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ABSTRACT
The preservation of tropical forests is increasingly at risk, including forests located
within human-modified landscapes that retain high conservation value. People modify
and interact with these landscapes through a wide range of uses. However, our
knowledge of howdifferent forest uses affect biodiversity is limited.Here, we analyse the
responses of different taxa to four distinct categories of forestmanagement, namely old-
growth forest, Brazil nut extraction areas, reduced impact logging areas, and eucalyptus
plantations. Within six independent replicates of each category, we sampled three taxa
(fruit-feeding butterflies, dung beetles, and trees) in eastern Amazonia. Forests under
moderate use (Brazil nut extraction and reduced-impact logging) had similar, albeit
slightly lower, diversity levels relative to old-growth forests, while communities in
plantations were significantly less diverse. Only 4%, 20%, and 17%, of the sampled
butterfly, dung beetle, and tree species, respectively, were restricted to old-growth
forests. This study provides further empirical evidence of the importance of old-growth
forest conservation in the context of human-modified landscapes. It also suggests that
landscape matrices integrating forest uses at varying intensities are well positioned to
reconcile biodiversity conservation with the production of goods that support local
livelihoods.

Subjects Biodiversity, Conservation Biology, Ecology, Forestry
Keywords Amazon forest, Brazil nuts, Amapá, Pará, Forest management, Nymphalidae,
Scarabaeinae, Selective logging

INTRODUCTION
Tropical human-modified landscapes are characterised by vegetation patches under
varying levels of use intensity and habitat degradation, which influence their capacity to
retain biodiversity and provide ecosystem services (Melo et al., 2013). The presence of
undisturbed natural habitats in these landscapes has clear benefits for local biodiversity
(Gibson et al., 2011). But in systems where undisturbed areas are scarce, forests under some
degree of anthropogenic disturbance can help buffer the impact of more intensely managed
land (Bhagwat et al., 2008; Santos-Heredia et al., 2018). Furthermore, the benefits extracted
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from these forests might be crucial for achieving sustainable landscape configurations
(McNeely & Schroth, 2006; Nobre et al., 2016). Yet, we still have limited knowledge of how
different components of human-modified landscapes, including their animal and plant
communities, are affected by the full spectrum of use intensities that are common in many
tropical regions (Chazdon et al., 2009).

Forest use intensification tends to lead to diminished biodiversity (Barlow et al., 2007a;
Davis, Huijbregts & Krikken, 2000; Edwards et al., 2014; Gardner et al., 2008; Nichols et al.,
2007; Wilcove et al., 2013). Selectively logged forests, for example, can retain most of
the species found in old-growth forest (Ghazoul, 2002; Hamer et al., 2003; Lewis, 2001;
Ribeiro & Freitas, 2012; Slade, Mann & Lewis, 2011), but that is dependent on the volumes
harvested or the duration of rotation cycles (Burivalova, Şekercioğlu & Koh, 2014; Edwards
et al., 2014; Richardson & Peres, 2016). Furthermore, ecological processes may be negatively
affected even under low logging intensities (França et al., 2017).

The comparative biodiversity studies that assess these impacts benefit from multiple
taxa approaches due to possible idiosyncratic responses from specific taxonomic groups
(Kessler et al., 2009; Beiroz et al. 2017). Invertebrates respond rapidly to disturbance due to
their short generation times and high population growth rates (Sodhi et al., 2010). Both
fruit-feeding butterflies and dung beetles have additional characteristics that increase their
suitability as ecological indicators, such as relatively large body sizes, ease of sampling
and a relatively well-known taxonomy (Ribeiro & Freitas, 2012). In both taxa the species
with restricted geographic ranges or forest specialists tend to be particularly vulnerable
to disturbance (Cajaiba et al., 2017; Davis, Huijbregts & Krikken, 2000; Lewis, 2001; Sodhi
et al., 2010). But their responses to disturbance are not necessarily congruent due to
different life histories (Davis, Huijbregts & Krikken, 2000; Schulze et al., 2004). The feeding
specialisations seen in some butterfly species are less common in dung beetles, for example.
On the other hand, the involvement of dung beetles in ecosystem processes is better
studied, including their impact on nutrient cycling, bioturbation, and secondary seed
dispersal (Nichols et al., 2008; Santos-Heredia et al., 2018).

