, 201555B010, 201555B011, 201555B012, 201555B013, 201555B014, 201555B015, 201555B016, 201555B017, 201555B018, 201555B019, 201555B020, 201555B021, 201555B022, 201555B023, 201555B024, 201555B025, 201555B026, 201555B027 and 201555B028) and eight controls that include four experimental varieties (CMSXS630, CMSXS643, CMSXS646, CMSXS647), two commercial varieties, (BRS 508 and BRS 511) and two commercial hybrids (CV198 and CV568). For obtaining the hybrids of sweet sorghum, ten male-sterile lines (A-lines) and five fertility restoration lines (Rlines) were used. These lines were crossed in a partial diallel scheme, in which the lines A, totaling 50 hybrids of sweet sorghum.  $F_1$ 's seeds were obtained by manual crosses (in the field), in the experimental area of Embrapa Milho e Sorgo, located in the municipality of Sete Lagoas.

Each experimental plot consisted of two 5-m rows with 0.70 m between rows, totaling an area of 7.00 m2. The initial plant population used was 140,000 plants ha<sup>-1</sup>. Four hundred and fifty kilograms per hectare of 08:28:16 N–P–K formulation was applied in the row at planting, and 200 kg ha<sup>-1</sup> urea was applied side-dressed 25 d after planting. The control of weeds and pests and other agricultural practices were performed as recommended

for sorghum cultivation in the region (Borém et al., 2014). Harvesting and data collection were made when the grains were in the maturity phase, ie phase of higher concentration of sugars in the stalk. The following traits were evaluated: days from planting to flowering (FLOW, days), which consists of the days between sowing and the pollen liberation of 50% of the plants in the plot; plant height (PH, m), measured from the soil surface to the top of the panicle; fresh biomass yield (FBY, t.ha<sup>-1</sup>), which was determined by weighing all plants in the useful plot; juice extraction (EXT, %), using a hydraulic press, from five to eight plants sampled randomly per plot, without panicles; total soluble solids (TSS, °Brix) and ton of brix per hectare (TBH, t.ha<sup>-1</sup>) was obtained by weighing two rows of each plot and converted to t.ha<sup>-1</sup>. The TBH measurement was determined by digital refractometer, where the reading is given directly in °Brix of the juice extracted from the stems. Ton of brix per hectare (TBH, t.ha<sup>-1</sup>) was calculated as follows:

$$TBH = FBY x \left(\frac{TSS}{100}\right). \tag{1}$$

Each local was subject to analysis of variance, based on the plot mean for each evaluated trait, considering all effects, except for the experimental error, using the following statistical model:

$$Y_{ij} = \mu + B_j + G_i + e_{ij} \tag{2}$$

where:  $Y_{ij}$  is the observed phenotypic value of the ith genotype in the jth block;  $\mu$  is the overall mean;  $B_j$  is the effect of the jth block;  $G_i$  is the effect of the ith genotype;  $e_{ij}$  is the effect of experimental error.

Subsequently, a joint analysis of variance was performed for the two locals for all the traits evaluated, thus observing the interaction G x L, so that the genotype effect was considered as fixed and for the local the random effect, according to the following model:

$$Y_{ijk} = \mu + G_i + B/L_{jk} + L_k + GL_{ik} + e_{ijk}$$

where  $y_{ijk}$  is the phenotypic value observed for genotype *i* in block *j* and local *k*;  $\mu$  is the general mean;  $G_i$  is the effect of genotype *i*, which was also divided into  $g_i$  and  $t_i$ , according to the individual analysis;  $B/L_{jk}$  is the fixed effect of block *j*, within the local *k* (*j* = 1, ..., 3);  $L_k$  is the random effect of

*Silva et al. (2020)* Multi-trait selection of sweet sorghum (Sorghum bicolor (L.) Moench) genotypes for bioenergy production

the local k (k = (1, 2);  $GL_{ik}$  is the effect of the interaction of genotype i with the local k;  $e_{ijk}$  is the experimental error.

The multiple comparison procedure for all genotypes, in the two locals, was performed according to the Scott and Knott (1974) test at 5% probability. The Williams index (1962) and the index suggested by Mulamba & Mock (1978) were used to predict the genetic gains and to select superior individuals. According to the prioritization of the traits, different economic weights can be assigned for each trait. The economic weights assigned by trial were as follows: 1.5 for the TSS and FBY; 1.3 for the PH and TBH; and 1.1 for FLOW and EXT, according to the degree of importance established. Other economic weights were established from the experimental data, as recommended by Cruz (1990), using the coefficient of genetic variation ( $CV_g/CV_e$ ) and the standard deviation (SD) of the trait. In addition, a graphical presentation was used to make it easier to visualize of the average performance of the hybrids selected. Data analysis was performed using the software Genes (Cruz, 2013).

### **RESULTADOS E DISCUSSÃO**

There was a significant difference (P < 0.01) for the F test, among all the genotypes for all traits evaluated in both locals (Table 1). In addition, the effect of the hybrids and the controls was significant for the two locals for all traits. These results demonstrate the existence of genetic variability among the sweet sorghum genotypes evaluated, evidencing the possibility of selecting high-performance genotypes through the genetic improvement of sweet sorghum.

