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A B S T R A C T   

The unsaturated hydraulic properties provide important theoretical and practical information about fluid flow in 
soils and rocks for a range of soil, environmental and engineering applications. In this study we used the 
evaporation (HYPROP) and chilled-mirror dew point (WP4C) methods to estimate the water retention and un-
saturated hydraulic conductivity curves of an Indiana Limestone carbonate rock sample. The obtained data were 
analyzed in terms of unimodal and bimodal VG (van Genuchten, 1980) and PDI (Peters et al., 2015) type 
functions. Bimodal functions were found to produce excellent descriptions for the unsaturated hydraulic data we 
measured, slightly better than the standard unimodal formulations. For our particular test using an Indiana 
Limestone rock sample, we did not find much improvement when accounting for film and corner flow using the 
PDI formulation, relative to the VG model. As far as we know, this is the first time the HYPROP methodology was 
applied to a rock sample.   

1. Introduction 

The hydraulic properties of unsaturated porous media provide 
important information about single- and multi-phase fluid flow in the 
subsurface. They are critical to addressing many theoretical and prac-
tical studies in the soil, hydrogeologic, agricultural, civil and petroleum 
engineering disciplines. A large number of experimental methodologies 
has been developed and tested over the years to estimate the water 
retention, θ(h), and unsaturated hydraulic conductivity, K(h) or K(θ), 
relationships, where θ is the volumetric water content, h is pressure 
head, and K the hydraulic conductivity. Most of the standard techniques, 
especially for the hydraulic conductivity, are suitable for intermediate or 
relatively wet conditions (Dane and Hopmans, 2002; Durner and Lip-
sius, 2005; Looney and Falta, 2000), although some can also be applied 
to the dry range, such as hot-air, centrifugation, or dew-point method-
ologies (Arya, 2002; Nimmo et al., 2002; Scanlon et al., 2002; Durner 
and Lipsius, 2005). 

One popular experimental approach has long been the evaporation 
method, starting with early studies by Gardner and Miklich (1962) and 
Wind (1968), and many others later (e.g., Wendroth et al. (1993) and 
Iden and Durner (2008), and references therein). Measurements of the 
evaporation rate and pressure head at multiple depths in the sample 
permit then the simultaneous estimation of the water retention and 
hydraulic conductivity curves, either using direct measurements or in-
verse procedures (e.g., Simunek et al., 1998). A popular recent version of 
the evaporation method involving semi-automated direct measurements 
is the HYPROP system (Peters et al., 2015; Peters and Durner, 2008; 
Schindler et al., 2010; among others), commercialized by the METER 
group (München, Germany). The HYPROP system involves pressure 
head measurements versus time at two depths within a short 5-cm 
sample as water evaporates from its surface, with the evaporation rate 
determined by continuous weighing of the column setup. 

Several studies successfully tested the HYPROP evaporation 
approach against multistep outflow and other methods (e.g., Schelle 
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et al., 2010; Zhuang et al., 2017), including tests against synthetic data 
generated with the Richards unsaturated flow equation (e.g., Bezerra- 
Coelho et al., 2018; Iden et al., 2019). Most of these and other studies 
used van Genuchten-Mualem (VG) type expressions (van Genuchten, 
1980; van Genuchten and Nielsen, 1985) for the unsaturated hydraulic 
functions, while Peters et al. (2015) used the equations of Kosugi (1996) 
as well as the PDI model of Peters and colleagues (Iden and Durner, 
2014; Peters, 2014) to account for the effects of film and corner flow in 
very dry soils. 

Most of the above techniques, including the HYPROP approach, 
typically work well for unconsolidated media, generally soils. While 
some of the techniques can be applied also to consolidated rocks, 
different approaches are more suitable for such media, such as mercury 
intrusion porosimetry, water adsorption or desorption measurements, 
centrifuge methods, or core flooding (Purcell, 1949; Dullien, 1979; Liu 
et al., 2016; Haghi et al., 2020). In this study we extend the HYPROP 
approach to a carbonate rock sample. The HYPROP results, augmented 
with WP4C (chilled-mirror dew point) water retention data in the dry 
range, are analyzed in terms of van Genuchten type hydraulic functions, 
assuming the presence of single-porosity (unimodal) or double-porosity 
(bimodal) pore systems. The data are for an Indiana Limestone car-
bonate rock sample extracted from a quarry in the USA, similar to those 
found in Brazilian and other oil-bearing pre-salt reservoirs. 