Trees are the main structural components of forests and tree community change
might in fact help predict changes in other taxa (Barlow et al., 2007a; Bobo et al., 2006).
Trees are severely affected by land use intensification (Gerstner et al., 2014; Philpott et
al., 2008; Schulze et al., 2004). Tree communities might not resemble those of intact
forests even several decades after disturbance (Richardson & Peres, 2016; Sodhi et al., 2010).
Furthermore, changes in species composition can take years to manifest, including seedling
regeneration (Darrigo, Venticinque & Dos Santos, 2016). While the Amazonian tree flora is
one of the most diverse globally, its species and associated extinction risk are in many cases
poorly known (Ter Steege et al., 2015). Tree species with certain traits, such as reliance on
mammal pollinators, might be particularly vulnerable to disturbance (Sodhi et al., 2010).

Here, we examine the spatial distribution of fruit-feeding butterfly, dung beetle, and tree
communities in a landscape with varying forest management regimes. Ourmain objective is
to compare the conservation value, i.e., the capacity to support biodiversity, of four relevant
forest uses in northeast Amazonia, namely old-growth forest, Brazil nut extraction areas,
selective logging areas, and eucalyptus plantations. While old-growth forest is sampled
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here as baseline, the focus of this research is on forests directly used by people, therefore
excluding secondary forests, which mostly benefit people indirectly, as a vital component
of the shifting agriculture cycle (Brown & Lugo, 1990). The different research questions
that drive this study are: can moderate and intensive forest uses maintain the same levels
of richness, abundance and diversity found in old-growth forests? Do different taxa exhibit
the same responses to forest use intensification? And canmoderate and intensive use forests
have a role in sustainable human-modified landscapes? Here we: (i) compare the levels of
species richness, abundance and diversity of the three sampled taxa between old-growth
forests, Brazil nut extraction areas, selective logging areas, and eucalyptus plantations; (ii)
assess if fruit-feeding butterflies, dung beetles, and trees exhibit congruent responses to
forest use change; (iii) explore the implications this research to nature conservation and
forest management in the tropics.

METHODS
Study site
The study was undertaken at the east–west border between Amapá and Pará (1◦0′S–0◦30′S;
53◦0′W–52◦10′W), two states in the Brazilian Amazon forest (Fig. 1). Forest cover is
relatively high, while human density is low and concentrated on the margins of Jari River.
The landscape is characterised by a large eucalyptus plantation and natural forest under
different management regimes, with relatively little agriculture. The climate is tropical,
the mean annual rainfall is around 2,300 mm, with a wetter season from January to
June, and mean temperature around 27 ◦C throughout the year (INMET, 2018). Soils
are predominantly ferralsols and acrisols (IBGE, 2003). Sampling points ranged between
45–217 metres above sea level, with slopes of 0.1–9.2 degrees.

The sampled eucalyptus (Eucalyptus urograndis) plantations lie mostly on the Pará
side of the study area. The sampled areas were planted between 2011 and 2013. The
sampled selective logging areas were cut down, for the first time, in 2013 and 2014,
with the timber extracted ranging from 9.5–16.2 m3 ha−1 (3–7 trees ha−1). Brazil nut
trees (Bertholletia excelsa Bonp.) tend to have an uneven distribution throughout their
range, occurring in clusters (Mori & Prance, 1990), locally called ‘‘castanhais’’. Within the
study area, ‘‘castanhais’’ are mainly located in the sustainable use reserve RESEX Cajari
(IUCN protected area category VI), where sampling was carried out. Brazil nut extraction
is legally protected within the RESEX and is managed by the local community, while
commercial logging is illegal. Brazil nut trees used locally were mapped as part of a project
in collaboration with the state government (Costa, 2018). Local fruit fall and collection
occur mostly between January and April. Old-growth forest sampling sites were located in
terra firme (non-flooded) dense forest, half in the western part of the study area, the other
half inside the RESEX in the eastern part of the study area. These sites reflect the conditions
of old-growth forest within a landscape with human presence. They are relatively accessible
and therefore likely to experience low to moderate levels of human disturbance (e.g.,
hunting). The distance to the closest secondary road in old-growth forest sampling points
ranged from 1.2 to 4.2 km.
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Figure 1 Map of the study area. Abbreviations refer to old-growth forest (PRI), Brazil nut extraction
(BN), reduced impact logging (RIL), eucalyptus plantation (PLA). RESEX is a protected area category in
Brazil. BN delineates the area where Brazil nut trees have been mapped within the RESEX (Costa, 2018).
Latitudinal and longitudinal coordinates are indicated at the margins of the map.

