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Abstract

Path analysis allows understanding the direct and indirect effects among traits. Multicolli-

nearity in correlation matrices may cause a bias in path analysis estimates. This study

aimed to: a) understand the correlation among soybean traits and estimate their direct and

indirect effects on gain oil content; b) verify the efficiency of ridge path analysis and trait cull-

ing to overcome colinearity. Three different matrices with different levels of collinearity were

obtained by trait culling. Ridge path analysis was performed on matrices with strong collin-

earity; otherwise, a traditional path analysis was performed. The same analyses were run

on a simulated dataset. Trait culling was applied to matrix R originating the matrices R1 and

R2. Path analysis for matrices R1 and R2 presented a high determination coefficient (0.856

and 0.832, respectively) and low effect of the residual variable (0.379 and 0.410 respec-

tively). Ridge path analysis presented low determination coefficient (0.657) and no direct

effects greater than the effects of the residual variable (0.585). Trait culling was more effec-

tive to overcome collinearity. Mass of grains, number of nodes, and number of pods are

promising for indirect selection for oil content.

Introduction

Soybean has been very important to Brazilian agribusiness. The oleaginous crop comprises

approximately 20% oil by weight [1] and this product has been used in several applications,

especially as kitchen oil and biodiesel. The crop is an important source of oil and ranks first in

oil production in the world scenario [2] and the global demand for soybean oil is arising [3].

Quantitative traits, such as soybean oil, protein content, and grain yield are quantitative

traits [4, 5], and are therefore controlled by a large number of genes, undergo a strong environ-

mental influence, and usually show low heritabilities. Thus, the indirect selection is
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recommended to achieve genetic gains [6]. The viability of indirect selection is commonly

investigated by correlations studies [7]. However, [8] emphasize that correlations among traits

are purely a measure of association and do not investigate the cause-and-effect relationships

and according to [9] the association between two traits can be influenced by a third trait or a

group of them. [10] proposed path coefficient analysis, which is a multiple regression

expanded and allows unfolding the correlation coefficients of direct and indirect effects on a

basic variable [11]. Path Analysis was first used in plants by [12] and it was later used in other

crops.

The estimation of the path analysis coefficients can be adversely affected by the multicolli-

nearity effects among traits. Multicollinearity occurs when the observation of the independent

variables, or their combinations, are correlated [11, 14]. When two variables are highly corre-

lated it becomes hard to individually estimate the relations of each explanatory variable no the

main variable because they contribute colletively to explain linear relations [14]. [13] advise

performing the multicollinearity diagnostic on the correlation matrix of explanatory variables,

since in presence of multicollinearity the variances associated to the path coefficients estima-

tors may become too large and leads to unreliable estimates [14, 15]. In presence of multicolli-

nearity, [12] recommend using ridge regression, which can obtain the solution to the vector

parameters, even with significant multicollinearity, by the sum of small constant values (k) in

the diagonal of the correlation matrix, as proposed by [16, 17]; or by excluding variables highly

associated as presented by [18].

Many studies regarding path analysis on soybean that aimed to study the effects of traits on

grain yield are available in the literature. [15, 19–24]. These studies show that it is usual to find

high correlations among traits and, consequently, multicollinearity. Thus, methods to over-

come multicollinearity must be studied, since most of these papers were not concerned to

compare different methods for overcome collinearity.

Furthermore, despite of the large number of scientific papers about path analysis in soy-

bean, no papers concerned grain oil content is found. Thus, the current study aimed to: a)

understand the correlation among soybean traits as well as estimate its direct and indirect

effects on oil content; b) verify the efficiency of ridge path analysis and trait culling to over-

come colinearity problems.

Material and methods

Experimental conduction

The experiment was installed in 2016, February 22, in the Soybean Genetic Breeding Pro-

gram’s greenhouse of the Plant Science Department of the University Federal of Viçosa,

Viçosa, Minas Gerais.

The experimental design was a randomized block with 5 replicates. Since the pots filled all

tables of the greenhouse, we arranged the treatments in blocks in order to account possible

environmental gradient. The treatments consisted of 34 F1 soybean populations originated

from a partial diallel and 15 commercial presented in S1 Appendix according to National Cul-

tivar Registration [25]. Those cultivars used as genitors comprised between 5.5 and 9.0 [26].

The data of commercial cultivars were the ones used for statistical analysis. The plots consisted

of two pots containing two plants of the same treatment (genotype). Sowing was performed in

a substrate composed of three parts soil, two parts sand, and one part of organic substrate. The

greenhouse was adapted using lamps in order to adjust the photoperiod and provide an appro-

priate environmental since the photoperiod is critical as the flowering inductor in soybean

[27].
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The experiment was carried in accordance with the recommendations of [28]. Twelve vege-

tative, productive, and grain quality traits were evaluated in each plant as they reached the

appropriate phenological stage, according to [29] as described in Table 1.

