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Abstract: The fruit of Caryocar brasiliense Cambess. is a source of oil with active compounds that
are protective to the organism. In our work, we analyzed the physicochemical characteristics and
evaluated the effects of supplementation with C. brasiliense oil in an animal model. We characterized
the oil by indices of quality and identity, optical techniques of absorption spectroscopy in the
UV–Vis region and fluorescence, and thermogravimetry/derived thermogravimetry (TG/DTG).
For the animal experiment, we utilized mice (Mus musculus) supplemented with lipidic source
in different dosages. The results demonstrated that C. brasiliense oil is an alternative source for
human consumption and presents excellent oxidative stability. Primarily, it exhibited oleic MFA
(53.56%) and palmitic SFA (37.78%). The oil level of tocopherols and tocotrienols was superior to
the carotenoids. The supplementation with C. brasiliense oil reduced the levels of total cholesterol,
LDL-c, and non-HDL-c. Regarding visceral fats and adiposity index, the treatment synergically
supplemented with olive oil and C. brasiliense oil (OO + CO) obtained the best result. Therefore,

Molecules 2020, 25, 4530; doi:10.3390/molecules25194530 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-1115-4083
https://orcid.org/0000-0002-5813-6088
https://orcid.org/0000-0003-4047-9602
https://orcid.org/0000-0003-0681-2694
https://orcid.org/0000-0002-2602-9480
https://orcid.org/0000-0001-9837-4040
https://orcid.org/0000-0002-4258-2198
http://www.mdpi.com/1420-3049/25/19/4530?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25194530
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 4530 2 of 17

C. brasiliense oil is a high quality product for consumption. Its supplementation promotes beneficial
effects mainly on the lipidic profile.

Keywords: fatty acids; natural products; pequi

1. Introduction

Vegetable oils are valuable natural source of triacylglycerols (TAG), which are composed of fatty
acids (FAs) and glycerol. The chain length of FA can vary between C:8 and C:24, wherein the most
prevalent are those with C:16 and C:18 [1]. The characteristics of edible oils and fats are subject to
several processing steps, mainly during extraction [2].

The chemical composition also has an influence on oil quality, which shall be fully determined
herein, considering the involved industrial process, together with its resulting oxidative stability [3].
Besides, aspects of color, values of acidity, peroxides, and others shall be analyzed, complementing
and proving its composition as an oil to be considered adequate for human consumption [4].

There is growing evidence that FAs play a crucial role in human nutrition [5], including the
therapeutic and prophylactic prevention of diseases [6]. Therefore, it is necessary to investigate the
physicochemical properties of edible oils, to know their characterization, and the behavior of their
compounds, so that their pathway of action in the organism is understood [7].

FAs have distinct effects on cell stress, and evidence indicates that excess consumption of saturated
fatty acid (SFA) has detrimental effects on health, favoring the inflammatory process [8], compared
to monounsaturated fatty acids (MUFAs) and polyunsaturated (PUFAs) [9]. The most abundant FAs
in the organism, considering both the adipose tissue reservoirs and the dietary fat intake, are oleic
(MUFA) and palmitic (SFA) free fatty acids. [10].

The oleic and palmitic FAs are predominant components of olive oil [11], commonly utilized in its
extra virgin form as the primary source of fat in the Mediterranean diet, for its high content of MUFAs
and polyphenols [12,13]. Their ingestion acts as an effective method to modulate factors related to
oxidative stress and inflammation through the biomarkers CRP and IL-6 [14], besides improving the
lipidic profile reducing hyperlipidemia in the vascular system [15].

Among the main oils rich in MUFAs is soybean oil. This oil is highly produced and heavily used
oil in cooking, processed foods, margarines, and is the oil of choice in many restaurants [16]. In a study
by Deol et al. (2015), mice fed a high soybean oil diet showed obesogenic and diabetogenic effects
when compared to other lipid sources [17].

Although not being one of the main traditional oil crops, such as soybean, canola, sunflower
and [18], another vegetable oil with a high content of MUFAs is C. brasiliense, with 54.28% oleic
FA [19,20]. It is from a typical Brazilian fruit known as pequi, with a yellow-orangish colour and
peculiar odor, reported as being rich in antioxidant compounds, such as phenolics, carotenoids,
tocopherols, phytosterols [21], lycopene, and beta-carotene [22], besides showing anti-inflammatory
and cardioprotective effect [23].

Hildebrand et al. (2017) highlight the importance of new studies that evaluate foods with
protective effects on human health, especially those that have anti-inflammatory action [24]. Therefore,
the main objective of our study was to analyze the physical and chemical characteristics of the pulp
oil of Caryocar brasiliense Cambess., to evaluate the effects of supplementing this oil and other lipid
sources, such as soybean oil and olive oil in a model animal.

2. Results and Discussion

The indices of acidity, peroxides, saponification, and iodine are some of the main parameters
that indicate oil quality [25] and together are also correlated to product stability [9]. The acidity index
indicates the presence of free fatty acids that, in significant quantities, turn the oil more liable to
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rancification [25]. In our study, the acidity content found in the C. brasiliense oil (Table 1) is within the
maximum limit allowed for crude oils (<4 mg KOH/g) [4]. Similarly to our study, values within the
recommended acidity standard were obtained (0.68 mg KOH/g−1) in another species, Caryocar coriaceum
Wittm. [26], and also in Acrocomia aculeata oil (0.97 mg KOH/g−1), composed of a profile of FAs similar
to C. brasiliense oil [27].