Full-size DOI: 10.7717/peerj.8486/fig-1

We sampled a total of 24 sites, six sites in each forest use category. Sampling was
conducted at the same locations for dung beetles, butterflies, and trees (Fig. 1). Butterfly
and dung beetle traps were installed at least 30 metres from the tree plots, in opposite
directions (i.e., at least 100 metres distance between butterfly and dung beetle traps). All
sampling sites were separated by more than 500 m (range: 0.6–76.1 km; mean: 37.3± 27.0
km). Site location was also constrained by accessibility and a minimum distance to edge
of 100 m. We used a Garmin GPSMAP 64s for georeferencing. Fieldwork was authorised
by Instituto Chico Mendes de Conservação da Biodiversidade (process number: 56120-1)
and Conselho Nacional de Desenvolvimento Científico e Tecnológico (process number:
01300.001010/2016-16).
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Dung beetle sampling
Dung beetles (Coleoptera: Scarabaeinae) were sampled, using baited pitfall traps, in
May-July 2017 with replication in October-December 2017, covering the peaks of the
wet and dry seasons to account for seasonality (Korasaki et al., 2013). Each sampling unit
consisted of three traps placed three meters apart in a triangular arrangement. Traps were
collected after 24 h. Previous studies have shown that 24 h sampling periods for dung
beetles produce reliable results (França et al., 2016). Trap configuration consisted of a
rain cover (plastic plate with 25.5 cm diameter, placed 16 cm from the ground), below
which a meshed nylon bag containing the bait was suspended, directly above a buried
plastic container (13 cm height × 11.5 cm diameter). A third of the container was filled
with salted water. The bait used was human faeces (∼30 g), which is an effective bait for
dung beetles (Marsh et al., 2013). Specimens were stored in alcohol at 70%. After initial
triage by morphospecies, the material was sent to the Federal University of Pará for species
identification by one of the co-authors (F.A.B.S.).

Butterfly sampling
Frugivorous butterflies (Lepidoptera: Nymphalidae) were sampled using fruit-baited
cylindrical traps (van Someren-Rydon traps), following established guidelines (Lucci
Freitas et al., 2014; Van Swaay et al., 2015). Fieldwork took place between May–July 2017
and was replicated between October–December 2017 to account for seasonal fluctuations
(Hamer et al., 2005a;Hamer et al., 2005b). Each sampling unit consisted of a linear transect
with four traps separated by 30 m. The base of the traps hung between 1 m and 1.5 m above
the ground. The bait was banana fermented for 48 h. After installation, traps remained
in the field for six days and were visited every 48 h to replace the bait and record the
individuals captured. At least one voucher specimen per species was retained as reference.
The remaining captured individuals were identified, photographed with a macro lens,
marked with a black or silver marker and released. The collected individuals were sent
to State University of Campinas in São Paulo, where their identification was validated
by the team of Prof. André Lucci Freitas. Recaptures were not used in the analyses to
avoid overestimating butterfly abundance (Ribeiro et al., 2008). The main identification
references used wereWarren et al. (2013),Neild (1996),Neild (2008), and D’Abrera (1987),
D’Abrera (1988).

Tree sampling
Trees with diameter at breast height (DBH) equal or higher than 10 cm were sampled
in 0.4 ha plots (100 × 40 m). Sampling was conducted between July and October 2017.
Plot establishment followed the guidelines from Phillips et al. (2016). Six plots were set in
each forest use under analysis, totalling 24 plots. The plots were first stringed, and then
coordinates, elevation and slope were registered at each plot corner and its centre. Plot
orientation was equally divided between N-S and E-W. All sampled trees were tagged.
Voucher photos were taken of each species, with a small cut in the trunk and leaf close-up
when available. When buttresses prevented the measurement of DBH, it was calculated
using digital camera photos, as described in Phillips et al. (2016). Species identification was
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carried out by three experienced local parataxonomists. Common names were converted
to scientific names using the species list developed for the local tree community by the
selective logging company operating locally and were checked for typos using ‘BIOMASS’
R package.