Genetic-statistical analysis

The genetic parameters were estimated and the genetic values predicted by analyzing only the

genitors’ information. The statistical analyses were performed with the genetics and statistics

software SELEGEN-REML/BLUP as described by [30, 31], using the following statistical

model:

y ¼ Xr þ Zg þ e;where : ð1Þ

Where y is an (gr) x 1 vector of response variable, being g and r the number of genotypes and

replicates, respectively; r is an (r) x 1 vector of unknown fixed effects fixed effects of replicates;

g is an (g) x 1 vector of random effects of genetic values; and e is an (gr) x vector of random

effects of error. X (g x r) and Z (r x g) are the incidence matrix.

The significance of the random effect was obtained by the likelihood ratio test by the analy-

sis of deviance as recommended by 30. The analysis of deviance is derived from the difference

between the deviance of the complete model and reduced model missing the effect which must

be tested using chi-squared test with one degree of freedom [30, 32].

After obtaining the genetic values, we estimated the correlations between the traits. Then, a

multicollinearity diagnosis in the original correlation matrix (matrix R) composed of 11

explanatory traits was performed. The multicollinearity diagnosis was performed considering

the condition number as stated by, therefore, the matrices were classified as with weak, moder-

ate, or strong collinearity for condition numbers lower than 100, between 100 and 1000, and

greater than 1000, respectively [32].

Two procedures were used to address the problems caused by collinearity. Firstly, the path

analysis through the ridge regression onto matrix R (Fig 1) as proposed by [16, 17] and sec-

ondly, traditional path analysis after eliminating traits which showed high correlation with

another (trait culling). For the path analysis with trait culling, two new correlation matrices

were obtained: R1 and R2 by the elimination of different traits in each matrix, and the tradi-

tional path analysis were run as shown in the diagrams (Figs 2 and 3, respectively). The traits

eliminated were chosen considering its correlation with other traits kept in the matrix and

how often they are evaluated in soybean breeding programs, for example: HF and HM are

Table 1. Code, description and assessment methodology of traits evaluated in soybean plants.

CODE DESCRIPTION ASSESSMENT METHODOLOGY

DF Days to Flowering from emergency stage (VE stage) until beginning bloom (R1 stage)

HF Height of plants on Flowering from the base until the last apical meristem at R1 stage

DM Days to Maturity measured from the VE stage until full maturity (R8 stage)

HD Hypocotyl Diameter measured 2 centimeters below the cotyledon node at R8 stage

HM Height of plants on Maturity measured from the base to the last apical meristem at R8 stage

NP Number of Pods per plant number of pods per plant measured at R8 stage

NN Number of Nodes per plant number of nodes in the main stem per plant measured at R8 stage

NB Number of Branches per plant number of lateral branches per plant measured at R8 stage

NG Number of Grains per plant measured at R8 stage

MG Mass of Grains per plant corrected to 13% of humidity

OC Oil content of grains measured in percentage of soybean intact grains at R8 stage and corrected to 13% of humidity

PC Portein content of grains

https://doi.org/10.1371/journal.pone.0233290.t001
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highly correlated (0.92) and HF is less frequently measured in soybean breeding. Herewith, the

reduction of collinearity was expected.

To establish the constant value K, the direct effects were plotted in a graph as a function of

the values of K. The minimum value of K that provided stable estimates was chosen to run the

analysis, as recommended by [12].

Simulation of a new dataset and validation of the path analysis procedures

To validate the results obtained with the experimental data, one hundred of new populations

composed of 100 individuals were simulated using the means and covariance matrix of the

original dataset in order to keep biological sense in the variables. The large number of simu-

lated populations of few individuals avoids the reproduction of results obtained with original

dataset.

Then, one correlation matrix was estimated for each population. After obtained the correla-

tion matrices for each population the same procedures of path analysis were adopted to the

simulated dataset. The same set of variables and procedures performed for R, R1 and R2 were

also performed respectively for simulated matrices Rs’s, R1s’s and R2s’s.

The best linear unbiased predictions (BLUPs) of the genotypes and variance components

were estimated using the software SELEGEN-REML/BLUP [31]; and the correlation coeffi-

cients, path analysis, and multicollinearity diagnosis were performed for real data using the

software GENES [33] and for simulated data using R software 3.5.3 [34].

Fig 1. Path analysis diagram for matrices R and Rs’s. Oil content was considered the main trait and DF—days to

flowering; HF—height of plants on flowering; DM—days to maturity; HD—hypocotyl diameter; HM—height of plants

on maturity; NP—number of pods per plant; NN—number of nodes in the main stem per plant; NB—number of

branches per plant; NG—number of grains per plant; MG—mass of grains per plant; PC—protein content in grains;

OC—oil content in grains and ERV–effect of residual variable, the explanatory variables.

https://doi.org/10.1371/journal.pone.0233290.g001
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Results

Significant genetic variability was found for all vegetative, reproductive and grain quality traits.