Table 1. Indices of quality and identity of Caryocar brasiliense pulp oil.

Index Values

Peroxide index (mEq O2 kg−1) 13.63 ± 0.97
Acidity index in oleic acid (mg KOH/g−1) 1.27 ± 0.02

Saponification index (mg KOH g−1) 136.5 ± 0.60
Refraction index at 40 ◦C 1.46 ± 0.00

Iodine index (g I2 100−1 g) 76.7 ± 0.72
Relative density 0.57 ± 0.00

L* 36.6 ± 0.03
C* 22.2 ± 0.02

h (deg) 74.3 ± 0.04
a* 6.0 ± 0.02
b* 21.4 ± 0.05

Carotenoids (µg/g) 2.39 ± 0.04

The results are expressed as the means ±mean standard error.

The peroxide index is an indicator of the initial stages of rancification and a measure of primary
products of the lipidic oxidation [25]. The peroxide index presented a high value (13.63 mEq O2 kg−1)
that can be explained by the oil unsaturation degree, which may indicate the start of the oxidation
process. However, the index is following the maximum standard for crude oils (<15 mEq O2 kg−1),
demonstrating adequacy for consumption [4]. Differing from the index of C. brasiliense, another study
showed a result under 4.40 mEq O2 kg−1, found in C. coriaceum oil [28].

The iodine index is a measure of the unsaturation of fats and oils and consequentially the
susceptibility to oxidation [29]. The obtained iodine index (76.7 I2/100−1 g) is close to values found in
analyses of 10 oils of different cultivars of olive (Olea europaea L.), between 80 and 89 I2/100−1 g [30].
Its counterpart, the oil of the fruit of Byrsonima cydoniifolia A. Juss., also native to South America, has an
iodine index with significantly higher unsaturation degree (120.84 I2/100−1 g) [31], compared with
C. brasiliense oil. This indicates higher stability of C. brasiliense compared with the others cited; the the
higher the unsaturation, the lower its oxidative stability [25].

The saponification index is related to its molecular weight or chain length of triglycerides that
compose the oil [32]. The reported result presented a low value (136.5 mg KOH g−1), near the
recommended level for olive oil (184–196 mg KOH/g) and palm oil (190–209 mg KOH/g) [4,33],
with characteristics similar to C. brasiliense. This indicates that the oil does not contain many fatty acids
with low molecular weight.

Another parameter for oil characterization is it coloration, one of the initial factors pointing to
possible lipidic oxidation and consequent degradation, as color alteration is caused by the degradation
of essential FAs and others compounds [2]. The fruit of C. brasiliense is considered a source of
carotenoids [23]; the liposoluble pigments responsible for the orange and red coloration [34].

The analyzed C. brasiliense oil evidenced the presence of carotenoids, due to the positive values of
a* and b* (Table 1), showing that most pigments are yellowish, followed by red, which is correlated with
the total content of carotenoids detected in the samples. The high value of C* indicates a high-intensity
color of the oil, thus considered dark. High contents of carotenoids are found in a limited number of
edible oils, when compared with Mauritia flexuosa oil and palm oil, considered rich in this compound,
with concentrations of 1722.87 mg kg−1 [35] and 1385 mg kg−1, respectively [36]. C. brasiliense oil stands
out, with a content of 2.39 µg/g of total carotenoids.
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In Figure 1 it is possible to observe the analysis of UV–Vis absorption and in Figure 2 the
fluorescence of C. brasiliense oil at the concentration of 5 × 10−3 g mL−1 (a) and the result of fluorescence
in pure oil (b). We verified the presence of natural antioxidants, such as tocopherols, and tocotrienols,
named vitamin E [37] by the absorption band approximately in 313 nm (Figure 1) and the emission
band in 327 nm, excited in 290 nm (Figure 2a).
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Figure 2. Excitation–emission map of Caryocar brasiliense oil obtained by exciting between 200 and
400 nm and in the emission 250 and 600 nm range. (a) Caryocar brasiliense oil at 5 × 10−3 g mL−1

concentration; (b) Undiluted Caryocar brasiliense oil.

With regard to the fluorescence analysis directly in undiluted vegetable oil (2b), we observed the
presence of an emission band centered at 530 nm when excited at 470 nm. That fluorescence band can
be attributed to the carotenoids [38]. The presence of chloropylls is usually emitted in the range of 650
to 750 nm [7,37], and was slightly ranked in the analysis of undiluted oil (Figure 2b). That datum is
correlated with the value of total carotenoids found (Table 1), demonstrating the low concentration of
carotenoids and higher presence of tocopherols C. brasiliense oil, with α-tocopherol standing out.

