
biosensors

Communication

Development of a Graphene-Based Biosensor for
Detecting Recombinant Cyanovirin-N

Pedro Rodrigues de Almeida III 1,2,*, André Melro Murad 3 , Luciano Paulino Silva 3 ,
Elibio Leopoldo Rech 3 and Elmo Salomão Alves 1

1 Physics Department, Federal University of Minas Gerais, C.P. 702, Belo Horizonte, MG 30123-970, Brazil;
elmo@ufmg.br

2 Federal Center for Technological Education of Minas Gerais, Belo Horizonte, MG 30421-169, Brazil
3 EMBRAPA Genetic Resources and Biotechnology, Laboratory of Synthetic Biology,

Brasília, DF 70770-917, Brazil; andre.murad@embrapa.br (A.M.M.); luciano.paulino@embrapa.br (L.P.S.);
elibio.rech@embrapa.br (E.L.R.)

* Correspondence: pedroraiii@cefetmg.br

Received: 14 October 2020; Accepted: 14 December 2020; Published: 16 December 2020
����������
�������

Abstract: We present a graphene-based biosensor selective to recombinant cyanovirin-N (rCV-N),
an antiviral protein that has proven to be an effective microbicide to inhibit HIV replication.
We modified the graphene monolayer devices with 1-pyrenebutanoic acid succinimidyl ester, which
interacts with both graphene and the primary and secondary amines of antibodies. By monitoring
the change in the electrical resistance of the device, we were able to detect rCV-N in solutions in the
range of 0.01 to 10 ng/mL, and found that the detection limit was 0.45 pg/mL, which is much smaller
than that obtained with currently available techniques. This is important for applications of this
microbicide against HIV, since it may be produced at a large scale from soya bean seeds processed
using the available industrial processing technologies. The sensor showed high sensitivity, selectivity,
and reproducibility.

Keywords: graphene biosensor; electrochemical sensor; genetically modified soybean; recombinant
cyanovirin-N

1. Introduction

The human immunodeficiency virus (HIV) is an infection that attacks the human immune
system, and currently is considered by the World Health Organization (WHO) a global epidemic.
Data from the WHO indicate that by 2018, there were 37.9 million people worldwide living with HIV,
of which 1.7 million were infected only in that year—a 4.5% increase in the number of infected people.
To reduce this number, it is important to develop new methods of inhibiting HIV transmission and to
improve current methods of prevention. It was shown that cyanovirin-N (CV-N) [1], Griffthsin [2]
and Scytovirin [3] are lectins capable of inactivating different strains of HIV, simian immunodeficiency
virus and other pathogenic viruses. Analytical studies showed that these molecules are good candidates
as additives to topical microbicide gels to prevent the transmission of HIV in macaques [4,5].

Recently, it was demonstrated [6] that recombinant cyanovirin-N (rCV-N), a protein with
remarkable stability [7], produced in soya bean seeds has a potent nanomolar anti-HIV activity
against HIV-1, which is comparable to the activity range of native CV-N. In addition, soybeans
expressing rCV-N can be processed using the available industrial processing technology to produce
high-quality feedstock ready to enter the purification process. Thus, a biosensor for this protein will be
of great help in an industrial soybean processing for the development of HIV-inhibiting drugs.
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Biosensors are widely used for the early stage detection of diseases in humans and plants, and to
contribute to the understanding of metabolic processes in these individuals and in microorganisms [8].
Different materials associated with specific mechanisms have been used to develop biosensors [9].
However, there is still an intensive demand to find materials with high selectivity for the development
of biosensors with a broader range of applications. Currently, Northern and Western blotting are used
for the detection of rCV-N [6]. Blotting is a technique used in molecular biology for the identification of
proteins and nucleic acids [10]. All blotting techniques involve a few steps, starting with electrophoresis
to separate samples by size. This single step takes a few hours to complete, so it is desirable to have a
faster method to detect rCV-N. As far as we know, there is no electrochemical biosensor available for
this protein.