The lowest and the greater heritability (h2) estimate were found for OC (0.368) and DF (0.992)

respectively (Table 2). Grain quality traits (OC and PC) and MG showed lower heritability esti-

mated than most of traits. Accuracy (râa) values varied from 0.854 for OC to 0.992 for DF. The

experimental coefficients of variation (CVe%) varied from 2.81 for PC to 20.3 for NS. Geno-

typic coefficient of variation (CVg%) ranged from 32.1 for HF to 3.00 for PC and CVg% values

were greater than CVe% for all traits. The relative coefficient of variation, which is the ratio

between the CVg% and CVe% ranged from 20.3 for HF and 2.81 for NP.

Genotypic values prediction for each genotype is presented in Table 3 and correlation coef-

ficients estimated between genetic values are presented in Table 4. The correlation coefficients

indicates that MG is high influenced by DF, DM, NN, and NP. Besides this, MG was more cor-

related to NP (0,79). With the respect to the oil content, NS showed the greater correlation

with OC (0.75). The oil content was also strongly correlated with the yield components NN

(0.64), NP (0.65), NG (0.67) and also with MG (0.67). High and significant correlations were

found for number of pods (NP) and NN (0.88), and for NN and DM (0.86). Regarding the

traits of grain quality, a high and negative correlation were found for PC × NS (-0.56),

PC × NG (-0.53), and PC × OC (-0.60). The means of the correlation coefficients from the 100

Fig 2. Path analysis diagram for matrices R1 and R1s’. Oil content was considered the main trait and DM—days to maturity; HD—hypocotyl

diameter; HM—height of plants on maturity; NP—number of pods per plant; NN—number of nodes in the main stem per plant; NG—number of

grains per plant; MG—mass of grains per plant; PC—protein content in grains; OC—oil content in grains and ERV–effect of residual variable the

explanatory variables.

https://doi.org/10.1371/journal.pone.0233290.g002
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Fig 3. Path analysis diagram for matrices R2 and R2s’s. Oil content was considered the main trait DM—days to maturity; HD—hypocotyl diameter;

HM—height of plants on maturity; NN—number of nodes in the main stem per plant; NG—number of grains per plant; MG—mass of grains per plant;

PC—protein content in grains; OC—oil content in grains and ERV–effect of residual variable the explanatory variables.

https://doi.org/10.1371/journal.pone.0233290.g003

Table 2. Genetic and environmental parameters estimated for days to flowering (DF), height of plants on flowering (HF), days to maturity (DM), hypocotyl diame-

ter (HD), height of plants on maturity (HM), number of pods per plant (NP), number of nodes in the main stem per plant (NN), number of branches per plant

(NB), number of grains per plant (NG), mass of grains per plant (MG), oil content in grains (OC), and protein content in grains (PC) evaluated in 15 soybean

genotypes.

Parameters DF HF DM HD HM NP NN NB NG MG OC PC

σ2
g

† 34.3 � 201 � 90.2 � 0.333 � 174 � 52.5 � 1.84 � 0.486 � 151 � 2.85 � 0.667 � 1.38 �

σ2
e 2.81 24.4 28.5 0.228 71.9 10.6 0.544 0.832 65.4 1.79 1.24 1.21

σ2
f 37.1 224 119 0.561 246 63.2 2.39 1.32 217 4.64 1.91 2.58

h2
g 0.924 0.891 0.76 0.593 0.708 0.832 0.772 0.368 0.698 0.613 0.35 0.532

râa 0.992 0.988 0.97 0.938 0.961 0.98 0.972 0.863 0.959 0.942 0.854 0.922

CVg% 14.09 32.1 8.07 11.5 19.5 23.9 11.206 15.5 18.4 14.8 4.28 3

CVe% 4.03 11.2 4.53 9.54 12.5 10.8 6.091 20.3 12.1 11.7 5.84 2.81

CVr 3.49 2.86 1.78 1.21 1.56 2.22 1.84 0.764 1.52 1.26 0.733 1.07

PEV 0.552 4.76 5.36 0.04 13.3 2.04 0.103 0.124 12 0.319 0.181 0.206

SEP 0.743 2.18 2.31 0.2 3.64 1.43 0.321 0.352 3.47 0.565 0.425 0.453

Mean 41.5 44.1 118 5.01 67.8 30.3 12.1 4.49 66.8 11.4 19.1 39.1

� Significant at the 0.01 probability level by the LRT test (Likelihood Ratio Test) using chi-squared test with one degree of freedom;
†σ2

g = genotypic variance; σ2
e = residual variance; σ2

f = individual phenotypic variance; h2
g = wide hereditability of individual plots; râa = selection accuracy of

genotypes, assuming no plots lost; CVg% = genotypic coefficient of variation; CVe% = residual coefficient of variation; CVr = CVg/CVe = relative coefficient of

variation; PEV = prediction error variance, assuming no plots lost; SEP = standard deviation of predicted genetic values, assuming no plots lost and Mean = general

mean of three experiment.

https://doi.org/10.1371/journal.pone.0233290.t002

PLOS ONE Overcoming collinearity in path analysis of soybean oil content

PLOS ONE | https://doi.org/10.1371/journal.pone.0233290 May 22, 2020 6 / 15

https://doi.org/10.1371/journal.pone.0233290.g003
https://doi.org/10.1371/journal.pone.0233290.t002
https://doi.org/10.1371/journal.pone.0233290


simulated populations showed to be very similar to those estimated from the original dataset

as also shown in Table 4.