The thermal degradation (Figure 3) of C. brasiliense oil was observed mainly in the range of 195 ◦C
to 457 ◦C, later stabilizing its mass. The peak occurred at 388 ◦C, with a loss of total mass of 99.8%.
The residues were 0.1%, below possible analytical errors. The loss of initial mass at ~195 ◦C can
be attributed to moisture loss of the oil and the volatilization of compounds such as aldehydes and
short-chain fatty acids, a common factor in vegetable oils, as the oil composition influences the total
mass loss [39].
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The chemical composition of C. brasiliense oil includes antioxidant and oxidizable compounds that
influence its oxidative stability [40]. The role of α-tocopherol is not yet totally defined, but it is known
that its presence improves the oxidative stability in vegetable oils [3]. Moreover, it is considered one of
the best phenolic antioxidants as it rapidly reacts with the alkyl peroxyl radical, forming more stable
adducts and protecting lipids from peroxidation [41].

There is no minimum period of induction recommended for good quality edible oils; nevertheless,
we consider that the C. brasiliense oil reached a long induction period of 8.6 h and consequent excellent
oxidative stability (Figure 4), mainly because of the high presence of SFA and MFA and other minor
components. This means C. brasiliense oil has a suitable shelf life. Similarly, the C. brasiliense pulp and
nut oils evaluated by Torres et al. [21] differed in time of oxidative induction between 7.33 and 15.91 h.
Other oils considered very stable present induction values of 12 h (soybean), 9.96 h (maize), and 8.63 h
(canola) [3].
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Moreover, we can consider that the prevention mechanism of oxidation through antioxidants
occurred in the C. brasiliense pulp oil as its content of unsaturated FAs is higher than saturated (Table 2),
which make the oil more susceptible to degradation [42,43]. The characterization of the profile of the
FAs of C. brasiliense oil revealed a high content of monounsaturated fatty acids (MUFA), especially
the oleic FA (56.61%), followed by the saturated FA palmitic (37.78%) and polyunsaturated linoleic
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acid (3.9%). The values we found are similar to those reported by Nascimento-Silva et al. (2019) [23]:
55.87%, 35.17%, and 1.53%, respectively, except linoleic FA that has a higher percentage in their study.
Similar content (1.36%) was also reported by Roll et al. (2018) [19].

Table 2. Fatty acids profile of Caryocar brasiliense pulp oil (% in area).

Fatty Acids Values

Saturated
Butyric. C4:0 0.04 ± 0.01

Mystiric. C14:0 0.08 ± 0.00
Palmitic. C16:0 37.78 ± 1.07

Heptadecanoic. C17:0 0.05 ± 0.00
Stearic. C18:0 1.84 ± 0.00

Arachidic. C20:0 0.19 ± 0.02
Behenic. C22:0 0.06 ± 0.01

Lignoceric. C24:0 0.07 ± 0.01
TOTAL 40.04

Monounsaturated
Palmitoleic. C16:1 0.57 ± 0.01
Oleic. C18:1 (ω-9) 52.61 ± 1.06

Cis-11- eicosenic. C20:1 0.19 ± 0.00
TOTAL 53.56

Polyunsaturated
Linoleic. C18:2 (ω-6) 3.9 ± 0.15

0.40 ± 0.00
0.04 ± 0.00

TOTAL 4.34

The results are expressed as the means ±mean standard error.

The oxidative stability, the parameters of quality within recommendations for edible vegetable
oils, and the prevalence of unsaturated FAs are the factors that determine whether an oil is adequate
for human consumption. Moreover, oils with a high level of MUFAs and PUFAs can improve the levels
of serum lipids [44]. After 90 days of supplementation, we observed better levels of total cholesterol,
LDL-c, and non-HDL-c (Table 3) in the groups supplemented with C. brasiliense oil as a lipidic source.
The presence of PUFAs can explain the reduced plasmatic levels of total cholesterol as they act as a
protective factor in the homeostasis of cholesterol due to the high number of unsaturations and thus
less phospholipid–cholesterol interaction [45].

Another study states that diets rich in MUFAs can reduce the levels of total cholesterol total and
LDL-c [46]. This could be one of the factors contributing to the low levels of LDL-c and non-HDL-c we
found, despite high levels of SFA associated with the high plasmatic levels of LDL-c [47]. The group
supplemented with olive oil in higher dosage (2000 mg/kg) also showed values significantly reduced,
possibly due to the higher concentration of MUFAs present in this oil, as well as in C. brasiliense oil,
which are mainly composed of oleic acid, followed by palmitic and linoleic acid [48]. We point out that
the supplementation with C. brasiliense oil (2000 mg/kg) reached a better response in the parameters
that are commonly associated with atherosclerosis (LDL-c and non-HDL-c) [49] when compared with
groups CG and OO1, supplemented with soybean and olive oils, respectively.

Regard to body weight gain and adiposity index (Table 4), we noticed that animals kept a pattern
of weight not differing statistically (p ≤ 0.05). Nevertheless, the group receiving higher doses of MUFA
(OO + C. brasiliense oil) presented the lowest mean weight. Similar results we observed in adipose
tissue weight (Table 4), the group supplemented with olive oil plus C. brasiliense oil had lower weight
of the principal visceral fats, including epididymal adipose tissue; in mice, this is one of the main
deposit areas of visceral fat [50]. Other relevant sites, such as mesenteric and retroperitoneal fat [51],
also diminished compared with the control group.
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Table 3. Biochemical parameters of animals after 90 days of Caryocar brasiliense oil supplementation.