Since its discovery in 2004, graphene has emerged as a good candidate as a biosensor transducer [11].
Graphene is a strictly two-dimensional material formed only by carbon atoms arranged in a hexagonal
structure [12]. Because of this strictly two-dimensional structure, graphene has a large surface to volume
ratio, which enhances the interaction with molecules on its surface and facilitates surface modification
to make it selective to different target molecules, a process called functionalization. Many works show
that the sensitivity and the detection limit of graphene-based biosensors are equal to or better than those
obtained with silicon-nanowires biosensors [13]. With adequate functionalization of graphene, it was
possible to produce devices for DNA [14–16], detection of cancer molecules [17], Zika virus [18], bacteria
and their metabolic activities [19], immunoglobulin aptamers [20], exosomes [21] and Escherichia coli [22].

In this work, we report the development of a graphene-based FET biosensor to detect rCV-N in
solution. The graphene biosensor showed a high selectivity and sensitivity to rCV-N in solutions with
concentrations as low as 10 pg/mL.

2. Materials and Methods

2.1. Device Fabrication

We obtained the graphene flakes from natural graphite by the standard micromechanical cleavage
technique using an adhesive tape. A graphene device, shown in Figure 1, consists of a graphene
monolayer that was transferred onto a heavily doped silicon substrate coated with 300 nm layer of silicon
dioxide. We fabricated the ion-sensitive field-effect transistor (ISFET) using conventional microfabrication
techniques [23]. Two electrical contacts to the graphene monolayer were formed by thermal evaporation
of chromium and gold followed by lift-off. The third electrode on the substrate, near the graphene flake,
is used to apply a gate voltage when the device is covered by an electrolyte.
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contacts (golden areas) to the graphene flake (dashed region) and the gate electrode (top).
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2.2. Functionalization

To immobilize antibodies onto the graphene monolayer, we incubated the device in a solution
of 5 mM 1-pyrenebutanoic acid succinimidyl ester (PBSE) in dimethylformamide (DMF) for 2 h at
room temperature [19]. The succinimidyl ester groups are highly reactive with the primary and
secondary amines of many proteins, while their pyrene groups bind strongly to graphene via π–π
interactions [24,25], as shown schematically in Figure 2.
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Figure 2. Schematic representation of the device after the functionalization steps described in the text.

To achieve conjugation of antibodies to PBSE, we incubated the devices in a solution of 100 µg/mL
of antibodies in phosphate buffered saline (PBS), with pH 7.4, at 4 ◦C, for 20 h. After this, we dipped
the devices in ethanolamine for 1 h, at room temperature, in order to deactivate the succinimidyl ester
groups not conjugated to antibodies. Finally, we incubated the devices in a 0.1% Tween-20 solution
for 1 h at room temperature in order to passivate the uncoated surface of graphene (see Figure 2).
After this functionalization procedure, the graphene devices become selective to the target protein
due to the “lock and key” complementarity of the antigen-antibody interactions.

It is desirable that the chemical modification of graphene does not change its band structure to
preserve its high sensitivity to proteins after functionalization. To verify the nature of binding between
PBSE and graphene we carried out Raman spectroscopy measurements by exciting graphene with
a 532 nm laser, before and after treatment with PBSE. The most prominent features in the Raman
spectrum of a monolayer of pristine graphene are the G and 2D Raman bands at 1532 and 2716 cm−1,
respectively [26]. Figure 3a shows the Raman spectra of a graphene monolayer before (black) and after
(red) PBSE immobilization. The Raman peak at ~2716 cm−1 remains as a single Lorentzian peak after
the PBSE treatment, which indicates that the π band and, consequently, graphene’s characteristic
electronic properties are not perturbed after functionalization [27]. The shifting of ~15 cm−1 of the 2D
band to higher frequency is a signature of hole doping by PBSE [28,29].
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Figure 3. (a) Raman spectra of a graphene monolayer before (black curve) and after (red curve)
1-pyrenebutanoic acid succinimidyl ester (PBSE) immobilization. The top curve is shifted for clarity.
(b) Raman spectrum near G band. (c) Raman spectra color map of the intensity of the peak at 1609.0 cm−1

for the region of the multilayer graphene flake shown in the inset (red square).
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In the frequency region around the G band, shown in Figure 3b, several peaks related to PBSE
appear. The peak at 1337.9 cm−1 (orange) is due to sp3 bonding, the one at 1375.4 cm−1 (yellow)
is related to disorder introduced by the hybridization of PBSE with the graphene monolayer, and the
peak at 1609 cm−1 (green) is attributed to the aromatic pyrene group of PBSE [27–29].