Multicollinearity diagnosis analysis showed severe multicollinearity for matrix R; moderate,

but very close to the limit to be weak for matrix R1 (not contemplating the traits DF, HF and

NB); and weak for matrix R2 (not contemplating the traits DF, HF, NN and NB) (Table 5).

There was no direct or indirect effect higher than the residual effect (0.585) and the deter-

mination coefficient was not satisfactory (0.657) for matrix R (Table 6). For the R1 matrix,

path analysis showed high determination coefficient (0.856) and the effect of the residual vari-

able was outdone by direct effects of traits on OC (Table 7). The traits DM, HD, HM, and NG

presented direct effects with sign opposite to the correlation coefficient in analysis of the

matrix R1. A weak association of DM and HM with OC was observed. On the other hand, NP,

NN, and MG were noticed to be highly associated with OC by the direct effects 0.427, 0.632

and 0.967.

Strong direct effects of NN (0.804) and MG (1.05) on OC were found (Table 8). The ERV

(0.410) and R2 (0.832) found for path analysis on matrix R2 fitted better than the analysis of

the matrix R, but not as well as the analysis of the matrix R1. Analysis of the matrix R2 revealed

results very similar to those of matrix R1.

The path analyses on Rs’s matrices revealed a lower average k-value (0.334) and a higher

determination coefficient (0.701) as presented in Table 9. The same promising traits (NP, NN

and MG) for indirect selection in matrices R1 were also appointed by path analysis on R1s’s

matrices whose average estimates are shown in Table 9. The average condition number esti-

mated for simulated populations were slightly greater than those estimated for the original

dataset.

Table 3. Genotypic values (u + g) of the genotypes evaluated for days to flowering (DF), height of plants on flowering (HF), days to maturity (DM), hypocotyl diam-

eter (HD), height of plants on maturity (HM), number of nodes in the main stem per plant (NN), number of pods per plant (NP), number of branches per plant

(NB), number of grains per plant (NG), mass of grains per plant (MG), oil content in grains (OC), and protein content in grains (PC) evaluated in 15 soybean

genotypes.

Variety Traits

DF HF DM HD HM NN NP NB NG MG OC PC

u + g

BMX Apolo RR 36.0 21.4 106.0 4.5 45.4 20.9 10.1 3.5 54.2 9.0 17.9 41.2

DM 5958 IPRO 34.4 28.2 106.2 4.0 51.2 23.4 10.9 4.4 54.1 9.1 19.4 38.4

NA 5909 RR 35.2 42.7 107.4 4.6 72.4 26.1 10.5 4.9 60.0 10.7 18.8 38.6

TMG 7062 IPRO 36.7 35.6 103.5 4.7 59.5 22.1 10.9 4.1 53.0 10.9 18.9 38.8

DM 6563 IPRO 36.7 30.6 114.1 4.8 61.2 26.6 11.9 3.7 64.5 10.9 19.0 38.0

BMX Potência RR 37.1 29.7 111.3 4.7 59.9 24.0 11.3 4.2 58.6 9.7 18.3 39.6

BMX Desafio RR 34.3 30.8 117.3 5.6 62.7 23.8 11.7 3.9 58.2 10.8 18.1 40.2

M 7739 IPRO 45.4 50.5 119.4 5.5 66.5 33.1 12.3 5.0 76.4 12.5 19.5 37.6

P98Y30 RR 44.8 56.7 123.3 5.0 79.9 37.1 13.6 5.5 80.1 12.9 20.6 38.8

M8349 IPRO 45.4 46.0 124.3 5.1 63.7 35.5 12.6 5.0 82.6 13.9 19.8 37.8

TMG 132 RR 47.4 52.0 128.8 4.8 70.4 36.5 13.3 5.1 80.3 11.2 19.1 38.8

M 9056 RR 51.2 65.1 127.3 5.8 94.1 42.6 15.0 5.0 88.4 13.4 19.5 38.2

M 8221 RR 46.2 50.7 119.7 5.8 69.2 40.8 12.5 4.5 66.8 12.3 19.0 40.3

P98N71 45.8 57.1 131.2 4.9 76.3 31.1 13.1 4.5 61.0 10.9 19.3 39.8

Conquista 46.3 64.0 125.7 5.5 84.6 31.0 12.1 4.1 63.6 13.4 19.3 40.1

u + g = general mean summed to genotypic effects for each genotype.

https://doi.org/10.1371/journal.pone.0233290.t003

PLOS ONE Overcoming collinearity in path analysis of soybean oil content

PLOS ONE | https://doi.org/10.1371/journal.pone.0233290 May 22, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0233290.t003
https://doi.org/10.1371/journal.pone.0233290


Discussion

Genetic control and variance components

The genetic variability noticed between soybean cultivars shows that they can be used as geni-

tor in breeding programs. The variability between genitors is fundamental to generate segre-

gating populations that provide genetic gains [7].