Parameters (mg dL−1) CG OO1 OO2 CO1 CO2 OOCO

Total cholesterol 188.79 ± 9.18 177.68 ± 9.59 163.22 ± 10.80 134.61 ± 5.29 *,§ 138.90 ± 6.01 *,§ 149.85 ± 5.15 *
HDL-c 120.93 ± 5.18 119.62 ± 7.48 118.54 ± 6.37 97.26 ± 4.08 109.33 ± 6.13 111.75 ± 5.74
LDL-c 43.88 ± 5.02 33.36 ± 6.25 19.65 ± 6.05 * 14.10 ± 1.42 * 6.58 ± 1.88 *,§ 15.47 ± 2.60 *

Non-HDL-c 69.10 ± 5.90 58.05 ± 6.46 44.68 ± 6.77 37.35 ± 1.88 * 29.57 ± 1.83 *,§ 38.08 ± 2.91 *
VLDL-c 23.97 ± 4.18 24.70 ± 3.06 25.03 ± 3.31 23.25 ± 3.95 22.99 ± 2.35 22.62 ± 2.67

Triglycerides 188.77 ± 5.80 123.49 ± 4.43 125.16 ± 4.26 116.25 ± 5.27 114.97 ± 2.72 113.14 ± 3.86
Glucose 180.64 ± 21.50 179.12 ± 16.78 234.46 ± 13.19 216.68 ± 14.47 191.90 ± 10.33 229.29 ± 13.89

CG indicates control group, supplemented with soybean oil (1000 mg/kg); OO1 and OO2 groups receiving olive oil (1000 mg/kg and 2000 mg/kg, respectively); CO1 and CO2 groups
supplemented with C. brasiliense oil (1000 mg/kg and 2000 mg/kg, respectively); and OO + CO group receiving olive oil (1000 mg/kg) with C. brasiliense oil (10 C. brasiliense oil 00 mg/kg).
Values represent the mean ±mean standard error. * p ≤ 0.05 vs. CG; § p ≤ 0.05 vs. OO1. ANOVA: one-way analysis of variance with Tukey post hoc test.

Table 4. Bodyweight, liver, and visceral fats weight (g) of animals supplemented with different lipid sources.

Parameters CG OO1 OO2 CO1 CO2 OOCO

Initial weight (g) 39.231 ± 1.277 37.692 ± 1.157 40.286 ± 1.197 39.429 ± 1.561 38.500 ± 1.185 39.333 ± 0.873
Final weight (g) 48.923 ± 1.916 48.615 ± 1.591 52.714 ± 1.535 51.286 ± 1.871 47.429 ± 1.349 46.333 ± 2.028

Omental weight (g) 0.073 ± 0.011 0.050 ± 0.009 0.053 ± 0.006 0.038 ± 0.007 * 0.031 ± 0.006 * 0.026 ± 0.004 *
Epididymal weight (g) 1.970 ± 0.224 1.817 ± 0.123 1.715 ± 0.175 1.583 ± 0.177 1.281 ± 0.134 * 1.055 ± 0.132 *,§

Mesenteric weight (g) 1.008 ± 0.110 0.970 ± 0.095 1.083 ± 0.164 0.847 ± 0.107 0.850 ± 0.115 0.528 ± 0.074 *,§,¥

Retroperitoneal weight (g) 0.693 ± 0.088 0.670 ± 0.065 0.488 ± 0.064 0.462 ± 0.066 0.363 ± 0.047 *,§ 0.330 ± 0.036 *,§

Perirenal weight (g) 0.391 ± 0.046 0.368 ± 0.047 0.304 ± 0.050 0.212 ± 0.030 * 0.209 ± 0.031 * 0.151 ± 0.017 *,§

Adiposity index (%) 8.290 ± 0.620 7.888 ± 0.378 * 6.799 ± 0.632 * 5.986 ± 0.567 5.640 ± 0.515 § 4.422 ± 0.436 *,§,¥

Liver (g) 1.70 ± 0.086 1.66 ± 0.070 1.55 ± 0.118 1.43 ± 0.093 1.33 ± 0.035 *,§ 1.40 ± 0.046

CG indicates control group, supplemented with soybean oil (1000 mg/kg); OO1 and OO2 groups receiving olive oil (1000 mg/kg and 2000 mg/kg, respectively); CO1 and CO2 groups
supplemented with Caryocar brasiliense oil (1000 mg/kg and 2000 mg/kg, respectively); and OO + CO group receiving olive oil (1000 mg/kg) with C. brasiliense oil (1000 mg/kg). Values
represent the mean ±mean standard error. * p ≤ 0.05 vs. CG; § p ≤ 0.05 vs. OO1; ¥ p ≤ 0.05 vs. OO2. ANOVA: one-way analysis of variance with Tukey post hoc test.
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This effect can be associated with the presence of tocopherols and mainly of tocotrienols that are
present in both C. brasiliense oil, as demonstrated in our study, and olive oil [52]. Another work pointed
out that the ingestion of gamma-tocotrienol (60 mg/kg/day) was capable of reducing the fat mass
induced by different doses of glucocorticoids. Uto-Kondo et al. (2009) [53] evaluated the effect of a
palm oil fraction rich in tocotrienol on the differentiation of adipocyte into 3T3-L1 cells and found that
this antioxidant suppressed the differentiation of pre-adipocytes into adipocytes, potentially reducing
weight gain.