Environmental variables
We measured slope, elevation, and sand percentage in the soil at each sampling point
to control for environmental heterogeneity. Soil samples were analysed at Embrapa
laboratories in Macapá, Amapá. For each site the combined sample was collected with a
soil auger for the 0–10 cm layer and consisted of a soil mixture from five subplots separated
50 m along a linear transect. Slope and elevation were measured at each site with a Haglöf
EC-II electronic clinometer and aGarminGPSMAP 64s, respectively. Slope was determined
by measuring the angle, at 10 metres distance, of a reference point at eye height. Plot level
slope and elevation are an average of seven measurements taken at the centre and borders
of the tree plots.

Data analysis
We measure species diversity with the Simpson diversity (using the formula 1/

∑s
i=1p

2
i ,

where pi is the proportional abundance of species and s the number of species) (Jost, 2006).
Since observed species richness is likely to be underestimated (Brose, Martinez & Williams,
2003), we also calculated the species richness estimator JACK2 to estimate the species pool
in each sampled forest type. Kruskal-Wallis rank sum chi-squared tests were conducted
to test the homogeneity of observed species abundance distributions between forest uses
(Table S1) and to compare the sampled insect communities between both seasons.

To analyse the differences in species richness, abundance and diversity between the
sampled forest uses we used generalised linear models with a Gaussian error distribution.
Old-growth forest is the reference level in the forest use categorical variable. The models
assess the relationship between richness, abundance or diversity (response variables) and
forest use (explanatory variable) and are also adjusted for three environmental variables:
slope, elevation, and sand percentage in the soil. Sand percentage is used as indicator of
soil texture, due to its high correlation with silt and clay (Gries et al., 2012). By including
these three environmental variables in our models we aim to understand if natural factors
are driving the variation in our response variables. We use t -tests to test the significance of
the model coefficients. We checked the residuals in all models to evaluate the adequacy of
the error distribution. Furthermore, we conducted non-metric multidimensional scaling
(NMDS), using the Bray–Curtis dissimilarity index, to represent the patterns of assemblage
composition in the insect taxa sampled. The ANOSIM (analysis of similarities) R statistic
was also calculated to assess if there were significant composition differences between
all forest uses. Tree NMDS was not carried out due to the artificial tree composition in
plantations. Finally, we analysed the share of species found in moderate/intensive uses
that also occurred in old-growth forest and the share of species unique to each forest use
(Barlow et al., 2007a). In the latter, we divided the number of species occurring solely in
one forest use by the total observed richness for the respective taxon. To determine if
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fruit-feeding butterflies, dung beetles, and trees exhibit congruent responses to forest use
change, we used the Spearman’s rho coefficient, a rank-based measure of association, to
assess the correlation of the richness, abundance and diversity metrics between the sampled
taxa.

Unless stated otherwise, all analysis was conducted in R3.4.3. R Core Team (2017) in
packages ‘vegan’ and ‘stats’. All plots were created using ‘ggplot2’. The map in Fig. 1 was
developed in ArcGIS 10.3. We use the following abbreviations for each forest use: PRI-
old-growth forest; BN- Brazil nut extraction; RIL- reduced impact logging; and PLA-
eucalyptus plantations.

RESULTS
We sampled a total of 1,872 butterflies of 78 different species (Table 1), from subfamilies
Charaxinae, Biblidinae, Nymphalinae and Satyrinae. Butterfly species richness was 42
in old-growth forest (PRI). It increased to 50 in Brazil nut extraction areas (BN) and
to 44 in the reduced impact logging (RIL) areas but decreased to 37 in the eucalyptus
plantations (PLA). BN had significantly higher butterfly richness relative to old-growth
forest (β = 4.69, p-value = 0.048; Fig. 2 and Table S2).

For dung beetles, we sampled 823 individuals of 59 different species (Table 1), from
tribes Ateuchini, Delthochilini, Coprini, Oniticellini, Onthophagini and Phanaeini. Dung
beetle species richness was 38 in old-growth forest. It decreased to 24 species in BN and 29
in RIL and was the lowest in PLA with 19 species. Richness was significantly lower in PLA
relative to old-growth forest (β= −6.20, p-value = 0.044; Fig. 2 and Table S2).

