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Abstract

Functional screening of metagenomic libraries is an effective approach for identification of

novel enzymes. A Caatinga biome goat rumen metagenomic library was screened using

esculin as a substrate, and a gene from an unknown bacterium encoding a novel GH3

enzyme, BGL11, was identified. None of the BGL11 closely related genes have been previ-

ously characterized. Recombinant BGL11 was obtained and kinetically characterized. Sub-

strate specificity of the purified protein was assessed using seven synthetic aryl substrates.

Activity towards nitrophenyl-β-D-glucopyranoside (pNPG), 4-nitrophenyl-β-D-xylopyrano-

side (pNPX) and 4-nitrophenyl-β-D-cellobioside (pNPC) suggested that BGL11 is a multi-

functional enzyme with β-glucosidase, β-xylosidase, and cellobiohydrolase activities.

However, further testing with five natural substrates revealed that, although BGL11 has mul-

tiple substrate specificity, it is most active towards xylobiose. Thus, in its native goat rumen

environment, BGL11 most likely functions as an extracellular β-xylosidase acting on hemi-

cellulose. Biochemical characterization of BGL11 showed an optimal pH of 5.6, and an opti-

mal temperature of 50˚C. Enzyme stability, an important parameter for industrial application,

was also investigated. At 40˚C purified BGL11 remained active for more than 15 hours with-

out reduction in activity, and at 50˚C, after 7 hours of incubation, BGL11 remained 60%

active. The enzyme kinetic parameters of Km and Vmax using xylobiose were determined to

be 3.88 mM and 38.53 μmol.min-1.mg-1, respectively, and the Kcat was 57.79 s-1. In contrast

to BLG11, most β-xylosidases kinetically studied belong to the GH43 family and have been

characterized only using synthetic substrates. In industry, β-xylosidases can be used for

plant biomass deconstruction, and the released sugars can be fermented into valuable bio-

products, ranging from the biofuel ethanol to the sugar substitute xylitol.
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1. Introduction

Hemicellulose is the second most highly abundant polysaccharide in lignocellulosic biomass.

Unlike cellulose, it is not homogeneous, being composed of pentoses (e.g., xylose, arabinose),

hexoses (e.g., mannose, glucose, galactose), and sugar acids [1–3]. One type of hemicellulose is

xylan, which is β-1,4-linked xylopyranosyl units often modified by acetyl, arabinofuranosyl

and glucuronyl groups [1, 4]. Xylan can be covalently linked to lignin by aromatic esters [5].

Endo-1,4-β-xylanases (EC 3.2.1.8), which cleave the xylan backbone, and β-D-xylosidases (EC

3.2.1.37), which act on xylobiose to release two xylose monomers, are two fundamental

enzymes for the degradation of hemicellulose. However, for its complete degradation, several

accessory enzymes are also needed, such as exo-oligoxylanases, α-arabinofuranosidases, and

α-glucuronidases, as well as esterases, acetyl xylanesterases and feruloyl esterases [5].

The culture-independent metagenomic approach is a powerful method to identify new bio-

catalysts, particularly by functional screens, which are not sequence-biased. Enzymes can oper-

ate under mild conditions being considered eco-friendly, and thus have great appeal for green

industrial applications [6, 7]. In addition, the recent growth of synthetic biology has increased

the need for biochemically characterized enzymes. To obtain higher yields of a bioproduct,

pathway fine-tuning is often needed. This can be achieved by gene swapping so that the same

reaction is catalyzed by an enzyme with more favorable biochemical properties. Therefore,

enzyme discovery through a functional metagenomic approach, followed by biochemical char-

acterization is crucial to link gene sequence to practical applications in industry.