Low heritability and accuracy were expected for mass of grains and quality traits, since they

are controlled by a larger number of genes and are more affected by environmental factors [5,

6]. The values of accuracy found in this research are considered high according to [35]. These

results indicate good experimental quality; thus, the data set and data analysis can be used in

trustworthy inferences by researchers.

According a classification proposed by [36] the residual coefficients of variation (CVe%)

were classified as low which indicates good experimental quality. The greatest value of CVe%

was found for number of branches. According to [37] soybean plants have the ability to adjust

the number of branches to compensate for the distance from other plants and intercept the

maximum amount of light. The authors named this phenotypic plasticity. Despite equal spac-

ing between pots, randomizing the treatments inside the blocks induced different levels of

competition to the same genotype in different blocks. This effect was accounted for the envi-

ronmental effects, therefore, decreases the coefficient of variance.

Table 4. Estimates of genotypic correlation between the traits DF, HF, DM, HD, HM, NP, NN, NB, NG, MG, OC and PC for fifteen soybean genotypes from the

original data set below the diagonal and for the simulated populations above the diagonal, including the standard deviation bellow.

Traits DF HF DM HD HM NP NN NB NG MG OC PC

DF 1 0.9 0.86 0.61 0.75 0.91 0.86 0.61 0.81 0.78 0.59 -0.19

0.02 0.03 0.06 0.04 0.02 0.03 0.06 0.04 0.04 0.07 0.1

HF 0.9�� 1 0.82 0.6 0.92 0.83 0.8 0.65 0.68 0.8 0.65 -0.2

0.03 0.06 0.01 0.03 0.03 0.06 0.05 0.04 0.07 0.1

DM 0.86�� 0.82�� 1 0.59 0.72 0.79 0.86 0.51 0.71 0.69 0.51 -0.1

0.07 0.05 0.05 0.03 0.08 0.05 0.06 0.09 0.11

HD 0.62� 0.61� 0.59� 1 0.62 0.63 0.58 0.22 0.5 0.73 0.14 0.06

0.06 0.06 0.08 0.1 0.07 0.05 0.11 0.1

HM 0.75�� 0.92�� 0.73�� 0.63� 1 0.73 0.79 0.56 0.62 0.73 0.53 -0.19

0.04 0.03 0.07 0.05 0.04 0.08 0.1

NP 0.91�� 0.83�� 0.78�� 0.65�� 0.73�� 1 0.88 0.72 0.87 0.78 0.65 -0.29

0.03 0.05 0.02 0.04 0.06 0.09

NN 0.86�� 0.80�� 0.86�� 0.59� 0.79�� 0.88�� 1 0.64 0.85 0.7 0.64 -0.33

0.06 0.03 0.06 0.07 0.09

NB 0.62� 0.66� 0.51� 0.24 0.58� 0.72�� 0.65�� 1 0.77 0.56 0.76 -0.57

0.04 0.06 0.04 0.07

NG 0.81�� 0.68� 0.72�� 0.52� 0.62� 0.87�� 0.85�� 0.77�� 1 0.77 0.66 -0.54

0.04 0.06 0.07

MG 0.78�� 0.81�� 0.69�� 0.73�� 0.73�� 0.79�� 0.70�� 0.57�� 0.77�� 1 0.67 -0.36

0.06 0.09

OC 0.60� 0.66� 0.51 0.16 0.54� 0.65�� 0.64�� 0.75�� 0.67�� 0.67�� 1 -0.6

0.06

PC -0.19 -0.2 -0.09 0.05 -0.19 -0.28 -0.33 -0.56� -0.53� -0.36 -0.60� 1

� Significant at the 0.05 probability level;

�� Significant at the 0.01 probability level according to Mantel’s test.

https://doi.org/10.1371/journal.pone.0233290.t004
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Table 5. Eigenvalues, condition number (CN) and its standard deviations between parenthesis of the correlation matrices R, R1, R2, Rs, R1s and R2s between explan-

atory variables.

Rank Eigenvalues

R† R1 R2 Rs R1s R2s

1 7.67 5.13 4.72 7.65(0.28) 5.46(0.21) 4.61(0.20)

2 1.40 1.36 1.11 1.44(0.16) 1.19(0.11) 1.19(0.11)

3 0.590 0.550 0.388 0.618(0.09) 0.534(0.09) 0.523(0.09)

4 0.454 0.338 0.336 0.444(0.06) 0.336(0.05) 0.317(0.05)

5 0.314 0.282 0.240 0.302(0.05) 0.203(0.03) 0.185(0.03)

6 0.226 0.183 0.128 0.215(0.03) 0.150(0.03) 0.121(0.02)

7 0.147 0.111 0.077 0.139(0.02) 0.075(0.01) 0.050(0.01)

8 0.104 0.048 0.096(0.01) 0.047(0.01)