Among the possible alterations in the liver (Table 5), we did not identify statistical difference
regarding the presence of hepatic steatosis (p = 0.17) and microvesicular steatosis (p = 0.45). However,
a build-up of free FAs occurred in the liver, except group OO + CO that showed only microvesicular
steatosis, demonstrating that the synergic effect of the mix of olive oil with C. brasiliense oil may have
played a slight protective role, due to a higher concentration of antioxidants. These are known for
beneficial action in biological systems and protection against oxidative damages [54] as the oxidative
stress is one of the causes of hepatocellular lesions [51].

Table 5. Distribution of changes observed in the liver of the animals in the experimental groups.

Variable CG OO1 OO2 CO1 CO2 OOCO

Steatosis (p = 0.17 A)

<5% 36.36 (4) 60.0 (6) 80.0 (8) 80.0 (8) 40.0 (4) 66.7 (6)
5–33% 18.18 (2) 20.0 (2) 10.0 (1) 10.0 (1) 40.0 (4) 33.3 (3)
33–66% 45.45 (5) 20.0 (2) 10.0 (1) 10.0 (1) 20.0 (2) 0.0 (0)

Microvesicular Steatosis (p = 0.45)

Absent 81.8 (9) 90.0 (9) 100.0 (10) 90.0 (9) 100.0 (10) 88.9 (8)
Present 18.2 (2) 10.0 (1) 0.0 (0) 10.0 (1) 0.0 (0) 11.1 (1)

Lobular Inflammation (p = 0.16 B)

Absent 54.6 (6) 70.0 (7) 50.0 (5) 50.0 (5) 20.0 (2) 77.8 (7)
<2 focus 45.4 (5) 30.0 (3) 50.0 (5) 50.0 (5) 70.0 (7) 22.2 (2)

2–4 focuses 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 10.0 (1) 0.0 (0)

Ballooning (p = 0.06 B)

Absent 72.7 (8) 80.0 (8) 20.0 (2) 0.0 (0) 10.0 (1) 0.0 (0)
Few cells 27.3 (3) 20.0 (2) 20.0 (2) 30.0 (3) 30.0 (3) 11.1 (1)

Many cells 0.0 (0) 0.0 (0) 40.0 (6) 70.0 (7) 60.0 (6) 88.9 (8)

Mallory’s Hyaline (p < 0.001 *,B)

Absent 100.0 (11) 80.0 (8) 40.0 (4) 20.0 (2) 40.0 (4) 11.1 (1)
Rare 0.0 (0) 20.0 (2) 40.0 (4) 40.0 (4) 40.0 (4) 66.7 (6)
Some 0.0 (0) 0.0 (0) 20.0 (2) 40.0 (4) 20.0 (2) 22.2 (2)

Apoptosis (p = 0.001 *)

Absent 81.8 (9) 100.0 (10) 70.0 (7) 20.0 (2) 30.0 (3) 44.4 (4)
Present 18.2 (2) 0.0 (0) 30.0 (3) 80.0 (8) 70.0 (7) 55.6 (5)

Glycogenated Nuclei (p = 0.07)

None/rare 100.0 (11) 90.0 (9) 100.0 (10) 90.0 (9) 100.0 (10) 88.9 (8)
Some 0.0 (0) 10.0 (1) 0.0 (0) 10.0 (1) 0.0 (0) 11.1 (1)

CG indicates control group, supplemented with soybean oil (1000 mg/kg); OO1 and OO2 groups receiving olive
oil (1000 mg/kg and 2000 mg/kg, respectively); CO1 and CO2 groups supplemented with Caryocar brasiliense oil
(1000 mg/kg and 2000 mg/kg, respectively); and OO + CO group receiving olive oil (1000 mg/kg) with C. brasiliense
oil (1000 mg/kg). Data are presented in relative frequency (absolute frequency). p-value in the chi-square test. Due to
the sample size, two categories were grouped as follows: A ≤ 5% and ≥5%; B = Absent and Present, * p ≤ 0.05.

We detected significant differences between groups regarding the presence of Mallory Hyaline,
and in post-test it was significantly more present in animals of all groups compared with GC, as well
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as group OO + CO compared with OO1. Apoptosis was significantly more prevalent in group CO1
compared with CG and OO1, and no presence was recorded in OO1. Palmeira et al. (2015) [55] reported
that the administration of C. brasiliense oil at 400 mg/kg in mice induced with diethylnitrosamine 10 µg/g
reduced the development of preneoplastic lesions and hepatic adenoma. Another study on C. brasiliense
nut oil found that it can attenuate the biochemical markers of hepatic lesion and inflammation [21].

Among the data obtained in the histological analyses of the pancreas (Table 6), we did not find an
association between the presence of Langerhans Islets (p = 0.93) or inflammatory cells in all groups
(p = 0.38). None of the samples analyzed in our study showed alterations in pancreatic acini.

Table 6. Distribution of changes observed in animal pancreas in each experimental group.

