

METODOLOGIA PARA AVALIAÇÃO MICROBIOLÓGICA DE LODOS ATIVADOS NO TRATAMENTO DE DEJETOS DE SUÍNOS

Eduarda G. Teixeira¹, Sandra C.A. Mota², Fabiane Goldschmidt Antes³, Ricardo L.R. Steinmetz⁴ e Airton Kunz⁵

¹Graduanda em Ciências Biológicas pela Universidade do Oeste de Santa Catarina, Campus Joaçaba, bolsista CNPQ/PIBIC na Embrapa Suínos e Aves, eteixeira937 @gmail.com

^{2,3,4}Analistas da Embrapa Suínos e Aves

⁵Pesquisador da Embrapa Suínos e Aves

Palavras-chave: microbiologia de lodos ativados, dejetos de suínos, microscopia.

INTRODUÇÃO

Com o crescente aumento da população mundial, e a alta demanda de produção suinícola, os sistemas de produção animal se intensificaram. O Brasil destaca-se na produção mundial de suínos com 3,9 milhões de toneladas de carne produzidas em 2019, sendo 19% para exportação e 81% para mercado interno (1). Assim, como o sistema vem se intensificando, e consequentemente aumentando a produção de resíduos, os quais podem resultar na poluição do solo e possível eutrofização dos corpos de d'água, pelas altas concentrações de matéria orgânica, nutrientes (nitrogênio e fósforo) e patógenos. Diante disso, torna-se necessário encontrar soluções sustentáveis para tratamento e manejo dos efluentes desta cadeia produtiva. A Estação de Tratamento de Dejetos de Suínos (ETDS) implantada na Embrapa Suínos e Aves - Concórdia, Santa Catarina, vem tratando os dejetos de suínos produzidos nas granjas, cujo funcionamento é baseado em um reator anaeróbio de tipo ÚASB (Uplfow Anaerobic Sludge Blanket), seguido de lodos ativados (2). Essa estação de tratamento é composta por um ecossistema constituído principalmente por bactérias e protozoários, os quais são sensíveis às alterações nas condições físico-químicas do efluente e ambientais (3). Diante disso, pela importância destas populações, destaca-se o seu uso como bioindicadores da qualidade do sistema de tratamento (4). Além disso, a correlação dos fatores microbiológicos com os parâmetros físico-químicos é importante para um maior conhecimento das suas interações e mudanças ecológicas através dessas influências abióticas. Apesar do processo de lodos ativados já ser bastante utilizado no tratamento biológico de efluentes, ainda pouco se conhece sobre a sua ecologia, principalmente quando trata-se de um efluente suinícola. Com base neste contexto, o objetivo do trabalho foi avaliar uma metodologia para analisar a microbiologia de lodos ativados, por microscopia, no reator aeróbio de uma estação de tratamento de dejetos de suínos.

MATERIAL E MÉTODOS

O local de estudo foi a Estação de Tratamento de Dejetos Suínos (ETDS) da Embrapa Suínos e Aves (Concórdia, SC). O estudo foi realizado a partir de amostragens do reator biológico aeróbio (RBA) do sistema de lodos ativados. Foi coletada uma amostra semanalmente ou a cada duas semanas, totalizando 18 amostras, as quais foram analisadas em microscópio óptico (ZEISS Axio Lab. A1, com câmera digital), utilizando lente objetiva de 10x, e lente ocular de 10x, totalizando um aumento de 100x, para fins de análise microbiológica. Essas mesmas amostras foram submetidas a análises físico-químicas, tais como: potencial hidrogeniônico (pH), oxigênio dissolvido (OD) e temperatura (em °C). Algumas análises microbiológicas foram realizadas em duplicata, selecionando, após a análise, a lâmina com maior número de microrganismos para fins de classificação de indivíduos. Para a identificação e quantificação dos microrganismos presentes na amostra seguiu-se o modelo criado por Jenkins (5), CETESB (6) e Fávaro (7). Estes levam em consideração as características da formação dos flocos biológicos, quanto a quantidade e abundância de bactérias filamentosas (ausentes, poucos, médios e excesso), efeito das bactérias filamentosas na estrutura dos flocos (pouco ou nenhum, ponte e open-floc) a morfologia dos flocos (arredondado ou irregular; compacto ou difuso), resistência do floco biológico (firme ou fraco) e tamanho dos flocos (pequeno, menor que 150 µm; médio, entre 150 e 500 µm; grande, maior que 500 µm). No total foram contados 20 flocos para cada lâmina de amostra, para determinação destas características, com o auxílio do software Axiovision rel 4.8 para a medição do tamanho dos flocos. Também foram realizadas a identificação, a classificação (raros, 1 a 5 indivíduos; poucos, 6 a 10 indivíduos; médio, 11 a 20 indivíduos; médio a muitos, 21 a 30 indivíduos; muitos, acima de 30 indivíduos) e quantificação dos protozoários e metazoários, para fins de determinar a possível causa de patogenicidade.