2. Experimental procedures 

Here we briefly review the HYPROP measurement system, as well as 
summarize WP4C and related experimental protocols used for this 
study, including how the data were analyzed in terms of functional 
descriptions of the hydraulic properties. Our studies were carried out 
using two samples of Indiana Limestone, a calcite-cemented grainstone 
carbonate rock. One standard rock sample was used for the HYPROP 
measurements, and a much smaller separate sample for the WP4C ex-
periments (taken from the same larger Indiana Limestone core we had). 
In addition, another standard sample was used to drill out plugs needed 
to cap the holes drilled for the two tensiometers (see Fig. 1). These plugs 
also originated from the same larger Indiana Limestone core used for the 
permeability and routine core analysis. The rock consisted of fossil 
fragments and concentric lamellar calcium carbonate particles (oolites) 

(Indiana Limestone Handbook, 1975). Petrographic and X-ray diffrac-
tion (XRD) analyses indicated that Indiana Limestone is made up nearly 
exclusively by calcite (99%), with very small amounts (about 1%) of 
quartz (Churcher et al., 1991; Drexler et al., 2019). 

2.1. The HYPROP measurement system 

To evaluate the relationship between volumetric water retention and 
the pressure head (negative capillary pressure, given in cm in this study) 
of the rock samples, we used the HYPROP evaporation method for the 
wet range (between saturation and pressure heads of about − 850 cm) 
and the WP4C psychrometer method for the dry range. Instrumentation 
for both approaches were obtained from the METER Group AG (Mün-
chen, Germany). 

Fig. 1A provides a schematic of the HYPROP setup involving pressure 
head measurements at two depths within a 5-cm long fluid-saturated 
sample. Water contents and fluid fluxes versus time are determined by 
automated weighing of the sample as water evaporates from the surface. 
Observed pressure heads, water contents, and evaporation fluxes are 
subsequently used to estimate the water retention and unsaturated hy-
draulic conductivity functions (Pertassek et al., 2015; Schindler et al., 
2010). The measurement range of the hydraulic conductivity at the wet 
side is restricted by limitations of the tensiometers to register very small 
pressure head differences, while limitations at the dry side are due to 
water outgassing, bubble formation and subsequent bubble expansion in 
the tensiometers, usually at about − 850 cm. 

Pressure heads versus time within the sample are recorded at two 
locations (1.25 cm and 3.75 cm from the evaporating surface), while the 
evaporation rate is obtained by automated weighing. Water retention 
and hydraulic conductivity data points are subsequently estimated from 
the average water content, the pressure heads provided by the two 
tensiometers, and the mean total head gradient between the two tensi-
ometers. The approach assumes that linear vertical distributions are 
present of the pressure head and the water content within the sample. 
These assumptions have been shown to be very much acceptable 
(Bezerra-Coelho et al., 2018; Peters et al., 2015). 

The standard HYPROP setup is suitable for cylindrical samples 
measuring 5 cm in height, and either 5 or 8 cm in diameter. For our 
experiments we used an Indiana Limestone sample having a diameter of 

Fig. 1. (A) Schematic of the HYPROP setup (after Schindler et al., 2010) for the Indiana Limestone sample. (B) Actual sample showing the two drilled holes for the 
tensiometers. (C) Plugs used to cap the holes after installation of the tensiometers. 
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only 3.85 cm. Since the sample’s diameter was smaller than the inner 
diameter of 5 cm, we used a 3D printer to construct an impermeable 
outside ring. A small rotary saw was used to drill circular holes with a 
diameter of 0.5 cm vertically through the rock sample to receive the 
tensiometers and a holder pin at the bottom (Fig. 1B). The tensiometers 
shafts were placed within the holes such that the middle of the tensi-
ometers cups were located at 1.25 and 3.75 cm from the bottom. Very 
small, fine silt-sized, crushed rock particles that remained from drilling, 
were used to ensure tight lateral contact between the tensiometer cups 
and the sample. The remaining open parts of the two holes above the 
tensiometers were capped with drilled-out plugs (Fig. 1C) from a 
neighboring sample of the same overall Indiana Limestone core we used. 
Wetted ground sample material was first placed around the tensiometer 
cups using a small syringe to again guarantee close contact between the 
plugs and the tensiometer cups, as well as laterally with the rock sample. 
The ground rock particles were compressed as much as possible to avoid 
creating artificial macropores. Additional details about the standard 
HYPROP system and the evaporation methodology are provided by 
Pertassek et al. (2015) and METER (2015). For our experiments we used 
the HYPROP setup for hydraulic measurements down to pressure heads 
of about − 850 cm. For measurements in the dry range we used the WP4C 
chilled-mirror dew point method. 