|                     |             |          | Sete Lago          | as                 |         |                    |         |
|---------------------|-------------|----------|--------------------|--------------------|---------|--------------------|---------|
|                     | Mean square |          |                    |                    |         |                    |         |
| Source of variation | DF          | FLOW     | PH                 | FBY                | EXT     | TSS                | TBH     |
| Block               | 2           | 1.56     | 0.01               | 0.39               | 1.89    | 3.38               | 0.30    |
| Genotypes (G)       | 35          | 58.80**  | 0.07**             | 263.52**           | 26.60** | 1.64**             | 11.85** |
| Hybrids (H)         | 27          | 38.69**  | 0.05**             | 228.47**           | 21.45** | 1.31**             | 12.84** |
| Controls (C)        | 7           | 48.94**  | 0.20**             | 289.93**           | 46.61** | 2.90**             | 9.41*   |
| H vs C              | 1           | 670.66** | 0.00 <sup>ns</sup> | 728.50**           | 25.81** | 1.79*              | 2.17**  |
| Error               | 70          | 2.68     | 0.01               | 1.25               | 1.36    | 0.35               | 0.93    |
| General mean        |             | 79.87    | 3.10               | 53.46              | 60.52   | 18.52              | 9.86    |
| Mean of hybrids     |             | 78.54    | 3.25               | 54.85              | 60.26   | 18.98              | 9.97    |
| Mean of controls    |             | 84.54    | 3.09               | 48.60              | 61.44   | 18.27              | 9.09    |
| h <sup>2</sup> (%)  |             | 93.05    | 63.29              | 99.47              | 93.65   | 73.12              | 92.35   |
| CV(%)               |             | 2.28     | 4.39               | 2.01               | 1.92    | 3.20               | 9.81    |
|                     |             | N        | ova Porteir        | inha               |         |                    |         |
|                     |             |          |                    | Mean squa          | ire     |                    |         |
| Source of variation | DF          | FLOW     | PH                 | FBY                | EXT     | TSS                | TBH     |
| Block               | 2           | 28.36    | 0.00               | 3.21               | 5.71    | 1.80               | 2.76    |
| Genotypes (G)       | 35          | 81.51**  | 0.21**             | 268.37**           | 41.43** | 11.86**            | 11.99** |
| Hybrids (H)         | 27          | 17.83**  | 0.16**             | 245.05**           | 35.59** | 11.95**            | 13.26** |
| Controls (C)        | 7           | 165.80** | 0.33**             | 396.60**           | 65.52** | 13.10**            | 3.97*   |
| H vs C              | 1           | 1210.72* | 0.52**             | 0.37 <sup>ns</sup> | 30.49** | 0.88 <sup>ns</sup> | 33.64** |
| Error               | 70          | 4.61     | 0.02               | 1.10               | 1.67    | 0.94               | 1.36    |
| General mean        |             | 68.86    | 3.16               | 69.90              | 29.30   | 18.48              | 12.76   |
| Mean of hybrids     |             | 67.07    | 3.13               | 69.93              | 29.59   | 18.43              | 12.46   |
| Mean of controls    |             | 75.12    | 3.30               | 69.79              | 28.31   | 18.65              | 13.80   |
| $h^{2}$ (%)         |             | 74.10    | 86.63              | 99.54              | 95.28   | 92.12              | 89.71   |
| CV (%)              |             | 3.12     | 4.70               | 1.50               | 4.41    | 5.25               | 9.15    |

**Table 1.** Summary of individual analysis of variance for 36 sweet sorghum genotypes evaluated in Sete Lagoas and Nova Porteirinha.

\*\*, \*, ns: significant at 1%, 5% and not significant by the test of F. DF: degrees of freedom; FLOW: flowering; PH: plant height; FBY: fresh biomass production; EXT: juice extraction; TSS: total soluble solids; and TBH: tons of brix per hectare; h<sup>2</sup>: heritability; CV: coefficient of variation.

Several studies have indicated wide variability in sweet sorghum genotypes, such as Elangovan et al. 2014. who studying 200 accessions of sweet sorghum found high variability among the genotypes for the main agroindustrial traits evaluated, such as variations in total soluble solids (9.35-20.82 %), reducing sugars (0.11-3.74 %), purity (49.33-80.72%), juice extraction/5 plants (1.42-1.67 mL), fresh stem weight/5 plants (1.67-6.25 g) and dry stem weight/5 plants (833 -5,000 g), sucrose concentration (7.2-15.5 %), sugar production (above 12 t.ha<sup>-1</sup>), and biomass production (36-140 t.ha<sup>-1</sup>).

The coefficient of variation (CV) ranged from 1.92% for EXT to 9.81% for TBH at Sete Lagoas and from 1.50% for FBY to 9.15% for TBH at Nova Porteirinha, indicating adequate experimental precision for the two locals. The hybrids performed better than the controls in Sete Lagoas for FLOW, PH, FBY, TSS and TBH traits, and in Nova Porteirinha the hybrids performed better for the traits PH, FBY and EXT. In addition, the genotypes evaluated in Nova Porteirinha flowered in a shorter period than in Sete Lagoas. According to Grenier et al. (2001), these variations in days to flower occur because sorghum cultivars respond differently to day length and temperature. These situations are justified since the accumulation of soluble solids in the stem starts at the beginning of flowering and extends until physiological maturity of the grain, in addition, the production of fresh biomass tends to diminish after the flowering (Tarpley and Vietor 2007; Almodares et al., 2007). According to the general mean, flowering occurred between 79 and 87 days in Sete Lagoas, and in Nova Porteirinha, with has mean temperatures, around 28° C, flowered between 68 and 86 days. However, it was observed that the hybrids flowered earlier than the controls in both locals. According to Rocha et al., (2018) and Reddy, Kumar & Reddy (2010) the hybrids when compared to the varieties, show better performance for some important traits in sweet sorghum cultivars such as yield, flowering and less sensitivity to photoperiod. According to Quinby & Karper (1945), this to be due to the action of complementary genes and it appears that the gene Ma "Maturity gene" is involved wherever extreme lateness occurs.