Variable
Experimental Group % (n)

CG OO1 OO2 CO1 CO2 OOCO

Islet of Langerhans (p = 93 A)

No change 45.4 (5) 33.33 (3) 36.4 (4) 33.33 (3) 45.4 (5) 36.4 (4)
Discrete
atrophy 36.4 (4) 66.7 (6) 33.33 (3) 33.33 (3) 33.33 (3) 33.33 (3)

Atrophy 0.0 (0) 0.0 (0) 22.2 (2) 33.3 (3) 11.1 (1) 0.0 (0)
Hypertrophy 9.1 (1) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 22.2 (2)

Not
available 9.1 (1) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)

Pancreatic Acini (B)

No change 100.0 (11) 100.0 (9) 100.0 (9) 100.0 (9) 100.0 (9) 100.0 (9)

Inflammatory Cells (p = 0.38)

No change 100.0 (11) 100.0 (9) 88.9 (8) 100.0 (9) 100.0 (9) 100.0 (9)
Insulits 0.0 (0) 0.0 (0) 11.1 (1) 0.0 (0) 0.0 (0) 0.0 (0)

CG indicates control group, supplemented with soybean oil (1000 mg/kg); OO1 and OO2 groups receiving olive
oil (1000 mg/kg and 2000 mg/kg, respectively); PO1 and PO2 groups supplemented with Caryocar brasiliense oil
(1000 mg/kg and 2000 mg/kg, respectively); and OO + CO group receiving olive oil (1000 mg/kg) with C. brasiliense
oil (1000 mg/kg). Data are presented in relative frequency (absolute frequency). p-value in the chi-square test.
(A) Due to the sample size, the categories were grouped into No change and with change; (B) Inferential statistical
analysis due to the absence of variability between groups.

The amount of consumed SFA influences the accumulation of free FAs in the liver and activation
of inflammatory markers [56]. For the inflammatory response to start it needs proinflammatory
cytokines and chemokines such as TNF-α, IL-6, and MCP-1 [57]. Figure 5 shows the levels
of circulating inflammatory cytokines IL-6 (p = 0.944), MCP-1 6 (p = 0.640), TNF-α (p = 0.834),
and anti-inflammatory IL-10 (p = 0.709), without significant difference between treatments. Recent
studies reported that phytochemicals present in plants could inhibit the inflammation, reducing the
production of macrophages, proinflammatory factors and also blocking inflammatory pathways that
liberate cytokines [58,59]. In a study on rats utilizing supplementation with C. brasiliense nut oil at a
concentration of 6 mL/kg, the results suggest that it attenuates the acute inflammatory response when
induced by CCl4, modulating the circulating levels of leptin, IL-6, LTB4, and LTB-5 positively [21].
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Figure 5. Effects of supplementation from different lipid source on anti- and proinflammatory cytokines.
(a) Interleukin-6; (b) Interleukin-10; (c) Monocyte-1 chemotactic protein; (d) Tumor necrosis factor
alpha. CG indicates control group, supplemented with soybean oil (1000 mg/kg); OO1 and OO2 groups
receiving olive oil (1000 mg/kg and 2000 mg/kg, respectively); CO1 and CO2 groups supplemented
with Caryocar brasiliense oil (1000 mg/kg and 2000 mg/kg, respectively); and OO + CO group receiving
olive oil (1000 mg/kg) with C. brasiliense oil (1000 mg/kg). ANOVA: one-way analysis of variance.

The tested dosages of CO did not demonstrate a protective effect on those parameters when
compared with the group supplemented with soybean oil (CG) and both doses of olive oil (OO1; OO2).
The cytokine IL-10 is necessary to inhibit the synthesis of proinflammatory cytokines [56]. It can exert
anti-inflammatory effects through signal transducer pathway of the Janus kinase (JAK) of activation 3
(JAK-STAT3), binding IL-10 to the receptor in the targeted cell membrane—tyrosine kinase 2—leading
to the activation of the signal transducer and activator of transcription 3 (STAT3). In our study, IL-10
was more active in the group supplemented with olive oil at the lower dose (1000 mg/kg). Nevertheless,
more research is necessary to elucidate the molecular action mechanisms of oleic acid [21], which is the
major component in CO and OO, and the phytochemicals present in C. brasiliense oil, such as phenolics,
carotenoids, tocopherols, and phytosterols, that constitute possible mediators of these effects.

3. Materials and Methods

3.1. Raw Material

Caryocar brasiliense Cambess. Pulp oil was provided by RTK® Cosmética e Indústria de Alimentos
Naturais (Brasília, Brazil) and it had been extracted and cold-pressed. The soybean oil and olive oil
were acquired from local shops.