2.2. WP4C and other measurements 

Psychrometer (WP4C) measurements were performed on two 0.5 cm 
long Indiana Limestone samples having the same lateral dimensions as 
used for the HYPROP measurements. Using drippers, the sample were 
wetted to a water content at or slightly below full saturation to avoid 
hysteresis effects in the drying curves by starting at relatively wet con-
ditions. Drying was done stepwise using a desiccator. All WP4C mea-
surements were preceded by equilibrating the temperatures of the cup 

and the samples using a thermal equilibration plate as recommended by 
METER (München, Germany). WP4C evaluations started at approxi-
mately pF = 3.5 (about − 3000 cm pressure head), where pF = − log|h|, 
with h expressed in cm. The WP4C measurements continued until pF =
5.5 (about − 27,000 cm) when the weight variations could no longer be 
detected accurately. After the last WP4C measurements the samples 
were dried in an oven at 105 ◦C to check the dry weight of the samples. 

A DV-4000 Poropermeameter, an automatic steady-state gas 
permeameter-porosimeter system from Weatherford Laboratories 
(Houston, USA), was further used to measure the absolute permeability 
and porosity of the sample. The porosity was measured using Helium 
(He) gas and the absolute permeability, k, using Nitrogen gas (N2), with 
corrections for the Klinkenberg effect to account for the slippage of air in 
the sample (Klinkenberg, 1941). The corrected air permeability was 
automatically obtained internally by the DV-4000 equipment by 
measuring the permeability at several pressures and extrapolating to 
infinite pressure (WL, 2017). Measurements had a reliability range be-
tween 0.001 and 40,000 mD (millidarcies) for the absolute permeability. 
The saturated hydraulic conductivity for water was subsequently ob-
tained using the relation Ks = ρwgk/μ, where k is the permeability, ρw is 
the fluid density, g is gravitational acceleration and μ the fluid viscosity. 
These basic petrophysical measurements of porosity and the hydraulic 
conductivity at full saturation were fixed during analysis of the unsat-
urated data in terms of the hydraulic functions. 

2.3. Unsaturated hydraulic functions 

The measured data pairs of water content (θ) versus pressure head 
(h) as obtained with the HYPROP and WP4C experiments were fitted 
jointly using the HYPROP-FIT (Pertassek et al., 2015). Soil hydraulic 
properties for most scenarios were initially described using the standard 
van Genuchten-Mualem (VG) formulation given by (van Genuchten, 

Fig. 2. Observed HYPROP (circles) and WP4C (triangles) water retention (A) and hydraulic conductivity data as a function of volumetric water content (B) and 
pF (C). 
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1980) 

Se(h) =
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=
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where Se is effective saturation, θs and θr are the saturated and residual 
water contents, respectively, Ks is the saturated hydraulic conductivity, 
α and n are semi-empirical shape parameters, m = 1–1/n, and L is a pore- 
connectivity parameter. We additionally explored the performance of a 
dual-porosity (bimodal) extension of the hydraulic functions to account 
for the presence of distinct but interacting macropore and micropore 
regions. The functions we used are given by Durner (1994) and Priesack 
and Durner (2006): 
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(4)  

where Si, αi, ni, and mi (i = 1, 2) are the same as in Eqs. (1) and (2) for the 
macropore and micropore regions, respectively (or for the fracture and 
matrix regions if interpreted for unsaturated fractured rock), while w 
defines the division of the porous medium in macropore and micropore 
regions. We further tested the van Genuchten formulation assuming 
variable m and n values in Eq. (1) as described by van Genuchten and 
Nielsen (1985), as well as the PDI formulation by Peters et al. (2015), the 
latter accounting for capillary flow, film and corner flow and vapor flow. 
Because of their complex nature, we decided not to restate here the 

complete mathematical formulations of the extensions involving the 
variable m and n cases and the PDI formulation. 