β-D-xylosidases hydrolyze the disaccharide xylobiose and xylooligosaccharides. They are

also able to hydrolyze (1!4)-β-D-xylans by removing successive D-xylose residues from the

non-reducing end [8, 9]. There are few biochemically characterized β-xylosidases in the litera-

ture. The Carbohydrate Active Enzyme (CAZy) database (http://www.cazy.org/) classifies gly-

coside hydrolases (GH) into families based on amino acid sequence similarity. According to

CAZy, β-D-xylosidase activity (EC 3.2.1.37) is found in glycoside hydrolase families GH1, 2, 3,

5, 10, 30, 39, 43, 51, 52, 54, 116, and 120 [10]. In terms of catalytic mechanism, β-xylosidases

can be classified according to the stereochemical configuration at the anomeric carbon as a

two-step double (retaining) or a one-step single displacement (inverting) reaction [5, 11].

Brazil is known for its unparallel ability to produce plant biomass economically, and with

efficient logistics. Because readily available, cheap, and abundant plant biomass is critical for

bio-based industries, this will likely open opportunities for Brazil as the new bioeconomy

develops. Enzyme discovery aimed at plant biomass deconstruction can take advantage of

environments such as the goat rumen, whose microbiota evolved for this particular process

[12]. The solid-associated rumen microbiota of free ranging goats from the semiarid Caatinga

Brazilian biome has not yet been used for this purpose. To identify new glycoside hydrolases, a

Caatinga goat rumen metagenomic library was functionally screened using esculin as sub-

strate. Here we report the identification of a gene from an unknown bacterium named BGL11.

BGL11 belongs to the GH3 family, and its biochemical characterization as a multifunctional

enzyme with high β-xylosidase activity, towards the natural substrate xylobiose, is reported

here for the first time.

2. Material and methods

2.1. Functional screening of a metagenomic library

The coding gene for BGL11 was identified in a functional screen of a goat (Capra hircus)
rumen metagenomic library from the Brazilian goat breed Moxotó, commonly found in semi-

arid habitats. Microbial DNA was isolated from the solid-associated fraction of the rumen

PLOS ONE Novel goat rumen GH3 β-xylosidase

PLOS ONE | https://doi.org/10.1371/journal.pone.0245118 January 15, 2021 2 / 19

http://www.cazy.org/
https://doi.org/10.1371/journal.pone.0245118


contents and used to construct a metagenomic library [12, 13]. The microbial DNA was

extracted as described in Martin et al. (1994) [14] and Handelsman et al. (1998) [15]. DNA

was digested with PstI and DNA fragments in the range of 3 to 8 kb were selected from a gel

and cloned into the low expression vector pCF430 [16]. Expression of DNA fragments cloned

into pCF430 was induced by arabinose [16]. E. coli strain EPI300 (Epicentre, USA) was trans-

formed with the microbial DNA, and the resulting metagenomic library was kept at -80˚C

until screening. A total of 10,839 goat rumen metagenomic library clones were screened on

plates containing Luria-Bertani (LB) agar medium supplemented with 0.05% (w/v) iron (III)

citrate and 0.01% (w/v) esculin hydrate, tetracycline 5 μg/mL and 0.02% (w/v) arabinose (con-

centrations of esculin were modified from Difco™ Esculin Iron Agar).

Positive clone activity was further tested in a plate overlay assay using 2 mM 4-methylum-

belliferyl-D-glucopyranoside (MUG) dissolved in citrate buffer (50 mM, pH 7.0) in 2% (w/v)

agarose. Enzymatic activity was detected as fluorescence by methylumbelliferyl release from

MUG after plate exposure to UV light [17]. To confirm positive clone activity, DNA was

extracted and retransformed into EPI300 E. coli and both the esculin and the MUG plate assay

were repeated as previously described.

2.2. Sequencing and in silico analysis of BGL11

DNA from one retransformed positive clone was sequenced by the Sanger method using a

primer walking strategy. The open reading frames (ORFs) present in this clone were identified

by ORF Finder (NCBI) using standard and alternative genetic codes [18]. The deduced amino

acid sequences were analyzed on the NCBI web server using Blastp [19]. Prokaryote promoter

predictions were performed using BPROM [20], PePPER prokaryotes promoter [21] and Neu-

ral Network Promoter Prediction [22]. Prokaryote terminators were identified using ARNold