Fresh biomass yield (FBY) is a trait of great interest in the improvement of sweet sorghum because the fermentable sugars will be extracted from the stems. According to this variable, the mean production of the hybrids was 69.93 t.ha<sup>-1</sup> in Nova Porteirinha, being considerably higher than in Sete Lagoas (54.85 t.ha<sup>-1</sup>). Souza et al. (2013) when evaluating sweet sorghum varieties in different locals, also observed a great variation for the FBY values among the genotypes, ranging from 15.9 t ha<sup>-1</sup> to 65.14 t ha<sup>-1</sup>. In relation to heritability, the trait that presented the highest value in Sete Lagoas was FBY (99.47%), followed by EXT (93.65%) and TBH (92.35%). The highest heritability value at Nova Porteirinha was also for FBY (99.54%), followed by EXT (95.28%) and TSS (92.12%). The residuals showed normal distribution and homogeneity of variances, and the experiments could be evaluated together.

There was a significant effect ( $P \le 0.01$ ) by the F test, among all genotypes for most of the traits, except FBY and TBH (Table 2). Regarding the local effects, there was a significant difference for most of the traits, with the exception of TSS. The interactions between hybrids x local and controls x local were significant for all traits evaluated ( $P \le 0.01$ ).

Several studies on sweet sorghum have demonstrated interaction between genotype x local for traits related to yield of ethanol (Figueiredo et al., 2015, Bahadure et al., 2015, Elangovan et al., 2014; Makanda et al., 2012). Thus, genotypes evaluated in different locals may present different behavior in relation to local conditions and the study on the behavior of genotypes in different locals may aid in the recommendation of cultivars (Cruz, Regazzi & Carneiro, 2012). The coefficient of variation for the joint analysis varied from 1.76% for FBY to 9.48% for TBH and the ratio ( $CV_g/CV_e$ ) presented values greater than one for EXT and TSS traits, indicating satisfactory results for the selection of these traits (Cruz, Regazzi & Carneiro, 2012).

The multiple comparison procedure for all genotypes, in the two locals, for all the traits is shown in the Table 3.

|                           |     |                      |                    |                      | Mean square        |                     |                     |
|---------------------------|-----|----------------------|--------------------|----------------------|--------------------|---------------------|---------------------|
| Source of variation       | DF  | FLOW                 | PH                 | FBY                  | EXT                | TSS                 | TBH                 |
| Block/local               | 4   | 14.96                | 0.01               | 1.80                 | 3.80               | 2.59                | 1.53                |
| Genotypes (G)             | 35  | 97.43**              | 0.19*              | 313.91 <sup>ns</sup> | 47.92**            | 9.24*               | 13.31 <sup>ns</sup> |
| Hybrids (H)               | 27  | 30.76 <sup>ns</sup>  | 0.12 <sup>ns</sup> | 242.90 <sup>ns</sup> | 38.20*             | 9.63**              | 15.29 <sup>ns</sup> |
| Controls (C)              | 7   | 105.42 <sup>ns</sup> | 0.44*              | 380.92 <sup>ns</sup> | 92.27*             | 9.05 <sup>ns</sup>  | 6.23 <sup>ns</sup>  |
| H vs C                    | 1   | 1841.79**            | 0.23 <sup>ns</sup> | 486.85**             | 0.09 <sup>ns</sup> | 0.07 <sup>ns</sup>  | 9.35 <sup>ns</sup>  |
| Local (L)                 | 1   | 6556.01**            | 0.22**             | 14592.30**           | 52640.35**         | 0.085 <sup>ns</sup> | 454.28**            |
| G x L                     | 35  | 43.87**              | 0.09**             | 217.93**             | 18.84**            | 4.26**              | 10.53**             |
| H x L                     | 27  | 25.77**              | 0.08**             | 241.60**             | 19.84**            | 3.62**              | 10.82**             |
| C x L                     | 7   | 109.32**             | 0.09**             | 108.29**             | 19.86**            | 6.95**              | 7.15**              |
| (H vs C) x L              | 1   | 39.58**              | 0.29**             | 347.94**             | 56.20**            | 2.60*               | 26.45**             |
| Error                     | 140 | 3.65                 | 0.02               | 1.18                 | 1.51               | 0.65                | 1.15                |
| General mean              |     | 74.37                | 3.13               | 61.68                | 44.91              | 18.50               | 11.31               |
| Mean of hybrids           |     | 72.80                | 3.11               | 62.39                | 44.92              | 18.51               | 11.20               |
| Mean of controls          |     | 79.83                | 3.19               | 59.19                | 44.87              | 18.46               | 11.70               |
| <i>CV<sub>e</sub></i> (%) |     | 2.57                 | 4.55               | 1.76                 | 2.74               | 4.34                | 9.48                |
| $CV_g$ (%)                |     | 1.25                 | 2.69               | 0.74                 | 3.99               | 5.40                | 7.69                |
| $CV_g/CV_e$               |     | 0.47                 | 0.59               | 0.43                 | 1.45               | 1.24                | 0.80                |

**Table 2.** Summary of the joint analysis of variance for 36 sweet sorghum genotypes, evaluated in Sete Lagoas and Nova Porteirinha.

\*\*, \*, ns: significant at 1%, 5% and not significant by the test of F. DF: degrees of freedom; FLOW: flowering; PH: plant height; FBY: fresh biomass production; EXT: juice extraction; TSS: total soluble solids; and TBH: tons of brix per hectare;  $h^2$ : heritability;  $CV_e$ : residual coefficient of variation;  $CV_g$ : coefficient of genetic variation.