We sampled 5,674 trees belonging to 287 different species and 48 different families
(Table 1). Old-growth forest sites had the highest number of species (216), which decreased
to 156 in BN sites and 163 inRIL sites. As expected, eucalyptus plantation sites had negligible
levels of tree species richness. All forest uses had significantly lower tree richness levels
relative to old-growth forests (BN: β =−11.90, p-value = 0.006; RIL: β= −15.66, p-value
= 0.004; PLA: β = −70.15, p-value < 0.001; Fig. 2 and Table S2).

Model results on abundance (Fig. 2 and Table S2) show that both butterfly (β = 69.72,
p-value = 0.001) and tree (β = 231.09, p-value < 0.001) abundance were significantly
higher in eucalyptus plantations than in old-growth forest. Finally, the diversity metric was
significantly lower in PLA relative to PRI for all the sampled taxa (butterflies: β =−8.53,
p-value < 0.001; dung beetles: β =−4.14, 0.008; trees: β =−28.84, p-value < 0.0010).

Ordination diagrams, obtained through a distance-based method (NMDS), for dung
beetles and butterflies (Fig. 3) provide visual representation of the similarity of communities
in BN, old-growth, and RIL forests, while eucalyptus plantations form an independent
cluster. The ANOSIM R statistic for butterflies (R= 0.78, p-value = 0.001) and dung
beetles (R= 0.53, p-value = 0.001) confirms that communities were more similar within
the same forest use relative to other uses.

Analysis of the species that are shared between old-growth forest and other forest
uses shows similar patterns across taxa, with plantations having the lowest percentage of
species also occurring in old-growth forest (Fig. 4A). For example, 81% of the butterfly
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Table 1 Observed species richness (S_obs), estimated species richness (S_est), abundance (N), and Simpson diversity (1/D), per taxon and for-
est use.

Butterflies Dung beetles Trees

S_obs S_est N 1/D S_obs S_est N 1/D S_obs S_est N 1/D

PRI 42 62 334 20.09 38 51 262 15.99 216 324 1076 73.00
BN 50 62 415 19.22 24 37 236 6.47 156 231 1076 39.13
RIL 44 61 317 11.49 29 43 215 11.00 163 246 938 39.15
PLA 37 61 806 5.69 19 32 110 6.71 2 4 2584 1.00
Total 78 100 1872 18.66 59 86 823 19.43 287 409 5674 4.74

Notes.
PRI, old-growth forest; BN, Brazil nut extraction; RIL, reduced impact logging; PLA, eucalyptus plantation.

species occurring in old-growth forest were also found in BN sites, which was the highest
percentage observed. We found that old-growth forest had the highest share (20.3%) of
unique dung beetle species, in contrast with the response observed for butterflies, where it
had the lowest share (3.8%) relative to other forest uses (Fig. 4B). Plantations registered the
second largest share of unique species for both insect taxa (Fig. 4B). Although eucalyptus
trees only occurred in plantations, they have not been considered in Fig. 4B due to their
exotic status.

Cross-taxa congruence between dung beetle and butterfly richness or abundance was
low (Table 2). There was however a positive correlation between both dung beetle and
butterfly richness and tree richness. The same result was observed for the diversity metric.
The higher abundance of both butterflies and trees in eucalyptus plantations contributes
to the positive correlation between them, while the relationship is reversed between tree
and dung beetle abundance. The impact of plantations in these results was confirmed by
excluding plantation data from the analyses, which resulted in no significant cross-taxa
associations for neither of the biodiversity metrics analysed.

A comparison of the dung beetles and butterflies sampled, across all sites, between
the wetter and drier seasons showed distinct seasonal trends, with butterflies having
significantly higher levels of abundance (χ2

= 14.494, p-value < 0.001) and richness
(χ2
= 5.820, p-value = 0.016) in the wetter season, but not diversity (χ2

= 0.287, p-value
= 0.592). For dung beetles, the differences between seasons were not significant for any
metric analysed. Sites with higher butterfly richness (rho = 0.590, p-value = 0.002),
abundance (rho = 0.454, p-value = 0.026) and diversity (rho = 0.472, p-value = 0.021)
were roughly the same in both seasons, while for dung beetles that correlation was only
found for diversity (rho = 0.545, p-value = 0.006). Plantations accounted for most of the
increase in butterfly abundance in the wetter season.