3.2. Quality and Identity of C. brasiliense Oil

We qualified the oil regard to indexes of acidity (method Ca 5a-40), peroxide (method Cd 8-53),
refraction (method Cc 7-25), iodine (method Cd 1-25), and saponification (method Cd 3-25) [60].
All analyzes were performed in triplicate. The acidity index (AI) was determined with 2 g of sample
by the addition of a solution of ether-alcohol, using an indicator (phenolphthalein) and titration
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with NaOH until appearing the light pink color; the results of acidity in oleic acid were expressed in
milligrams of sodium hydroxide per gram. The determination of the peroxide index (PI) was performed
with 5 g of sample, in a solution of acetic acid-chloroform and potassium iodide, with posterior rest in
the dark, titration with sodium thiosulfate 0.01 N, and addition of soluble starch as an indicator for
observation of color change; the results were expressed in milliequivalents of peroxide per 1000 g of
sample. The refraction index (RI) was read after filtering the sample to remove any impurities and
traces of moisture, using a refractometer Abbé calibrated with distilled water (refraction index 1.3330)
at 20 ◦C, with temperature corrected to 40 ◦C. For the iodine index (II), approximately 0.25 g of the
sample of C. brasiliense oil was placed in Erlenmeyers with carbon tetrachloride and Wijs solution.
Sodium thiosulfate was used for titration until the color changed from dark blue to pinkish, and the
results were indicated in grams of iodine absorbed per gram of sample. The saponification index (SI)
was determined by the addition of KOH and phenolphthalein to 5 g of the samples, and titration with
HCl until pink disappeared and the value was expressed as the number of milligrams of potassium
hydroxide (KOH) required to saponify 1 g of the oil sample.

3.2.1. Color

We measured the oil color using a colorimeter (CM-2300d, Konica Minolta, Ramsey, NJ, EUA),
expressed in the classification scale CIE-L*, a*, b*, where the values L* indicate the lightness, a* represents
the red-green axis, and b* yellow-blue axis. From the obtained results, we determined the hue angle
(h) and the chroma (C*).

3.2.2. Total Carotenoids

For analysis of carotenoids, we utilized procedures described by Maldonade et al. (2012) [61] with
slight modifications. Samples of 5 g C. brasiliense oil were placed in Erlenmeyer of 125 mL, we then
added 25 mL acetone, shaked the solution, and stored it for two hours in the fridge. After centrifugation
at 4000 rpm and 4 ◦C, the carotenoids were extracted by partitioning of the sobrenatant in petroleum
ether, with successive washings with distilled water, followed by saponification with NaOH 10% in
methylic alcohol for 2 h in the dark. The samples were again centrifuged and extracted by partitioning in
petroleum ether, washed with distilled water, and recovered in a volumetric balloon, after excess water
removal with anhydrous sodium sulfate. We made readings of absorbance in a spectrophotometer at
450 nm for quantification of total carotenoids.

3.2.3. Optical Properties

The samples of C. brasiliense oil were diluted in hexane (spectroscopic grade 99.9%) at concentrations
of 5 g/L. For optical measurements, we utilized a quartz cuvette with an optical path of 10 mm and four
polished slides. We measured UV-Vis absorption using a spectrometer Lambda 265-Perkin Elmer™,
Waltham, MA, USA and the absorption spectrum between 200 and 600 nm was collected. For the
fluorescence map (excitation/emission), we used a bench-top spectrophotometer FS-2 (Scinco™, Seoul,
Korea), the samples were excited from 200 to 400 nm every 5 nm, the measured emission being 250 and
600 nm with a 1 nm resolution. For all assessments, the excitation and emission slots were fixed in
5 nm. All optical measurements were performed at room temperature.

3.2.4. Thermal Analyses: Thermogravimetry/Derived Thermogravimetry (TGA/DTG)

We performed the oil analyses on approximately 4 mg of sample in a thermal analyzer system
(TGA Q50, TA Instruments, New Castle, DE, EUA), under an inert atmosphere of nitrogen with a
flux of 60 mL/min−1, at a heating rate of 10 ◦C/min−1 with temperatures of 25 ◦C to 900 ◦C, utilizing
platinum crucibles.
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3.2.5. Oxidative Stability

The oxidative stability was analyzed by measuring the induction period using the Rancimat
method. We utilized the equipment 893 Professional Biodiesel Rancimat (Metrohm®, São Paulo, Brazil),
where 3.0 g sample of the oil without dilution was put into a sealed glass reaction vessel and was
submitted to 110 ◦C under constant air flux at 10 L h−1, which passed through the samples and then
into a measuring vessel containing 50 mL ultrapure water in which the conductivity generated by
volatile products during the vegetable oil degradation was measured as a function of time, according
to the European rule EN14112. The induction period was determined by the second derivative method
of the conductivity curve.

3.2.6. Profile of Fatty Acids

The methylic esters of the fatty acids (FAME) were prepared according to the method of Maya and
Rodriguez-Amaya with a solution of derivatization of ammonium chloride, methanol, and sulfuric
acid. FAMEs were analyzed by gas chromatography (GC 2010, Shimadzu) to obtain their peaks.
The equipment utilized a flame ionization detector (FID) and a capillary column (BPX-70, 0.25 m
internal diameter, 30 mm long, and 0.25 mm thick). The temperature of the injector and the detector
was 250 ◦C. The initial temperature of the column was 80 ◦C, which was held for 3 min and then
increased at a rate of 10 ◦C min−1 until reaching 140 ◦C, followed by an increase to 240 ◦C at a rate of
5 ◦C min−1 for 5 min. We identified the individual peaks of FAME were identified comparing their
relative retention time with the standard of 37 FAMEs (Supelco C22, 99 % pure).