For FLOW, three groups were formed, with the highest number of hybrids being observed. For PH, there were three groups, and the hybrids 201550B001, 201550B002, 201550B004, 201550B005 and 201550B019 stood out. For FBY, there were five groups, highlighting the 201555B004, 201550B010, 201550B019, 201550B025 and 201550B026 hybrids. For EXT, there were five groups formed, and the hybrids that stood out were 201550B007, 201550B014, 201550B015, 201550B022, and 20150B025. For the TSS, four groups were formed, but for this variable, the hybrids 201550B024 and 201550B026 were superior to all the evaluated controls. And for TBH, three groups were formed, showing that the hybrids 201550B025, 201550B026, and 201550B028 were also superior to all the controls.

To evaluate the genetic gain, selection intensity of approximately 10% (4 individuals) was used (Table 4). In relation to the FLOW, the best genetic gain was 0.74% through the selection index MM, with equal weight for  $CV_q/CV_e$  e and *SD*.

Multi-trait selection of sweet sorghum (Sorghum bicolor (L.) Moench) genotypes for bioenergy production

| Table 3. Means of 36 | sweet sorghum | genotypes e | evaluated in Sete | Lagoas and N | ova Porteirinha. |
|----------------------|---------------|-------------|-------------------|--------------|------------------|
|                      | 0             | 0 1         |                   | 0            |                  |

| FLOW       |                    | PH         |                   | FBY        |                    | EXT        |                    | TSS        |                    | ТВН        |                    |
|------------|--------------------|------------|-------------------|------------|--------------------|------------|--------------------|------------|--------------------|------------|--------------------|
| CMSXS643   | 84.67ª             | CV568      | 3.60ª             | 201550B026 | 72.59ª             | CMSXS647   | 49.50ª             | 201550B026 | 19.87ª             | 201550B025 | 14.65ª             |
| CV568      | 84.00ª             | CV198      | 3.59ª             | 201550B025 | 72.14ª             | 201550B015 | 49.14ª             | 201550B024 | 19.87ª             | 201550B026 | 13.49ª             |
| CV198      | 83.83ª             | 201550B004 | 3.42 <sup>b</sup> | CV568      | 71.92ª             | 201550B014 | 48.38ª             | BRS 508    | 19.85ª             | 201550B028 | 13.38ª             |
| BRS 508    | 81.67 <sup>b</sup> | 201550B005 | 3.35 <sup>b</sup> | 201550B010 | 71.04ª             | 201550B007 | 48.22ª             | 201550B028 | 19.85ª             | CV198      | 13.19ª             |
| CMSXS630   | 78.17 <sup>b</sup> | 201550B001 | 3.31 <sup>b</sup> | 201550B019 | 69.42ª             | BRS 511    | 48.10ª             | 201550B002 | 19.60ª             | CV568      | 12.92ª             |
| 201550B004 | 76.83 <sup>b</sup> | 201550B019 | 3.29 <sup>b</sup> | 201550B004 | 68.08 <sup>b</sup> | CMSXS646   | 48.04ª             | 201550B005 | 19.52ª             | 201550B004 | 12.77ª             |
| BRS 511    | 76.5 <sup>b</sup>  | 201550B002 | 3.29 <sup>b</sup> | 201550B011 | 68.02 <sup>b</sup> | 201550B022 | 47.85              | CMSXS643   | 19.50ª             | 201550B022 | 12.70ª             |
| 201550B009 | 76.33 <sup>b</sup> | 201550B027 | 3.28 <sup>b</sup> | 201550B009 | 67.14 <sup>b</sup> | 201550B025 | 47.5ª              | BRS 511    | 19.47ª             | 201550B002 | 12.62ª             |
| 201550B026 | 76.17 <sup>b</sup> | 201550B022 | 3.25 <sup>b</sup> | 201550B008 | 66.66 <sup>b</sup> | 201550B017 | 47.2ª              | 201550B003 | 19.45ª             | 201550B019 | 12.62ª             |
| CMSXS647   | 76.17 <sup>b</sup> | 201550B011 | 3.25 <sup>b</sup> | 201550B028 | 66.22 <sup>b</sup> | 201550B011 | 46.85 <sup>b</sup> | 201550B027 | 19.43ª             | 201550B009 | 12.24ª             |
| 201550B028 | 75.50 <sup>b</sup> | 201550B026 | 3.24 <sup>b</sup> | 201550B022 | 65.38°             | CV198      | 46.46 <sup>b</sup> | CMSXS646   | 19.27ª             | 201550B011 | 12.14ª             |
| 201550B020 | 75.50 <sup>b</sup> | 201550B025 | 3.23 <sup>b</sup> | CMSXS643   | 65.14°             | 201550B008 | 46.32 <sup>b</sup> | 201550B020 | 19.27ª             | CMSXS630   | 12.02ª             |
| 201550B027 | 74.83 <sup>b</sup> | BRS 508    | 3.18 <sup>c</sup> | 201550B002 | 65.12 <sup>c</sup> | 201550B024 | 46.02 <sup>b</sup> | 201550B025 | 19.18ª             | CMSXS643   | 12.01ª             |
| 201550B005 | 74.83 <sup>b</sup> | 201550B024 | 3.17⁰             | CV198      | 64.5 <sup>c</sup>  | 201550B006 | 45.94 <sup>b</sup> | 201550B018 | 19.12ª             | 201550B017 | 11.91ª             |
| 201550B010 | 74.67 <sup>b</sup> | CMSXS643   | 3.13⁰             | 201550B016 | 64.17 <sup>c</sup> | 201550B013 | 45.92 <sup>⊳</sup> | 201550B010 | 19.08ª             | 201550B023 | 11.83ª             |
| CMSXS646   | 74.33 <sup>b</sup> | CMSXS630   | 3.13⁰             | 201550B017 | 64.00 <sup>c</sup> | 201550B019 | 45.40 <sup>b</sup> | 201550B004 | 19.08ª             | 201550B010 | 11.73ª             |
| 201550B001 | 74.33 <sup>b</sup> | 201550B028 | 3.11°             | CMSXS630   | 63.90 <sup>c</sup> | 201550B012 | 45.40 <sup>b</sup> | 201550B009 | 19.07ª             | 201550B008 | 11.63ª             |
| 201550B019 | 74.19 <sup>b</sup> | 201550B020 | 3.11°             | 201550B020 | 63.59 <sup>c</sup> | 201550B003 | 45.34 <sup>b</sup> | 201550B011 | 18.97ª             | 201550B020 | 11.31ª             |
| 201550B015 | 73.67 <sup>b</sup> | BRS 511    | 3.08 <sup>c</sup> | 201550B006 | 63.13°             | 201550B005 | 45.33 <sup>b</sup> | 201550B022 | 18.88 <sup>b</sup> | BRS 508    | 11.21ª             |
| 201550B018 | 73.17 <sup>b</sup> | CMSXS646   | 3.08 <sup>c</sup> | 201550B001 | 62.95°             | CV568      | 45.16 <sup>b</sup> | 201550B001 | 18.85 <sup>b</sup> | CMSXS647   | 11.18 <sup>b</sup> |
| 201550B013 | 73.17 <sup>b</sup> | 201550B010 | 3.06°             | 201550B023 | 62.77°             | 201550B002 | 44.87°             | 201550B019 | 18.73 <sup>b</sup> | 201550B006 | 11.11 <sup>b</sup> |
| 201550B017 | 73.00 <sup>c</sup> | 201550B017 | 3.06°             | 201550B021 | 60.95 <sup>d</sup> | 201550B028 | 44.36°             | CMSXS630   | 18.67 <sup>b</sup> | 201550B015 | 11.06 <sup>b</sup> |