Figure 3c shows the spatial Raman spectra color map of a multilayer graphene flake (see inset)
after functionalization with PBSE. The map was carried out using a 532 nm excitation laser and was
constructed by plotting the intensity of the peak at 1609 cm−1 using a filter for this frequency. This map
shows that PBSE binds to all graphene mono- and multilayers but not to the substrate.

We performed fluorescence measurements to verify the distribution of antibodies on graphene.
First, we labeled the antibodies using fluorescein isothiocyanate (FITC), which is an organic molecule
that binds to the amino group of the antibodies. The FITC has excitation and emission wavelengths of
approximately 495 and 520 nm, respectively, which gives it a green color. The antibodies were labeled
by mixing these three solutions: 2 mg/mL of antibodies in a phosphate buffer (pH = 7.4); a borate
buffer solution (pH = 9); and 1 µg/µL of FITC in dimethylsulfoxide. This mixture was incubated at
37 ◦C, for 90 min [30].

Figure 4a,b show optical microscope images of graphene flakes on top of a SiO2/Si substrate.
The outlines of the flakes are indicated by dashed lines. The darker blue region next to the flake in
Figure 4b is a thicker graphite flake which is not important for this work. PBSE was immobilized
only on the graphene flake in Figure 4b by following the procedures described in this section.
Then, both samples were incubated in the solution of antibodies labeled with FITC.
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Figure 4. Optical microscope images of graphene flakes (a) without PBSE and (b) with PBSE, both on
top of a SiO2/Si substrate. (c,d) Fluorescence images of the flakes after incubation in a solution of
antibodies labeled with fluorescein isothiocyanate (FITC).

Figure 4c,d show the results of the fluorescence measurements. No fluorescence was observed
from the graphene without PBSE (Figure 4c), whereas in Figure 4d the fluorescence signal is all over
the graphene flake, which indicates that PBSE with the FITC-labeled antibodies covers most of the
graphene flake. This is also consistent with the Raman color map shown in Figure 3, which also shows
that PBSE binds strongly to graphene [27–29].

2.3. Proteins Preparation

The recombinant proteins cyanovirin (rCV-N), griffithsin (rGRFT) and scytovirin (rSVN)
and polyclonal primary antibodies were supplied by the Molecular Targets Laboratory (CCR, NCI,
NIH, Bethesda, MD, USA).
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3. Results and Discussion

3.1. Protein Detection

We determined the electrical resistance R = V/I of the device by applying an alternating current of
amplitude I = (100.0 ± 0.1) nA and frequency of (13.3 ± 0.1) Hz, while measuring the voltage amplitude
V across the device using a lock-in amplifier. A voltage source was used to supply the gate voltage Vg

between the solution and the graphene flake. Figure 5a shows the device resistance versus time as we
applied a small droplet of different ionic liquids onto the devices. Starting with a functionalized device,
we covered the device with 2 µL of a buffer solution of PBS (pH 7.4). Once the resistance became stable,
we removed this solution and applied a solution of 10 ng/mL of rSVN, which had no trace of the target
protein, onto the device. The volume applied was enough to cover the graphene and gate regions.
As shown in Figure 5a, we observed no significant change in the device resistance between these two
steps, even after several minutes. However, when we applied a solution of 0.01 ng/mL of rCV-N onto
the device, an abrupt drop in the electrical resistance was observed, which is due to the binding of
rCV-N to the functional groups on the graphene surface.
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Figure 5. Resistance versus time of a graphene ISFET in contact with solutions of (a) PBS, rSVN and
rCV-N and (b) PBS, rGRFT and rCV-N, in this order. The insets show the resistance versus gate voltage
plots for the devices covered with PBS (black dots), and, subsequently, with rCV-N (red dots).