DISCUSSION
Response to forest use change
The forest management regimes sampled in this study support differing levels of species
richness, abundance and diversity of dung beetles, fruit-feeding butterflies and trees.
Overall, our results indicate that forest use intensity reduces biodiversity in tropical
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Figure 2 Mean abundance (A–C), richness (D–F) and diversity (G–I) levels across sampling sites per
forest use. Error bars represent standard error of the mean. Asterisks indicate significant differences (***
p-value ≤ 0.001; ** p-value ≤ 0.01; * p-value ≤ 0.05) relative to old-growth forest (PRI). BN, Brazil nut
extraction; RIL, reduced impact logging; PLA, eucalyptus plantation. Full modelling results are available in
Table S2.

Full-size DOI: 10.7717/peerj.8486/fig-2

forest landscapes (Barlow et al., 2016; Gibson et al., 2011), selectively logged forests retain
considerable conservation value (Berry et al., 2010; Edwards et al., 2014) and eucalyptus
plantations are not necessarily devoid of biodiversity (Barlow et al., 2007a; Gardner et
al., 2008). Additionally, our results show that forests used for Brazil nut extraction retain
richness levels similar to reduced impact logging, in contrast to what was found byGibson et
al. (2011), where impacts of the category ‘‘other extracted forests’’ are closer to agroforestry
or plantations.

The effects on richness found for dung beetles are relatively strong when compared with
other studies (Berry et al., 2010; Gardner et al., 2008; Nichols et al., 2007). For example,
while the review by Nichols et al. (2007) found a mean change in total richness relative
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Figure 3 NMDS site ordination diagrams for (A) butterflies and (B) dung beetles. Each point repre-
sents one of the 24 sampling sites. Trees were not included due to the tree species composition in eucalyp-
tus plantations. PRI, old-growth forest; BN, Brazil nut extraction; RIL, reduced impact logging; PLA, euca-
lyptus plantation.

Full-size DOI: 10.7717/peerj.8486/fig-3

Figure 4 Species uniqueness between forest uses. (A) Percentage of species shared between old-growth
forest and the other forest uses, per taxon; (B) Percentage of species unique to each forest use relative to
observed richness, per taxon.

Full-size DOI: 10.7717/peerj.8486/fig-4

to old-growth forest of −10% for reduced-impact logging and −40% for plantations,
those values were −23.7% and −50.0%, respectively, in this study. Tree richness showed a
similar pattern to dung beetles, although with the inevitably drastic reduction in eucalyptus
plantations. Interestingly, we found similar tree richness decreases in Brazil nut extraction
areas (−27.8%) and reduced-impact logging (−24.5%), which might be a consequence
of the authorised non-commercial logging carried out by the RESEX community. Brazil
nut areas in the Amazon might also be associated with higher historical anthropogenic
influence (Levis et al., 2017). On the other hand, butterflies were the exception to the general
trend, with richness numbers in moderate uses slightly higher than in old-growth forests
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Table 2 Pairwise correlation across sites, for species richness, abundance and diversity, between the
different taxa analysed. Correlation coefficients were calculated using Spearman rho.

Dung beetles Butterflies

Richness
Butterflies 0.064
Trees 0.503* 0.414*

Abundance
Butterflies −0.320
Trees −0.412* 0.609**

Diversity
Butterflies 0.305
Trees 0.445* 0.712***

Notes.
***p-value ≤ 0.001.
**p-value ≤ 0.01.
*p-value ≤ 0.05.

(BN: +19.0%; RIL: +4.8%) and only slightly lower under intensive use (PLA: −11.9%).
Similar response patterns have been previously observed and are indicative of butterfly
communities with higher co-occurrence of species specialised to distinct habitats as a result
of disturbance (Fermon et al., 2005; Sant’Anna et al., 2014a; Sant’Anna et al., 2014b).