Continue

| Table 3. | Means | of 36 | sweet s | orghum | genotypes | evaluated in | Sete I | Lagoas and | Nova | Porteirinha. |
|----------|-------|-------|---------|--------|-----------|--------------|--------|------------|------|--------------|
| -        |       |       |         | 0      | 0 1       |              |        | 0          |      |              |

| F          | LOW                |            | PH                |            | FBY                |            | EXT                |            | TSS                |            | ТВН                |
|------------|--------------------|------------|-------------------|------------|--------------------|------------|--------------------|------------|--------------------|------------|--------------------|
| 201550B014 | 72.50 <sup>c</sup> | 201550B021 | 3.06 <sup>c</sup> | 201550B012 | 60.47 <sup>d</sup> | 201550B010 | 44.31°             | 201550B008 | 18.67 <sup>b</sup> | BRS 511    | 10.87 <sup>b</sup> |
| 201550B025 | 72.17°             | 201550B018 | 3.06 <sup>c</sup> | 201550B005 | 60.18 <sup>d</sup> | 201550B001 | 43.69°             | CV198      | 18.52 <sup>b</sup> | 201550B001 | 10.68 <sup>b</sup> |
| 201550B022 | 71.67°             | 201550B014 | 3.05 <sup>c</sup> | 201550B015 | 58.37 <sup>d</sup> | 201550B027 | 43.63°             | 201550B023 | 18.35 <sup>b</sup> | 201550B024 | 10.61 <sup>b</sup> |
| 201550B003 | 71.67°             | 201550B016 | 3.05 <sup>c</sup> | 201550B014 | 58.04 <sup>d</sup> | 201550B016 | 43.33°             | 201550B021 | 18.25 <sup>b</sup> | 201550B027 | 10.47 <sup>b</sup> |
| 201550B023 | 71.33°             | 201550B003 | 3.03 <sup>c</sup> | CMSXS646   | 57.22 <sup>d</sup> | 201550B026 | 43.30°             | CMSXS647   | 18.13 <sup>b</sup> | 201550B016 | 10.25 <sup>b</sup> |
| 201550B008 | 71.33°             | 201550B008 | 3.03 <sup>c</sup> | 201550B027 | 55.23 <sup>d</sup> | 201550B021 | 42.88 <sup>c</sup> | 201550B017 | 18.05°             | CMSXS646   | 10.23 <sup>b</sup> |
| 201550B024 | 71.17°             | 201550B006 | 3.02 <sup>c</sup> | 201550B013 | 54.50 <sup>d</sup> | 201550B004 | 42.45°             | 201550B006 | 17.93°             | 201550B014 | 10.19 <sup>b</sup> |
| 201550B021 | 70.83°             | 201550B009 | 2.96 <sup>c</sup> | CMSXS647   | 54.00 <sup>e</sup> | 201550B009 | 41.67 <sup>d</sup> | 201550B015 | 17.62°             | 201550B003 | 10.06 <sup>b</sup> |
| 201550B002 | 70.83°             | 201550B013 | 2.96 <sup>c</sup> | 201550B024 | 53.94 <sup>e</sup> | 201550B023 | 41.67 <sup>d</sup> | 201550B007 | 17.35°             | 201550B005 | 9.65 <sup>c</sup>  |
| 201550B012 | 70.00 <sup>c</sup> | 201550B015 | 2.96 <sup>c</sup> | 201550B007 | 52.43 <sup>e</sup> | CMSXS630   | 41.55 <sup>d</sup> | 201550B014 | 17.25°             | 201550B021 | 9.62 <sup>c</sup>  |
| 201550B007 | 70.00 <sup>c</sup> | 201550B023 | 2.95 <sup>c</sup> | 201550B018 | 50.51 <sup>e</sup> | 201550B020 | 41.17 <sup>d</sup> | 201550B016 | 16.87°             | 201550B018 | 9.23°              |
| 201550B006 | 69.83°             | 201550B012 | 2.93°             | 201550B003 | 49.96 <sup>e</sup> | CMSXS643   | 40.65 <sup>d</sup> | CV568      | 15.92 <sup>d</sup> | 201550B012 | 9.01°              |
| 201550B016 | 69.67°             | 201550B007 | 2.87°             | BRS 508    | 47.91 <sup>e</sup> | BRS 508    | 40.35 <sup>d</sup> | 201550B012 | 15.52 <sup>d</sup> | 201550B007 | 9.00 <sup>c</sup>  |
| 201550B011 | 69.17°             | CMSXS647   | 2.79 <sup>c</sup> | BRS 511    | 45.63 <sup>e</sup> | 201550B018 | 38.15 <sup>e</sup> | 201550B013 | 14.63 <sup>d</sup> | 201550B013 | 7.73°              |