9 0.058 0.054(0.01)

10 0.037 0.033(0.01)

11 0.004 0.003(0.00)

CN 2081 105 86.5 2337(559.91) 119(22.53) 95.3(18.22)

Multicollinearity level Severe Moderate Weak Severe Moderate Weak

†R and Rs = original set of the correlation matrix between explanatory variables from original and simulated dataset, respectively; R1 and R1s = correlation matrix with

trait culling to three explanatory variables from original and simulated dataset, respectively; R2 and R2s = correlation matrix with trait culling to four explanatory

variables from original and simulated dataset, respectively.

https://doi.org/10.1371/journal.pone.0233290.t005

Table 6. Estimates of direct and indirect effects for: DF, HF, DM, HD, HM, NP, NN, NB, NG, MG and PC on OC evaluated in 15 soybean genotypes onto the matrix

R.

Explanatory variables

Effect DF HF DM HD HM NP NN NB NG MG PC

Direct on OC 0.035 0.141 0.019 -0.207 0.020 0.086 0.105 0.196 0.022 0.216 -0.205

Indirect via DF - 0.032 0.031 0.022 0.027 0.032 0.031 0.022 0.029 0.028 -0.007

Indirect via HF 0.127 - 0.115 0.086 0.131 0.117 0.113 0.094 0.096 0.114 -0.029

Indirect via DM 0.017 0.016 - 0.011 0.014 0.015 0.016 0.010 0.014 0.013 -0.002

Indirect via HD -0.128 -0.126 -0.122 - -0.129 -0.134 -0.121 -0.049 -0.106 -0.151 -0.010

Indirect via HM 0.015 0.018 0.014 0.012 - 0.014 0.016 0.011 0.012 0.014 -0.004

Indirect via NP 0.079 0.071 0.068 0.056 0.063 - 0.076 0.063 0.075 0.068 -0.024

Indirect via NN 0.090 0.084 0.090 0.061 0.083 0.092 - 0.068 0.089 0.073 -0.034

Indirect via NB 0.121 0.130 0.101 0.046 0.113 0.142 0.126 - 0.151 0.111 -0.109

Indirect via NG 0.018 0.015 0.016 0.012 0.014 0.019 0.019 0.017 - 0.017 -0.012

Indirect via MG 0.169 0.174 0.148 0.158 0.158 0.170 0.152 0.122 0.167 - -0.077

Indirect via PC 0.039 0.041 0.018 -0.010 0.040 0.057 0.067 0.114 0.108 0.073 -

Total† 0.60 0.66 0.51 0.16 0.54 0.65 0.64 0.76 0.67 0.67 -0.60

R2 0.657

K 0.445

ERV 0.585

†Total = correlation coefficient between the trait and OC; R2 = Determination coefficient; K = constant used in the analysis and; ERV = effect of the residual variable.

https://doi.org/10.1371/journal.pone.0233290.t006
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According to [38] an statistic usually employed on genetic evaluations is the ratio between

the genetic coefficient of variation and the experimental coefficient of variation which is called

relative coefficient of variation (CVr) and is related to experimental accuracy. Estimates of rel-

ative CVr higher than 1 indicate more accurate and precise inferences about the rank of the

genotypes, which was found for 10 traits with the exception of NB and OC.

Genetic correlation among traits and multicollinearity diagnosis

The traits days to flowering, days to maturing, number of nodes and number of pods were

found strongly correlated to mass of grains. These results corroborate with results for genetic

correlation found by [39].

Table 7. Estimates of direct and indirect effects for: DM, HD, HM, NP, NN, NG, MG and PC on OC evaluated in 15 soybean genotypes onto the matrix R1.

Explanatory variables††

Effect DM HD HM NP NN NG MG PC

Direct on OC -0.126 -0.758 -0.110 0.427 0.632 -0.556 0.967 -0.223

Indirect via DM - -0.075 -0.092 -0.099 -0.109 -0.091 -0.087 0.011

Indirect via HD -0.449 - -0.474 -0.491 -0.445 -0.391 -0.556 -0.037

Indirect via HM -0.080 -0.069 - -0.081 -0.087 -0.069 -0.081 0.021

Indirect via NP 0.333 0.276 0.312 - 0.374 0.371 0.335 -0.119

Indirect via NN 0.543 0.371 0.500 0.554 - 0.536 0.443 -0.207

Indirect via NG -0.398 -0.286 -0.347 -0.483 -0.472 - -0.429 0.294

Indirect via MG 0.663 0.709 0.709 0.760 0.679 0.747 - -0.344

Indirect via PC 0.020 -0.011 0.043 0.062 0.073 0.118 0.079 -

Total† 0.51 0.16 0.54 0.65 0.64 0.67 0.67 -0.60

R2 0.856

ERV 0.379

†Total = correlation coefficient between the trait and OC; R2 = determination coefficient; and ERV = effect of the residual variable.
†† The traits DF, HF and NB were eliminated from the matrix R in originating the matrix R1.

https://doi.org/10.1371/journal.pone.0233290.t007

Table 8. Estimates of direct and indirect effects for: DM, HD, HM, NN, NG, MG, PC on OC evaluated in 15 soybean genotypes onto the matrix R2.