Once the pressure heads and actual evaporation rates (estimated 
from the monitored sample weights) were obtained, the HYPROP-FIT 
analysis was applied to the measured data. HYPROP-FIT uses the root 
mean square error (RMSE) to quantify differences between the measured 
(yi) and calculated (yi

c) water retention and hydraulic conductivity data: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑np

i=1

1
np
(yc

i − yi)
2

√

[5]  

where np is the number of data points, and yi refers to either water 
content, θi, or the logarithm of the unsaturated hydraulic conductivity, i. 
e., log(Ki). The HYPROP-FIT analysis also provides values of the cor-
rected Akaike Information Criterion (AICc), usually a negative value. 
The larger the absolute AICc number, the more appropriate the model. 

3. Results and discussion 

Fig. 2 shows the observed HYPROP and WP4C water retention data, 
and the HYPROP derived hydraulic conductivity data, the latter plotted 
versus volumetric water content as well as the pF (=− log|h|, with h 
expressed in cm). The Indiana Limestone retention data reflect a 
somewhat bimodal pore size distribution, presumably in part due to fine 
calcite crystals lining the pores and creating microporosity, and in part 
perhaps due to intra-particle microporosity in some of the fossil frag-
ments and oolites. A study by Churcher et al. (1991) using thin sections 
and scanning electron microscopy showed that the porosity and 
permeability of these rocks are controlled mostly by the distribution of 
coarse pore-filling calcite cement. As compared to the water retention 
data, the hydraulic conductivity data did not show a similar clear 
bimodal behavior, mostly because they are outside of the micropore 
range identified with the WP4C data. The dual-porosity nature of our 
Indiana Limestone samples is consistent with several previous studies 

Fig. 3. Observed HYPROP (circles) and WP4C (triangles) volumetric water retention data fitted with the standard (m = 1–1/n) and variable (independent m and n) 
van Genuchten and PDI hydraulic functions. The plots show results for (A) the unimodal van Genuchten functions, (B) the unimodal PDI functions, (C) the bimodal 
van Genuchten functions and (D) the bimodal PDI functions. 
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showing the bimodal nature of Indiana Limestone rocks. For example, 
Mercury Injection Capillary Pressure (MICP) tests by Churcher et al. 
(1991) on Indiana Limestone samples showed very clear bimodal pore- 
size distributions. An NMR study by Dunn et al. (1994) similarly showed 
bimodality in the relaxation time and associated pore-size distributions, 
with the peak of the smaller pores being associated with irreducible 
saturation. 

We next analyzed the observed water retention and conductivity 
data in terms of the functional hydraulic descriptions in Section 2.2. 
Fig. 3 shows results for the water retention curve. Clearly, the traditional 

unimodal van Genuchten and PDI models (including the van Genuchten 
model with variable m and n parameters) did not match the data well 
due to the bimodal nature of the curves, while the bimodal equivalents 
provided excellent fits to the data. Fitted parameter values of the various 
models are listed in Table 1, while Table 2 compares the statistical re-
sults of the different optimizations. We also included in Table 1 the PDI 
parameters. While the unimodal PDI model improved slightly upon the 
unimodal van Genuchten equation, far better results were obtained 
using the bimodal functions. For these reasons we focus below only on 
the standard unimodal and bimodal van Genuchten functions assuming 
m = 1–1/n. The VG and PDI scenarios assuming variable m,n parameters 
are hence not further shown. 

Fig. 4 shows results for the standard unimodal and bimodal van 
Genuchten hydraulic conductivity functions, assuming m = 1–1/n, 
plotted again versus volumetric water content as well as the pressure 
head (the latter in terms of pF values). Results for the variable m,n 
functions were only marginally better, which was the case also for the 
PDI functions compared to the bimodal VG functions. The negligible 
differences between the classical VG functions and the PDI modifications 
within the range of available conductivity data is not surprising, since 
the expected differences between the VG and PDI formulations should 
occur primarily in the dry range of the conductivity function (>pF 3), 
which is not covered by our measurements. 