Means followed by equal letters do not differ from one another by the Scott-Knott test, at 5% probability. FLOW: flowering; PH: plant height; FBY: fresh biomass production; EXT: juice extraction; TSS: total soluble solids; and TBH: tons of brix per hectare

| Indexes | Weight      | SG %  |      |      |      |      |      |
|---------|-------------|-------|------|------|------|------|------|
|         |             | FLOW  | PH   | FBY  | EXT  | TSS  | TBH  |
| W       | PA          | -0.50 | 1.20 | 0.07 | 0.84 | 3.05 | 4.93 |
|         | $CV_g$      | -0.56 | 1.23 | 0.06 | 2.42 | 1.48 | 4.42 |
|         | $CV_g/CV_e$ | -0.45 | 1.10 | 0.07 | 1.68 | 2.44 | 4.98 |
|         | SD          | -0.72 | 0.55 | 0.06 | 2.57 | 1.43 | 3.78 |
| MM      | PA          | -0.32 | 1.20 | 0.08 | 1.14 | 2.32 | 4.93 |
|         | $CV_g$      | -0.15 | 0.84 | 0.06 | 0.06 | 3.79 | 5.73 |
|         | $CV_g/CV_e$ | -0.74 | 1.23 | 0.05 | 2.12 | 2.21 | 4.42 |
|         | SD          | -0.74 | 1.23 | 0.05 | 2.12 | 2.21 | 4.42 |

Table 4. Estimates of selection gain (SG) based on the selection differential, for all the traits evaluated among the 36 sweet sorghum genotypes, in Sete Lagoas and Nova Porteirinha.

FLOW: flowering; PH: plant height; FBY: fresh biomass production; EXT: juice extraction; TSS: total soluble solids; and TBH: tons of brix per hectare. W: Wiliams Index; MM: Mulamba & Mock Index; PA: attributed weight per attempts (1.5, 1.3 and 1.1);  $CV_g$ : coefficient of genetic variation;  $CV_e$ : residual coefficient of variation; SD: standard deviation.

This result was interesting for the trait flowering, since it indicates that the cycle of the crop will be shorter, once the accumulation of soluble solids occurs after the flowering, presenting earlier good quality genotypes for juice. In relation to PH, the highest gain was obtained through the W and MM index (1.23%), with weight equal to  $CV_g$  for the W index and weight equal to  $CV_g/CV_e$  and SD for MM. For the FBY, the highest genetic gain observed was 0.08%, through the MM index, with an attributed weight per attempts (*PA*). In relation to EXT, the highest genetic gain observed was 2.57% for W index, with weight equal to *SD*. For TSS, the highest gain was 3.79% through the MM index, with weight equal to  $CV_g$ . And for TBH, the highest gain observed was 5.73%, with the MM index, with weight equal to  $CV_g$ . In general, it was possible to observe variations between the two indexes studied with the different economic weights and parameters (Table 4). However, the Mulamba & Mock index was more favorable for hybrid selection than the Williams index. França et al., 2016 compared different selection indexes applied to multiple agronomic traits in sweet sorghum and found that significant genetic gains of agronomic traits can be observed through the use of this simultaneous selection (Leite et al., 2017; Krause et al., 2012).

The selected hybrids for each selection index, and their respective weight, are represented in table 5.

| Indexes | Weight      | Select hybrids                                 |
|---------|-------------|------------------------------------------------|
| W       | PA          | 201550B011, 201550B019, 201550B025, 201555B026 |
|         | $CV_g$      | 201550B011, 201550B019, 201550B022, 201550B025 |
|         | $CV_g/CV_e$ | 201550B011, 201550B022, 201550B025, 201550B026 |
|         | SD          | 201550B008, 201550B011, 201550B022, 201550B025 |
| MM      | PA          | 201550B002, 201550B011, 201550B025, 201550B026 |
|         | $CV_g$      | 201550B002, 201550B025, 201550B026, 201550B028 |
|         | $CV_g/CV_e$ | 201550B002, 201550B011, 201550B022, 201550B025 |
|         | SD          | 201550B002, 201550B011, 201550B022, 201550B025 |
|         |             |                                                |

Table 5. Sweet sorghum hybrids selected using the selection indexes of Williams (1962) and Mulamba & Mock (1978).

W: Wiliams Index; MM: Mulamba & Mock Index; PA: attributed weight per attempts (1.5, 1.3 and 1.1);  $CV_g$ : coefficient of genetic variation;  $CV_e$ : residual coefficient of variation; SD: standard deviation.