Explanatory variables††

Effect DM HD HM NN NG MG PC

Direct on OC -0.158 -0.744 -0.095 0.804 -0.347 1.05 -0.148

Indirect via DM - -0.094 -0.115 -0.136 -0.113 -0.018 0.014

Indirect via HD -0.440 - -0.466 -0.437 -0.384 -0.546 -0.036

Indirect via HM -0.069 -0.059 - -0.075 -0.059 -0.070 0.018

Indirect via NN 0.690 0.472 0.636 - 0.682 0.564 -0.260

Indirect via NG -0.249 -0.179 -0.217 -0.295 - -0.268 0.184

Indirect via MG 0.718 0.768 0.768 0.735 0.809 - -0.372

Indirect via PC 0.013 -0.007 0.029 0.048 0.079 0.054 -

Total† 0.51 0.16 0.54 0.64 0.67 0.67 -0.60

R2 0.832

ERV 0.410

†Total = correlation coefficient between the trait and OC; R2 = determination coefficient; and ERV = effect of the residual variable.
†† The traits DF, HF, NN and NB were eliminated from the matrix R in originating the matrix R2.

https://doi.org/10.1371/journal.pone.0233290.t008
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The strong correlation between oil content and grain yield found is reinforced by [40]. The

high correlation of number of nodes and number of pods with grains yield are reported in the

literature as well as found in this research [24, 39]. This is due to the grains yield comes from

pods which are developed in axillary buds located on plant stems or branches originated from

the nodes. Besides this, the high correlation between number of nodes and days to maturing

shows that late maturing genotypes tend to present higher grain yield per plant. These results

agree with those of [15].

A strong and negative correlation between oil and protein content were also found by [3,

41, 42] in molecular markers studies. [43] suggested that both traits are controlled by the same

gene or group of genes, which were later reported as a major QTL in the crhomossome 20 by

[44].

The elimination of traits that are strongly correlated and have biological interpretations

such as DF and DM or HF and HM was shown to be effective to overcome multicollinearity.

Thus, matrix R1 or R2 each contains just one of these traits from these pairs. This discussion is

supported by the results of simulated data presented in Table 4 that showed very similar results

for 100 populations. However the matrices comprised of the same set of variables presented

the same level of collinearity problems.

Path analysis results and comparison among procedures

The poor adjustment of the ridge path analysis onto R and Rs’s matrices and the greater effects

of the residual variable in comparison with the direct effects, leads us to affirm that the esti-

mates are not reliable (Tables 6 and 8). [15] obtained direct effect estimates higher than 1 for

two traits in a traditional path analysis on a correlation matrix with strong collinearity prob-

lems for soybean. The authors also ran a ridge analysis, which gave estimates between 0 and 1,

and these two traits did not show relevant direct effects. The K value used by the authors was

of 0.05, whereas the K value needed to overcome collinearity in our original and simulated

dataset were much greater. [12] affirm that high K values lead to higher bias in the regression

and may provide results without biological mean.

High values for effects of residual variable (ERV) may be found when the number of

explanatory variables is not enough to explain variation of the main trait. However, the esti-

mates for matrix R1 showed that even after reducing the number of explanatory variables, it

was possible to explain a large part of the total variance. This result was also observed by [14]

when they found greater regression adjustment after trait culling of the explanatory variables.

[10] affirm that the exclusion of variables allows estimating path coefficients with biological

meaning, what is an advantage of trait culling.

Table 9. Mean direct effects and standard deviation between parentheses for explanatory traits, k-value (K), effect of residual variable (ERV) and R-squared (R2) of

the path analysis for the simulated populations.

DF HF DM HD HM NP NN NB NG MG PC K ERV R2

Rs’s† 0.011 0.169 0.016 -0.265 -0.013 0.099 0.140 0.211 -0.024 0.283 -0.203 0.334 0.544 0.701

(0.04) (0.05) (0.04) (0.09) (0.07) (0.04) (0.07) (0.04) (0.08) (0.1) (0.04) (0.14) (0.05) (0.04)

R1s’s - - -0.124 -0.772 -0.106 0.416 0.631 - -0.552 0.969 -0.214 - 0.363 0.866

- - (0.10) (0.10) (0.07) (0.11) (0.16) - (0.12) (0.11) (0.07) - (0.04) (0.03)

R2s’s - - -0.146 -0.762 -0.091 - 0.803 - -0.357 1.048 -0.143 - 0.394 0.844

- - (0.10) (0.10) (0.08) - (0.16) - (0.12) (0.11) (0.07) - (0.04) (0.03)

†Rs’s = matrices from simulated dataset composed of DF, HF, DM, HD, HM, NP, NN, NB, NG, MG and PC; R1s’s = matrices from simulated dataset composed of DM,