The inset in Figure 5a shows the R (Vg) plots measured for the device covered with PBS (black dots),
and, subsequently, with rCV-N (red dots). The displacement of the plot to higher gate voltages was
due to the additional charge produced by the binding of the target proteins to the antibodies on the
surface of the graphene. For this device, the sensitivity is at maximum for Vg ≈ 0.2 V, where the slope
of the R (Vg) plot is at maximum. For convenience, the results shown in Figure 5a were measured with
the gate grounded, because the drop in resistance for Vg = 0 V is close to that observed for Vg = 0.2 V.
The interaction between rCV-N and the immobilized antibodies on graphene produces a change in
resistance that is ~30 times larger than that produced by rSVN.

We repeated those measurements using the protein rGRFT instead of rSVN for Vg = 0 V. The results
are shown in Figure 5b and the inset shows the plots of R (Vg) measured before (black dots) and after
(red dots) adding rGRFT to the device. For this device, the best operating point is at Vg ≈ 0.5 V.
However, even when biased at a rather unfavorable condition (Vg = 0 V), the change in the device
resistance was about 4.5 times larger than for rGRFT, despite the additional noise due to this biasing
condition. These results indicate that the graphene-ISFET is highly selective to rCV-N. The small drops
in resistance observed for rSVN (~0.9 %) and for rGRFT (~1.0 %) are due to graphene regions that were
not totally passivated by the solution of Tween-20. Small signals due to nonspecific proteins were also
observed for biosensors reported in other works [17,18,20].
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3.2. Sensitivity of the Graphene Biosensor

We analyzed the device’s sensitivity by measuring the electrical resistance changes for different
concentrations of rCV-N. Initially, we placed a small volume of PBS solution on the device. After the
resistance became stable, we applied solutions of rCV-N of different concentrations onto the device
at the instants indicated by the arrows in the inset in Figure 6a. After each step, we allowed enough
time for the resistance to stabilize. Figure 6a shows the resistance during the two minutes before each
change in concentration. We attribute the successive drops in the resistance to the increasing number
of bounded protein–antibody sites on graphene as the concentration of rCV-N increases.
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Figure 6. (a) Resistance versus time of a graphene-ISFET in contact with solutions with different
concentrations of rCV-N. Each plateau corresponds to the last two minutes before a concentration
change. The inset shows real time measurement of the electrical resistance for the same concentrations.
(b) Average of the percentage change in resistance for three devices (shown in the inset) versus
log[RCV-N]. The lines are linear fits to the data.

We repeated these measurements for three different devices and obtained consistent results.
The inset in Figure 6b shows the percentage change ∆R = 100(RPBS − R)/RPBS in the resistance R relative
to the resistance RPBS of each device when covered by PBS solution (blank), as a function of the
logarithm of the concentration of rCV-N. Figure 6b shows a plot of the average value of ∆R for the
three devices. The error bars are the standard deviation. From a linear regression of these data,
we obtained the calibration curve ∆R = (19.3 ± 0.6) + (5.5 ± 0.6) log([rCV-N]), with a correlation
coefficient of 0.93 for a detectable range from 0.01 ng/mL to 10 ng/mL. We estimated the detection limit
CL = 0.45 pg/mL (40.9 fM) for this device by determining the concentration at which ∆R is equal to
the average change in the resistance for PBS solutions (blank) plus 3σ, where σ = 0.3% is the standard
deviation. This detection limit is much lower than that obtained for graphene-based immunosensors
for other proteins [17,18,31–33] using a similar approximation.

To verify the reproducibility of the results, we fabricated another four graphene ISFET devices
and placed onto each one a droplet of 0.01 ng/mL of rCV-N. The percentage changes in the resistance
of these devices, shown in Figure 7, are consistent with the previous results, with a standard deviation
of 7.9%, which indicate the good reproducibility of the sensor.