[23] and FindTerm [20]. ProtCompB software was used to predict the subcellular localization

of the BGL11 protein (Softberry, Inc., Mount Kisco, NY - http://www.softberry.com). Putative

signal peptides were identified using softwares Signal-BLAST, using gram-negative bacteria as

choice into program option [24] and SignalP 5.0 [25]. Geneious software was used to compare

the conserved domains present in BGL11 (this study), Caulobacter crescentus XynB5 (Gen-

bank ID CCNA03149), Corynebacterium alkanolyticum xylD (Genbank ID AJY53618.1) and

Metagenome Rumen from Chinese yaks RuBGX1 (Genbank ID GQ324952.1). The databases

Pfam, PHOBIUS, PRINTS, SIGNALP_EUK, SMART and Superfamily were used in this

analysis.

Molecular phylogenetic analysis using the maximum likelihood method was conducted

using MEGA version 6 [26] based on the JTT matrix-based model [27]. Reliability of phyloge-

netic reconstruction was estimated by boot-strapping values (1,000 replicates). The multiple

alignment of sequences used in MEGA6 was obtained using Clustal W with standard parame-

ters [28]. Two phylogenetic trees were constructed; one using the BGL11 30 closest protein

sequences obtained with BlastP, and another one using BGL11 plus 34 β-xylosidases character-

ized kinetically from the scientific literature.

Molecular mass, isoelectric point (pI) including the 6 X His-tag, and extinction coefficient

of BGL11 were predicted using ProtParam tool (Expasy) [29].

2.3. PCR amplification and cloning

The full-length gene BGL11 (2,447 bp) was amplified by polymerase chain reaction (PCR)

using plasmid DNA from there transformed positive clone using primers BGL11pETNde_F

(5’ CAT ATG AGA GGA TTC ATT ATG ACG TGC 3’) and BGL11pETXhoI_R (5’
CTC GAG ATT CGT AAT TGT TAC CTC CG 3’). The amplification reaction was carried
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out using Platinum1 TaqDNA Polymerase High Fidelity (Life Technologies), 10 μM of each

primer using the following protocol: 1 cycle at 94˚C for 2 minutes, 35 cycles of denaturation at

94˚C for 30 seconds, annealing at 57˚C for 30 s, and extension at 68˚C for 3 minutes and a

final extension at 68˚C for 7 minutes. The amplified DNA fragment was purified from a 1%

agarose gel and cloned into pGEM1-T Easy vector (Promega), following the manufacturer’s

instructions. The cloned fragment was then transferred to the expression vector pET21a(+)

(Novagen1) using XhoI and NdeI restriction sites, which lead to the addition of a 6 X histidine

tag to the BGL11 C-terminus. The resulting construct, pET21BGL11, was used to transform E.

coli BL21(DE3) electro-competent cells [30]. The transformed bacterial cells were plated on LB

medium agar supplemented with esculin, iron citrate, ampicillin, as previously described, and

incubated at 37˚C overnight. Colonies displaying a dark halo were stored at -80˚C in glycerol

20%, and used in protein expression experiments.

2.4. Protein expression and purification

The autoinduction method was used for protein expression [31]. After incubation at 37˚C to

obtain an optical density of approximately 1.0, the culture was incubated for approximately 48

hours at 18˚C and 250 rpm. Cells were harvested and the culture medium was stored. BGL11

has a peptide signal and was secreted by the transformed E. coli BL21(DE3). BGL11 was puri-

fied from the medium, using immobilized metal affinity chromatography (IMAC). An equili-

brated affinity column pre-packed with Ni Sepharose High Performance (HisTrap HP 1 or 5

mL column–GE Healthcare) was injected with 100 mL of BGL11 medium culture. The column

was washed with 10 volumes of column of LEW buffer (Protino1) pH 8.0 containing 10 mM

imidazole. Protein elution was conducted in three steps: 3 volumes of LEW buffer pH 8.0 con-

taining 50 mM imidazole; 2 volumes of LEW Buffer pH 8.0 containing 75 mM imidazole, and

finally 5 volumes of LEW Buffer pH 8.0 containing 250 mM imidazole. The peaks of the elu-

tion step flow through were fractionated into 1 mL tubes. The sample containing the BGL11

protein was desalted, and its buffer exchanged using PD-10 desalting columns (GE Healthcare)

packed with Sephadex G-25 medium, following the manufacturer’s protocol.