HD, HM, NP, NN, NG, MG and PC; R2s’s = matrices from simulated dataset composed of DM, HD, HM, NN, NG, MG and PC.

https://doi.org/10.1371/journal.pone.0233290.t009

PLOS ONE Overcoming collinearity in path analysis of soybean oil content

PLOS ONE | https://doi.org/10.1371/journal.pone.0233290 May 22, 2020 11 / 15

https://doi.org/10.1371/journal.pone.0233290.t009
https://doi.org/10.1371/journal.pone.0233290


A weak association of HM with OC was observed by the low direct and indirect effects,

although HM showed significant correlation with OC. Likewise, a high correlation between

PC and OC and weak direct effect was noticed. These results proves that the correlation coeffi-

cient does not necessarily give the best idea of association between variables and researches

need to be careful at choose traits for indirect selection based just on correlation coefficient.

On the other hand, NP, NN and MG are recommended to be used in indirect selection for

OC, since the magnitude of direct effects were close to the correlation, which is the sum of

direct and indirect effects involving each trait. In addition, these traits are easier, cheaper, and

quicker to measure than laboratory procedures to measure OC. Besides this, NP and NN may

be evaluated before complete maturation, which allows earlier selection, and MG is routinely

evaluated in soybean experiments. In order to achieve genetic gains on OC we also recom-

mend the use of a selection index including the traits that showed high direct effects on OC.

The direct effect of MG on OC from path analysis on R2 matrix was 1.05, although estimates

greater than 1 were not expected, once the matrix R2 showed weak collinearity problems. The

path analysis on R2s’s matrices also presented means direct effects of MG on OC higher than 1.

The strong and positive direct effects of NN and MG on OC showed in R1 analysis were con-

firmed by path analysis on R2 and R2s’s matrices and encourage researches to use them for

indirect selection. The same discussion mentioned above regarding PC in matrix R1 can be

applied to matrix R2.

Although the matrix R1 showed moderate to strong problems with collinearity according to

[45], the path analysis onto this set of variables was the most suitable for this study, since it pro-

vided the greatest determination coefficient of the regression, the lowest effect of the residual

variable, and all effects were estimated inside the parameter space, which ranges from -1 to 1

for direct, indirect and residual variable effects. These results corroborate with those found by

[14] when the authors tested three methods of path analysis (traditional, ridge path analysis

and trait culling) and concluded that the trait culling provided a fit statistics more accurate.

The discussions about the quality of the path analysis onto R1 matrix were validated by path

analysis onto R1s’s matrices according to the great regression adjustment (0.844) and the high

effect of the residual variable. Furthermore, the choice of the R1 matrix allows considering one

more variable in the study (NP).

The ridge path analysis was not an appropriated approach for overcome the collinearity

problem, since a low R2 (0.657) and high ERV (0.585) were found. Besides of this, no direct

effects greater than ERV were found for analysis onto matrices R and Rs’s (Tables 6 and 8).

Path analysis after trait culling for matrices R1 and R2 showed to be the best strategy for over-

come collinearity problem since it presented a well-fit of the regression denoted by the values

of R2 (0.856 and, 0.832 respectively) and direct effects greater than the ERV (0.379 and 0.410,

respectively). The results found onto simulated matrices supported these findings (Table 9). In

addition, trait culling is a simple technique and allows to the researcher exclude the variable

that contributes more to the collinearity considering its biological relationship with the main

trait.

Conclusions

There is a strong relation of causation of mass of grains per plant, number of nodes, and num-

ber of pods with the oil content in grains and they could be used for indirect selection. Trait

culling was more suitable and simpler strategy than ridge path analysis to overcome collinear-

ity problems.

Eliminate one between two similar traits biologically was efficient to reduce condition num-

ber and, consequently, overcome multicollinearity.
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de Genética; 1992.

9. Toebe M, Cargnelutti Filho A. Multicollinearity in path analysis of maize (Zea mays L.). J Cereal Sci.

Academic Press; 2013; 57: 453–462. https://doi.org/10.1016/j.jcs.2013.01.014

PLOS ONE Overcoming collinearity in path analysis of soybean oil content

PLOS ONE | https://doi.org/10.1371/journal.pone.0233290 May 22, 2020 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233290.s001
https://doi.org/10.1186/1471-2164-15-271
http://www.ncbi.nlm.nih.gov/pubmed/24712981
https://doi.org/10.1016/S1671-2927(09)60197-8
https://doi.org/10.1016/S1671-2927(09)60197-8
https://doi.org/10.1007/BF00224553
http://www.ncbi.nlm.nih.gov/pubmed/24166318
https://doi.org/10.1590/S0100-204X2010000500006
https://doi.org/10.1016/j.jcs.2013.01.014
https://doi.org/10.1371/journal.pone.0233290


10. Wright S. Wright_Correlation and Causation.pdf. J Agric Res. 1921; 20: 557–585. https://doi.org/10.

2307/3966855

11. Cruz CD, Carneiro PCS, Regazzi AJ. Modelos Biométricos Aplicados Ao Melhoramento Genético. 3rd
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