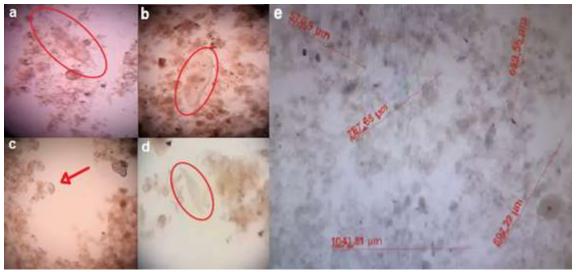
RESULTADOS E DISCUSSÃO

Através das análises foram obtidas a quantidade e abundância de bactérias filamentosas (filamentos), que foi igual a 100% de ausência destas bactérias; sendo assim, o efeito na estrutura dos flocos foi de 100% pouco ou nenhum. A morfologia dos flocos apresentou-se como irregular em 95.3% das análises, e arredondados em 4.7%. Além disso, caracterizou-se como difuso em 93.3% e compactos em 6.7% das amostras analisadas. A resistência do floco foi considerada fraca em 93.3% das análises e firme em 6.7%. O tamanho dos flocos foi 2.2% pequenos, 59.7% médios, e 38.1% grandes. Isto caracteriza um lodo bastante leve, com flocos muito difíceis de medir, pois embora sejam classificados em sua maioria como médios, por estar entre 150 a 500 micrômetros, visualmente parecem grandes, acima de 500 micrômetros. Na análise do efluente de dejeto suinícola foram encontrados os seguintes protozoários: ciliados livres-

14 Jinc Jornada de Iniciação Científica

14ª Jornada de Iniciação Científica - JINC 21 de Outubro de 2020 - Concórdia, SC

natantes, ciliados andarilhos e ciliados carnívoros. Também foram encontrados micrometazoários: rotíferos (Figura 1). Os ciliados livre-natantes foram encontrados como raros (16.6%), poucos (16.6%), médio (5.6%), muitos (5.6%) e em 55.6% das análises não estavam presentes. Os ciliados andarilhos foram encontrados como raros (5.6%), muitos (5.6%) e em 88.9% das amostras analisadas não estavam presentes. Ciliados carnívoros foram encontrados como raros (11.1%), e em 88.9% das amostras não estavam presentes. Os rotíferos foram encontrados como raros (16.7%) médio (5.5%) e muitos (16.7%) e em 61.1% das análises não estavam presentes. Quanto aos resultados das análises físico-químicas, a média para OD, pH e temperatura foi de 2.9 mg/L, 5.9 e 31.2 °C, respectivamente. Os ciliados andarilhos, os ciliados carnívoros e os rotíferos são bioindicadores de efluentes com alta idade de lodo. Tantos ciliados livres-natantes como ciliados carnívoros indicam ambiente com uma carga orgânica reduzida e ambiente em estabilização (7). Nas amostras analisadas em que não estavam presentes estes microrganismos, podemos inferir problemas operacionais no RBA, tais como: pouco oxigênio dissolvido, pH ácido e temperatura baixa, visto que algumas das análises foram realizadas durante o inverno. Houve também neste período uma reinicialização do sistema UASB, o que pode ter influenciado na microbiologia do sistema de lodos ativados.


CONCLUSÕES

A metodologia para análise microbiológica de lodos ativados se mostrou eficiente para determinar a presença da microfauna no sistema de lodos ativados de dejetos suínos. Em futuros estudos uma análise mais aprofundada dos aspectos físico-químicos pode ser interessante para uma melhor interpretação dos dados e correlação com a microbiologia.

Agradecimento: PIBIC-CNPq.

REFERÊNCIAS

- 1. ABPA. Relatório Anual 2019. Brasília. Disponível em: http://abpa-br.org/relatorios/.
- KUNZ, Airton; SCHIERHOLT, Guilherme; MENOZZO, Guilherme F.; BORTOLI, Marcelo; RAMME, Marco; COSTA, Ronnis. Estação de tratamento de dejetos de suínos (ETDS) como alternativa na redução do impacto ambiental da suinocultura. Comunicado Técnico 452, Concórdia: Embrapa Suínos e Aves, 2006. 6 p.
- 3. EIKELBOOM, Dick H. Process control of activated sludge plants by microscopic investigation. IWA publishing, 2000.
- 4. CURDS, Colin Robert; COCKBURN, Andrew. Protozoa in biological sewage-treatment processes I. A survey of the protozoan fauna of British percolating filters and activated-sludge plants. **Water Research**, [s.l.], v. 4, n. 3, p. 225-236, mar. 1970. DOI: http://dx.doi.org/10.1016/0043-1354(70)90069-2.
- JENKINS, David; RICHARD, Michael G.; DAIGGER, Glen T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems. 3ª ed. Boca Raton, FL: CRC Press, 2003.
- CETESB. Microbiologia de Lodos Ativados Apostila Cursos e Treinamentos. São Paulo: Companhia Ambiental do Estado de São Paulo. 2007.
- FÁVARO, Ana Luíza. Curso Prático de Microbiologia de Lodos Ativados Apostila. São Paulo SP.
 2010

Figura 1. Imagens obtidas com microscópio óptico (aumento de 100x), em amostras de dejetos de suínos, do RBA da ETDS. Em detalhes: a) micrometazoário rotífero; b) ciliado livre-natante; c) ciliado andarilho; d) ciliado carnívoro; e) floco caracterizado como irregular, difuso, fraco e grande, maior que 500 μm.