For conservation, it is relevant to understand how many species present in low
disturbance areas are retained in other forest uses, as these species tend to be more
specialised and vulnerable to habitat alteration (Fermon et al., 2005; Sodhi et al., 2010).
When considering the percentage of species that are unique to each forest use, values
were generally low. Barlow et al. (2007a) found ca. 22%, 32%, and 57%, of butterfly, dung
beetle, and tree species, respectively, occurring only on old-growth forests, while here those
values were 4%, 20%, and 17%. These lower values reflect the closer similarity between
communities in old-growth forests and the moderate use forests studied here and absent
in Barlow et al. (2007a). Analysing species uniqueness from a different perspective, Barlow
et al. (2007a) found that ca. 60% and 42% of butterfly and dung beetle species occurring in
old-growth forests were shared with plantations, while results here indicated 45% and 26%,
respectively. Other studies have also reported relatively higher levels of shared species than
those found here (Berry et al., 2010; Edwards et al., 2014;Nichols et al., 2007). The relatively
high average distance between sampling points in this study might be a contributing factor
to this difference. It is also interesting to note that the share of old-growth forest species
occurring in other forest uses is always higher for butterflies than dung beetles, possibly
due to their higher mobility. We expect that the majority of insect species that we found
uniquely in plantations are species adapted to the conditions found in open habitats
(Gardner et al., 2008; Hamer et al., 2003).

The abundance differences in the two insect taxa analysed showed contrasting trends.
Dung beetle abundance decreased gradually from old-growth forests to moderate use
areas (BN: −9.9%; RIL: −17.9%) and dropped markedly in plantations (−58.0%). This
is in line with results for the same region (Gardner et al., 2008), but differs from other
studies (Berry et al., 2010; Nichols et al., 2007). Gardner et al. (2008) point to differences in
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biogeographical context and landscape-level effects between different studies as possible
explanations for the discrepancy. Tree abundance slightly decreased (−12.8%) in RIL areas,
an expected consequence of timber harvesting operations. Butterflies were considerably
more abundant in BN areas (+24.3%) than in old-growth forest, but slightly less abundant
in RIL areas (−5.1%). Their abundance more than doubled in plantations in relation to
old-growth forests (+141.3%), while in a previous study for the same region theymore than
quadrupled (Barlow et al., 2007b). This was mostly driven by a few species of subfamilies
Nymphalinae and Satyrinae that became hyper-abundant in plantations, due to their high
tolerance to disturbance (Barlow et al., 2007b; Fermon et al., 2005).

Congruence among taxa
Several multitaxon studies have considered potential cross-taxa congruence to assess to
which degree one taxon can accurately predict the responses of multiple others (e.g.,
Barlow et al., 2007a; Edwards et al., 2014; Kremer, 1992). However, idiosyncratic responses
to disturbance tend to deter generalisations (Gardner et al., 2009). Even higher taxonomic
levels, such as butterfly subfamilies, may exhibit different responses (Barlow et al., 2007b;
Hamer et al., 2003). Nevertheless, our results here point towards trees being the best
indicator of all the taxa analysed, as it is the only taxon whose variations in richness,
abundance and diversity are significantly correlated with all the other taxa analysed
(Table 2). This is expected since both dung beetles and butterflies respond to changes in
vegetation structure (Hamer et al., 2003; Gardner et al., 2008). Trees have been identified as
good indicators of ecological change in other studies (Bobo et al., 2006; Philpott et al., 2008;
Schulze et al., 2004), although they are not necessarily better indicators than other taxa
(Barlow et al., 2007a; Kessler et al., 2009). The positive correlation between dung beetle and
tree richness was identified in a previous study in the same region (Barlow et al., 2007a).
Additionally, here we also report significant associations for abundance between trees and
the insect taxa (with contrasting directions) and positive associations between tree and
butterfly richness, as well as between the diversity of trees and both insect taxa (Table 2).

Seasonality effects might lead to low annual intra-taxon congruence in biodiversity
sampling (Hamer et al., 2005a; Hamer et al., 2005b). Here, we find no evidence of
seasonality in dung beetles across all forest uses, but both butterfly richness and abundance
were significantly higher in the wet season. This variationmight reflect natural inter-annual
variation in community dynamics (Beiroz et al., 2017) but can also be related to differences
in the community structure of each forest use (Barlow et al., 2007a). Indeed, the increased
butterfly abundance in the wetter season registered here was mostly driven by a few species
of Satyrinae (e.g., Paryphthimoides sp.) and Nymphalinae (e.g., Hamadryas feronia) in
plantations that were rare or absent in the other forest uses.