We note here that the various optimizations were carried out 
assuming fixed values of the saturated water content (θs) and the satu-
rated hydraulic conductivity (Ks) of the Indiana Limestone sample. 
These values were obtained by means of poropermeameter measure-
ments on samples IH2 and IH3. The values obtained for IH2 were 311 
mD (or 25.9 cm/d) for air, and 287 mD (or 23.9 cm/d) for water. IH3 
presented values of 400 mD (33.3 cm/d) for air, and 372 mD (30.9 cm/ 
d) for water. IH2 and IH3 further showed helium porosities of 0.185 and 
0.201 respectively. For our studies we used the IH3 data. 

The relative accuracy of the different formulations is best demon-
strated by comparing RMSE values of the fitted water content (RMSEθ) 
and the hydraulic conductivity (RMSElogK) data, as well as AICc values. 
Results for all scenarios are shown in Table 2. The data indicate indeed 
very little improvement when adopting variable m,n van Genuchten and 
PDI models, at least for our Indiana Limestone sample. This was the 
main reason for us not to further pursue those two approaches in this 
paper, which are far more complicated numerically since the formula-
tions lead to incomplete beta functions or hypergeometric functions 
(Dourado Neto et al., 2011; van Genuchten and Nielsen, 1985). 

Table 1 
Fitted parameter values for the VG and PDI unimodal and bimodal hydraulic 
formulations assuming the VG constraint that m = 1–1/n. Fixed values are 
indicated by an asterix (*).  

Parameter 
(unit) 

Unimodel VG 
model 

Bimodal VG 
model 

Unimodal PDI 
model 

Bimodal PDI 
model 

α (1/cm)  0.0270 –  0.0236 – 
n (–)  1.449 –  3.286 – 
θr (cm3/cm3)  0.008 0.0  0.119 0.0 
θs (cm3/cm3)  0.215* 0.215*  0.215* 0.215* 
Ks (cm/day)  30.9* 30.9*  30.9* 30.9* 
L (–)  − 0.611 0.159  0.251 2.43 
w1, w2 (–)  – 0.445; 0.555  – 0.427; 0.573 
α1, α2 (1/cm)  – 0.00048; 

0.0221  
– 0.00048; 

0.0217 
n1, n2 (–)  – 1.712; 3.146  – 1.645; 2.938 
θr (cm3/cm3)  0.008 0.0  0.119 0.0 
θs (cm3/cm3)  0.215 0.215  0.215 0.215 
pFdry  – –  5.0 6.01 
ω (–)  – –  0.00730 0.00508 
A (–)  – –  − 1.721 − 1.681  

Table 2 
Statistical analysis for the fitted water retention and hydraulic conductivity 
models.  

Statistical 
Criterion 

Unimodel VG 
model 

Bimodal VG 
model 

Unimodal PDI 
model 

Bimodal PDI 
model 

- - - - m = 1–1/n restriction - - - - - 
RMSEθ 0.0099 0.0024 0.0030 0.0020 
RMSElogK 0.3803 0.1678 0.0460 0.0412 
AICc − 1156 − 1466 − 1478 − 1563 
- - - - variable m and n - - - - - 
RMSEθ 0.0068 0.0018 0.0027 0.0019 
RMSElogK 0.5419 0.0571 0.0944 0.0515 
AICc − 1189 − 1585 − 1487 − 1572  

Fig. 4. Observed HYPROP hydraulic conductivity curves fitted with the unimodal and bimodal van Genuchten equations assuming m = 1–1/n.  
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4. Conclusions 

To the best of our knowledge, this is the first time HYPROP and 
WP4C were used in conjunction to obtain estimates of the water reten-
tion and hydraulic conductivity functions of a rock sample. The tested 
rock, Indiana Limestone, is a carbonate formation sample showing 
bimodal porosity behavior as evidenced from both our measured 
retention data, and confirmed by several previous studies. Goodness of 
fit values showed better results when the van Genuchten bimodal 
models were fitted to the data, as reflected visually from the fitted data 
and also seen from RMSE and AICc statistical analyses. Bimodal models 
indicate the presence of interacting macropore and micropore parts of 
the medium, in our case each occupying approximately 50% of the pore 
space. The HYPROP and WP4C data relating volumetric water content 
and pressure head could be described well with the bimodal van Gen-
uchten hydraulic functions. 
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