Biosensors 2020, 10, x FOR PEER REVIEW 7 of 9 

 

Figure 7. Percentage changes in resistance produced by a solution of 0.01 ng/mL of rCV-N, for four 

different ISFET devices. The error bars are the standard deviation of the measurements. 

4. Conclusions 

We developed a biosensor based on a graphene ISFET with a high selectivity and sensitivity to 

rCV-N, a protein that is a very promising microbicide against HIV. We have shown that the  

antibody-rCV-N conjugation changes the electrical resistance of the graphene ISFET with a limit of 

detection of 0.45 pg/mL (40.9 fM) and a detection range of 0.01 to 10 ng/mL. Due to the relative 

simplicity of the fabrication process and the high selectivity and sensitivity of the graphene ISFET for 

rCV-N, this sensor may be used to quantify this protein during the industrial processing of soya bean 

seeds, which may potentially be used as an anti-HIV resource. 

Author Contributions: The author’s contributions and their responsibilities in the research are as follows: 

P.R.d.A.III designed the concept, performed the experiments, did the data analyses, and wrote the manuscript; 

A.M.M., L.P.S. and E.L.R. prepared the proteins, did the data analyses and writing-review; E.S.A. designed the 

concept, did the data analyses and writing-review. All authors have read and agreed to the published version of 

the manuscript 

Funding: This work was supported in part by Embrapa Genetic Resource and Biotechnology, National Institute 

of Science and Technology (NIST) on Synthetic Biology, (CNPQ: 465603/2014-9; FAP-DF: 0193.001.262/2017), 

National Institute of Science and Technology on Carbon Nanomaterials/CNPq, Coordenação de 

Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brazil and Brazilian Ministry of Health. 

Acknowledgments: The authors thank B. O’Keefe, from Molecular Targets Laboratory, Center for Cancer 

Research, National Cancer Institute, NIH, Frederick, MD, USA, for providing the rCVN and antibody samples, 

and T. C. Barbosa, from Physics Department, Federal University of Minas Gerais, Brazil, for helping with the 

Raman measurements. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Boyd, M.R.; Gustafson, K.R.; McMahon, J.B.; Shoemaker, R.H. Discovery of cyanovirin-N, a novel human 

immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: 

Potential applicatn. Antimicrob. Agents Chemother. 1997, 41, 1521–1530. 

2. Bokesch, H.R.; O’Keefe, B.R.; McKee, T.C.; Pannell, L.K.; Patterson, G.M.L.; Gardella, R.S.; Sowder, R.C.; 

Turpin, J.; Watson, K.; Buckheit, R.W.; et al. A Potent Novel Anti-HIV Protein from the Cultured 

CyanobacteriumScytonema varium. Biochemistry 2003, 42, 2578–2584, doi:10.1021/bi0205698. 

3. Mori, T.; O’Keefe, B.R.; Sowder, R.C.; Bringans, S.; Gardella, R.; Berg, S.; Cochran, P.; Turpin, J.A.;  

Buckheit, R.W.; McMahon, J.B.; et al. Isolation and Characterization of Griffithsin, a Novel HIV-inactivating 

Protein, from the Red Alga Griffithsia sp. J. Biol. Chem. 2005, 280, 9345–9353, doi:10.1074/jbc.m411122200. 

Figure 7. Percentage changes in resistance produced by a solution of 0.01 ng/mL of rCV-N, for four
different ISFET devices. The error bars are the standard deviation of the measurements.



Biosensors 2020, 10, 206 7 of 9

4. Conclusions

We developed a biosensor based on a graphene ISFET with a high selectivity and sensitivity
to rCV-N, a protein that is a very promising microbicide against HIV. We have shown that the
antibody-rCV-N conjugation changes the electrical resistance of the graphene ISFET with a limit
of detection of 0.45 pg/mL (40.9 fM) and a detection range of 0.01 to 10 ng/mL. Due to the relative
simplicity of the fabrication process and the high selectivity and sensitivity of the graphene ISFET for
rCV-N, this sensor may be used to quantify this protein during the industrial processing of soya bean
seeds, which may potentially be used as an anti-HIV resource.
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