Caveats and limitations
It is relevant to highlight that the results presented here apply to a human-modified
landscape containing large pools of old-growth forest. Therefore, extrapolating these
results to landscapes under larger scale intensification processes should be avoided, due
to potentially differentiated impacts of fragmentation and spill-over effects (Gardner et al.,
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2008; Korasaki et al., 2013; Nichols et al., 2007). Possible time lags in responses to forest
use change also prevent conclusions regarding the long-term stability of the communities
sampled ( Hautier et al., 2015).

While we consider the data collected representative of forest use conditions in the study
area, the results should be interpreted with caution. Further sampling could particularly
clarify the similarities and differences between communities in reduced impact logging
and Brazil nut extraction areas. Still, the levels of species richness found here compare
reasonably well to those found in previous studies in the same region with greater sampling
efforts (Barlow et al., 2007a; Gardner et al., 2008; Sullivan et al., 2017). We suggest the
reported differences in species richness and abundance are a consequence of variation
in forest use intensity. Nevertheless, we cannot exclude the possibility that the patterns
reported are being driven by certain unknown natural biotic or abiotic factors. The forest
uses analysed are likely to be associated with varying pressures caused by factors such as
logging, hunting, and fire occurrence, which indeed greatly affect natural communities
in tropical forests (Barlow et al., 2016; Brodie et al., 2015). However, this study was not
designed to isolate the individual effects of different disturbance factors within the forest
use categories analysed.

Implications for forest management
This study analyses forest uses with widespread occurrence in the Amazon region. It
demonstrates that both reduced-impact logging and Brazil nut areas can have high
conservation value. In fact, both these moderate forest uses seem to retain communities
closer to those found in old-growth forests than the secondary forests that also occur
within the same landscape (Barlow et al., 2007a; Gardner et al., 2008). This implies that the
allocation of more resources to the promotion and improvement of moderate forest use
regimes that prevent deforestation on the long term can benefit conservation at landscape
scale. Biodiversity-friendly forest uses can increase the likelihood of attaining sustainable
landscapes where people and forests are able to coexist on the long-term (Melo et al., 2013)
and can also facilitate the effective implementation of Brazilian law (Law 12.651/2012),
which requires that up to 80% of every rural property in the Amazon preserves its
forest cover. Integral protection areas are fundamental for forest conservation (Gray et
al., 2016), including within human-modified landscapes, where clusters of undisturbed
forest can increase system resilience and preserve healthy species pools that can recolonise
regenerating forests (Melo et al., 2013; Oliver et al., 2015). Nevertheless, sustainable use
forests can still be relevant elements of extended networks of protected areas, providing
viable corridors for movement between undisturbed areas or functioning as buffers that
prevent forest encroachment (Bhagwat et al., 2008;McNeely & Schroth, 2006).

In north-eastern Amazonia, biodiversity-rich landscapes prevail for now. But there are
indications that industrialised land uses will soon increase pressure on its forests, which in
the absence of effective regulations and incentives that accommodate the needs of different
stakeholders can, on the long term, lead to a repetition of deforestation patterns observed
elsewhere (Melo et al., 2013; Soares-Filho et al., 2006). With more than two thirds of its
territory protected, Amapá state is in a good position to trial a development model better
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suited to reconcile economic and conservation priorities through the prioritisation of
biodiversity-based product value chains (Nobre et al., 2016). This will require landscape-
level decision making, as well as further research, that acknowledges the multifunctionality
of local socio-ecological systems (Cordingley et al., 2015; Reyers et al., 2013).

CONCLUSION
This study demonstrates that increased forest use intensity is likely to cause negative effects
on the communities of trees, dung beetles, and fruit-feeding butterflies of eastern Amazon.
It therefore highlights the importance of preserving old-growth forests. Nevertheless, it
also shows that biodiversity loss under extractive forest uses that introduce moderate
disturbance can be relatively low, when integrated in a landscape matrix with a substantial
share of old-growth forest. The two moderate uses analysed here, Brazil nut extraction and
reduced impact logging, both hold substantial conservation value for the taxa studied and
are able to retain communities that are relatively similar to those in old-growth forests,
while intensive eucalyptus plantations have a higher impact on biodiversity. Results also
confirm that studies considering multiple taxa and biodiversity metrics are more likely
to provide a comprehensive perspective of how communities respond to disturbance in
tropical forests. This study provides evidence to support safeguarding a healthy matrix of
old-growth forest in forest management decisions and taking advantage of the potential of
moderate forest uses to reconcile economic and nature conservation priorities.
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