The identification of the promising sweet sorghum hybrids for bioenergy production, it was observed that most of the hybrids selected through multiple comparison test coincided with the best performance hybrids identified through the selection indexes of Williams and Mulamba & Mock for the agro-industrial traits of interest that were evaluated, highlighting the hybrids 20155B0002, 201550B011, 201550B022, 201550B025, 201550B026 and 201550B028, with high potential for bioethanol production. The genotypes with the highest production potential for bioenergy showed superior performance for most of the studied traits, with the exception of flowering, in which the previous hybrids were selected (Figure 1).



Figure 1. Graphical representation of selected hybrids for all the traits: FLOW: flowering; PH: plant height; FBY: fresh biomass production; EXT: juice extraction; TSS: total soluble solids; and TBH: tons of brix per hectare.

*Silva et al. (2020)* Multi-trait selection of sweet sorghum (Sorghum bicolor (L.) Moench) genotypes for bioenergy production

This result was satisfactory to optimize the genetic breeding of sweet sorghum for ethanol production, making it possible select agronomic and industrial traits simultaneously and contributed to the selection of genotypes based on a complex set of traits.

#### CONCLUSIONS

The sweet sorghum hybrids (20155B0002, 201550B011, 201550B022, 201550B025, 201550B026 and 201550B028) were identified as promising for bioenergy production considering multiple traits analysis.

#### ACKNOWLEDGMENTS

The authors thank the Banco Nacional de Desenvolvimento (BNDES), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support and granted scholarships.

### REFERENCES

- Almodares, A., Hadi, M.R., Ranjbar, M.; Taheri, R. (2007) The effects of nitrogen treatments, cultivars and harvest stages on stalk yield and sugar content in sweet sorghum. *Asian Journal of Plant Science*, 6, 423-426. https://doi.org/ 10.3923/ajps.2007.423.426
- Appiah-Nkansah, N.B., Li, J., Rooney, W., Wang, D. (2019) A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renewable Energy, 143, 1121-1132. https://doi.org/10.1016/j.renene.2019.05.066
- Anandan, S., Zoltan, H.; Khan, A.A., Ravi, D., Blümmel, M. (2012) Feeding value of sweet sorghum bagasse and leaf residues after juice extraction for bio-ethanol production fed to sheep as complete rations in diverse physical forms. *Animal Feed Science and Technology*, 175, 131-136. https://doi.org/10.1016/j.anifeedsci.2012.05.005
- Andrade, R.V., Oliveira, A.C. (1988) Maturação fisiológica do colmo e da semente de sorgo sacarino. *Revista Brasileira de Sementes*, 10, 19-31.
- Bahadure, D.M., Shailesh Marker, A.V., Patil, J.V., Rana, B.S. (2015) Combining ability and heterosis on millable stalk and sugar concentration for bioethanol production across locals in sweet sorghum (*Sorghum bicolor* (L.) *Moench*.). *Electronic Journal of Plant Breeding*, 6, 58-65. https://doi.org/ 10.1007/s12355-012-0166-9
- Borém, A., Pimentel, L., and Parrella, R.A.da C. (2014) Sorgo: Do plantio à colheita. Univ. Fed. Viçosa, Viçosa, Minas Gerais, Brazil.
- Cruz, C.D. (1990) Aplicação de algumas técnicas multivariadas no melhoramento de plantas. 188p. Tese -Doutorado - Escola Superior de Agricultura Luiz de Queiroz, Piracicaba.
- Cruz, C.D., Regazzi, A.J., Carneiro, P.C.S. (2012) Modelos biométricos aplicados ao melhoramento genético. Viçosa. UFV, v.1, 514p.
- Cruz, C.D. (2013) GENES a software package for analysis in experimental statistics and quantitative genetics. *Acta Scientiarum Agronomy*, 35, 271-276. https://doi.org/ 10.4025/actasciagron.v35i3.21251
- Elangovan, M., Kiran Babu, P., Seetharama, N., Patil, J.V. (2014) Genetic Diversity and Heritability Characters Associated in Sweet Sorghum (*Sorghum bicolor* (L.) *Moench*). *Sugar Tech*, 16, 200-210. https://doi.org/ 10.1007/s12355-013-0262-5
- Figueiredo, U.J., Nunes, J.A.R., Parrella, R.A. da C., Souza, E.D., Silva, A.R., Emygdio, B.M., Tardin, F.D. (2015) Adaptability and stability of genotypes of sweet sorghum by GGEbiplot and Toler methods. *Genetic and Molecular Research*, 14, 11211-11221. https://doi.org/ 10.4238/2015.September.22.15