3.3. Experimental Design

The project was carried out according to the ethic regulations and guidelines, and the experimental
protocol approved by the Ethics Committee in Use of Animals (Protocol n. 954/2018). We utilized
Swiss mice (Mus musculus), adult males, provided by the Central Biotherium/CCBS/UFMS, kept under
temperature at 22 ± 2 ◦C, relative air humidity of 50–60%, with a light/dark cycle of 12 h, with standard
diet AIN-93M and water ad libitum.

The experimental protocol is shown in Figure 6. The mice (n = 80) were randomized into
six treatment groups. After an 8-day adaptation period, we made supplementation for 90 days,
with different lipidic sources (soybean oil, olive oil, and C. brasiliense pulp oil), via gavage, at different
doses adjusted weekly, according to animal weight. The Control Group (CG) (n = 13) received
Soybean Oil (1000 mg/kg); Group Olive Oil 1 (OO1) (n = 13) and Group Olive Oil 2 (OO2) (n = 14)
were supplemented with extra-virgin olive oil (1000 mg/kg and 2000 mg/kg, respectively); Group
C. brasiliense Oil 1 (CO1) (n = 14); Group C. brasiliense Oil 2 (CO2) (n = 14), received C. brasiliense oil
(1000 mg/kg and 2000 mg/kg, respectively); and tGroup Olive Oil + C. brasiliense oil (OOCO) (n = 12),
containing olive oil (1000 mg/kg) associated with C. brasiliense oil (1000 mg/kg). Euthanasia occurred
by exsanguination by cardiac puncture, utilizing isoflurane as an anesthetic.
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3.3.1. Biochemical Analysis

Blood samples were collected and centrifuged to obtain the serum fractions and determine
the levels of triacylglycerols, total cholesterol, LDL-c, HDL-c, VLDL-c, non-HDL-c, and blood
glucose. The parameters were determined by the enzymatic-colorimetric method, according to the
manufacturer’s instructions (Labtest™, Lagoa Santa, Minas Gerais, Brazil).

3.3.2. Body Weight, Visceral Fat, and Liver Weight

The bodyweight of the animals was recorded weekly on a semi-analytic balance (Bel Diagnóstica®),
expressed in grams. The liver and the sites of omental, epididymal, retroperitoneal, perirenal,
and mesenteric fat of each animal were removed and weighed on a semi-analytic balance
(Bel Diagnóstica®) for comparison between the studied groups. The adiposity index (AI) was
calculated according to Equation (1) [62].

AI(%) =
Total weight of white visceral fat (g)

Animal final body weight (g)
× 100 (1)

3.3.3. Histopathological Analysis

Samples of liver and pancreas were fixed with 10% formalin solution. After fixation, the specimens
were dehydrated, embedded in paraffin, cut in a microtome to a thickness of 5 mm each, and stained
with hematoxylin and eosin [63,64].

Histological analysis was performed for an expert pathologist. For the analyses of effects
of treatment on hepatocytes, we utilized the system of Kleiner et al. (2005) [63], evaluating the
degree of steatosis (<5%, 5 to 33%, 34 to 66%, >66%), microvesicular steatosis (absent or present),
lobular inflammation (Absent, <1 focus/field, 2–4 foci/field, or >4 foci/field), ballooning (absent,
few cells, or many cells), Mallory hyaline (absent or present), glycogenated nuclei (none/rare or some),
and apoptosis (absent or present).

We evaluated the architecture of the pancreas according to alterations in the Langerhans islets
(without alteration, discrete atrophy, atrophy, discrete hypertrophy, and hypertrophy), pancreatic acini
(without alteration, necrosis/atrophy), and inflammation by the presence of inflammatory cells inside
(insulitis) and on the periphery (perinsulitis) in the Langerhans islets [65–67].

3.3.4. Quantification of Cytokines

The serum was collected after centrifugation and stored again at −80 ◦C until cytokine analysis,
according to the recommendations of the manufacturer (MILLIPLEX MAP/Mouse Cytokine/Chemokine
and Adipocyte Magnetic Bead panel) (Millipore, Billerica, MA, USA). The concentrations of the
following cytokines were analyzed: IL-10, IL-6, MCP-1, and TNF-α using the MCYTOMAG-70K
kit, in MAGPIX™ with xPONENT software. The concentration of the cytokines IL-10, IL-6, MCP-1,
and TNF-α in the serum was expressed as cytokine picograms related to protein content (mg of protein).

3.4. Statistical Analyses

The results were expressed as mean ± standard error. For multiple comparisons of parametric
results, we performed an ANOVA followed by a Tukey post-test. The chi-square test was applied
to evaluate associations in histological analyses, followed by a Bonferroni test. A significance level
of p < 0.05 was adopted. For statistical analyses we used the software Jandel Sigma Stat, version 3.5
(Systat software, Incs., San Jose, CA, USA), and Bioestat 5.0 (Systat software, Incs., San Jose, CA, USA).

4. Conclusions

Caryocar brasiliense oil can be considered an oil with adequate quality for human consumption,
with excellent oxidative stability and shelf-life, having the potential to be commercialized at large-scale
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in the food market. The C. brasiliense oil promotes beneficial effects on biochemical parameters, mainly
in the lipidic profile, reducing indices associated with inflammatory processes. Combined with olive
oil, C. brasiliense oil reduces the development of white adipose tissue, possibly due to the presence of
antioxidants, such as tocopherols and tocotrienols.
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