- França, A.E.D da., Parrella, R.A. da C., Souza, V.F de., Bastos, G., Nunes, J.A.R.N., Schaffert, R.E. (2016) Seleção simultânea em progênies de sorgo-sacarino por meio de índices de seleção. *Pesquisa Agropecuária Brasileira*, 51, 1737-1743. https://doi.org/10.1590/s0100-204x2016001000005
- Grenier, C., Bramel-Cox, P.J., Hamon, P. (2001) Core Collection of Sorghum: I. Stratification based on eco-geographical data. *Crop Science*, 41, 234-240. https://doi.org/ 10.2135/cropsci2001.411234x
- Krause, W.; Souza, R.S. de; Neves, L.G.; Carvalho, M.L. da S.; Viana, A.P..; Faleiro, F.G. Ganho de seleção no melhoramento genético intrapopulacional do maracujazeiro-amarelo. *Pesquisa Agropecuária Brasileira*, 47, 51-57. http://doi.org/.1590/s0100-204x2012000100008.
- Leite, P.S.S, Fagundes, T.G., Nunes, J.A.R., Parrella, R.A.da C., Durães, N.N.L., Bruzi, A.T. (2017) Association among agro-industrial traits and simultaneous selection in sweet sorghum
- Genetics and Molecular Research, 16, 1-10, http://doi.org/10.4238/gmr16019318
- Makanda, I., John, D., Pangirayl, T., Julia, S. (2012) Genetic and GGE biplot analyses of sorghum germplasm for stem sugar traits in Southern Africa. *African Journal of Agricultural Research*, 7, 212-223.
- Mulamba, N.N., Mock, J.J. (1978) Improvement of yield potential of the Eto Blanco maize (*Zea mays* L.) population by breeding for plant traits. *Egyptian Journal of genetics and Cytology*, 7, 40-51.
- Naik, S.B., Goud, V.V., Rout, P.K., Dalai, A.K. (2010) Production on first and second generation biofuels: a comprehensive review. *Renewable and Sustainable Energy Reviews*, 14, 518-597. https://doi.org/10.1016/j.rser.2009.10.003
- Quinby J.R., Karper, R.E. (1945) The inheritance of three genes that influence time of floral initiation and maturity date in milo. *Agronomy Journal* 37,916-936
- Rangel, R.M., Amaral Júnior, A.T. do., Gonçalves, L.S., Freitas Júnior, S.P., Candido, L.S. (2011) Análise biométrica de ganhos por seleção em população de milho-pipoca de quinto ciclo de seleção recorrente. *Revista Ciência Agronômica*, 42, 473-481.
- Ratnavathi, C.V., Suresh, K., Kumar, B.S.V., Pallavi, M., Komala, V.V., Seetharama, N. (2010) Study on genotypic variation for ethanol production from sweet sorghum juice. *Biomass and Bioenergy*, 34, 947-952. https://doi.org/10.1016/j.biombioe.2010.02.002
- Reddy, B.V.S., Kumar, A.A., Reddy, P.S. (2010) Recent Advances in Sorghum Improvement Research at ICRISAT. *Natural Science*, 44, 499-506.
- Regassa, T.H, Wortmann, C.S. (2014) Sweet Sorghum as a bioenergy crop: Literature review. *Biomass and Bioenergy*, 64, 38-355. https://doi.org/10.1016/j.biombioe.2014.03.052
- Rocha, M.J., Nunes, J.A.R., Parrella, R.A. da C., Leite, P.S., Lombardi, G.M.R., Moura, M.L.C., Schaffert, R.E., Bruzl, A.T. (2018) General and specific combining ability in sweet sorghum. *Crop Breeding and Applied Biotechology*, 18, 365-372. http://dx.doi.org/10.1590/1984-70332018v18n4a55
- Rohowsky, B., Habler, T., Gladis, A., Remmele, E., Schieder, D., Faulstich, M. (2013) Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production. *Applied Energy*, 2, 1-9. https://doi.org/10.1016/j.apenergy.2012.03.039
- Scott, A., Knott, M. (1974) Cluster-analysis method for grouping means in analysis of variance. *Biometrics*, Washington D.C. 30, 507-512.
- Smith, C.W., Frederiksen, R.A. (2000) Sorghum: origin, history, technology, and production. Wile Series in Crop Science, Series Editor Texas A & M University, 824p.
- Souza, V.F. de., Parrella, R.A. da C., Tardin, F.D., Costa, M.R., Carvalho Junior, G.A. de., Schaffert, R.E. (2013) Adaptability and stability of sweet sorghum cultivars. *Crop Breeding and Applied Biotechnology*, 13, 144-151. https://doi.org/ 10.1590/S1984-70332013000200007

- Santos, F.S., Placido, H.F., Garcia, E.B., Cantú, C., Albrecht, A.J.P., Albrecht, L.P., Azevedo, K.D. de. (2015) Sorgo sacarino na produção de agroenergia. Revista Brasileira de Energias Renováveis, 4, 1-12.
- Schaffert, R.E., Santos, F.G., Borgonovi, R.A., Silva, J.B. (1980). Aprenda a plantar sorgo sacarino. *Agroquímica*, 13, 10-14.
- Silva, M.J. da., Pastina, M.M., Souza, V.F. DE., Schaffert, R.E., Carneiro, P.C.S., Noda, R.W., Carneiro, J.E. de S., Damasceno, C.M.B., Parrella, R.A. da C. (2017) Phenotypic and molecular characterization of sweet sorghum accessions for bioenergy production. *PLoS ONE* 12(8): e0183504. https://doi.org/10.1371/journal.pone.0183504
- Tarpley L., Vietor, D.M. (2007) Compartmentation of sucrose during radial transfer in mature sorghum stem. *BMC Plant Biology*, 7:33. http://doi.org/ 10.1186/1471-2229-7-33
- Taufiq-Yap, Y.H., Ahmad Farabi, M.S., Syazwani, O.N., Ibrahim, M.L., Marliza, T.S. (2020) Sustainable Production of Bioenergy. In: Gupta, A., De, A., Aggarwal, S., Kushari, A., Runchal, A. Innovations in Sustainable Energy and Cleaner Environment. Springer. 541-559.
- Velmurugan, B., Narra, M., Rudakiya, D.M., Madamwar, D. Sweet sorghum: a potential resource for bioenergy production. (2020) *Refining Biomass Residues Sustainable Energy and Bioproducts*. 2015-242. https://doi.org/10.1016/B978-0-12-818996-2.00010-7

Williams, J.S. (1962) The evaluation of a selection index. *Biometrics*, 18, 375-393.