The purified and desalted BGL11-containing sample was further analyzed by 10%

SDS-PAGE and stained with colloidal Coomassie blue G250. Protein concentration was

directly measured using a NanoDrop (ThermoFisher Scientific) by method A280, based on the

Beer-Lambert law, using the extinction coefficient (ε(x1000) M-1. cm-1) and molecular weight

(kilodaltons).

2.5. Enzyme assays

BGL11 activity towards different substrates was tested in 100 μL reaction assays containing 5

mM of aryl substrates or 10 mM of disaccharides in buffer MES pH 6.0 at 50˚C for 15 min

(aryl substrates) or 30 min (disaccharides), in triplicates. The aryl substrates used were 4-nitro-

phenyl-β-D-glucopyranoside (pNPG), 4-nitrophenyl-β-D-xylopyranoside (pNPX), 4-nitro-

phenyl-β-D-galactopyranoside (pNPGal), 4-nitrophenyl-β-D-mannopyranoside (pNPM),

4-nitrophenyl-α-D-glucopyranoside (pNPαG), 4-nitrophenyl-β-D-rhamnopyranoside

(pNPR), 4-nitrophenyl-β-D-cellobioside (pNPC) and salicin. The disaccharides used were cel-

lobiose, xylobiose, maltose, and lactose. All chemicals were purchased from Sigma Aldrich,

except xylobiose which was purchased from Megazyme. After stopping the reaction by addi-

tion of 100 μL cold 1 M sodium carbonate, the amount of 4-nitrophenol released from aryl

substrates was immediately measured by reading absorbance at 405 nm in a SpectraMax M3

spectrophotometer (Molecular Devices). Data were compared to a standard curve prepared

with 4-nitrophenol (pNP) ranging from 0 to 0.07 μmol. The glucose or xylose released from
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disaccharides hydrolyzes were quantified using a glucose monoreagent kit (Bioclin, Brazil),

which is based on the glucose oxidase method (GOD-PAP). After 30 min of reaction time, the

enzymatic reaction was stopped by incubation at 95˚C for 10 min, and then 150 μL of mono-

reagent glucose was added. After incubation at 37˚C for 10 min, absorbance was measured at

505 nm in a SpectraMax M3 spectrophotometer (Molecular Devices). Data were compared to

a standard curve prepared with glucose ranging from 0 to 0.0072 mg or xylose ranging from 0

to 9 mg. One unit of BGL11 activity was defined as the amount of enzyme that released 4-nito-

phenol or glucose or xylose at a rate of 1 μmol per minute under standard conditions.

Optimal pH for BGL11 activity was assayed using a buffer system of constant ionic strength,

the McIlvaine buffer [34]. Enzymatic reactions were performed using 5 mM pNPG as substrate

at 40˚C for 15 min in 100 mM McIlvaine buffer at pH 4.0, 4.4, 4.8, 5.2, 5.6, 6.0, 6.4, 6.8, and

7.6. BGL11 optimal temperature was determined at the optimal pH of 5.6, incubating reactions

for 15 min at temperatures of 20˚C, 25˚C, 30˚C, 35˚C, 40˚C, 45˚C, 50˚C, 55˚C, 60˚C, 65˚C,

70˚C, and 75˚C. Thermostability assays were performed using 200 nM of purified BGL11;

residual enzymatic activity after pre-incubation of BGL11 at 40˚C and 50˚C for up to 15 hours

was measured using pNPX as substrate and buffer MES pH 6.0.

The kinetic parameters of Km, Vmax and Kcat, were determined using 200 nM of purified

BGL11 using MES buffer pH 6.0 and incubation time of 30 minutes at 50˚C. Xylobiose ranging

from 0 to 20 mM was used as substrate. All enzymatic activity measurements were performed

in triplicate. Kinetic parameters were calculated using SigmaPlot software from company

Systat Software Inc. The data were fitted to Michaelis-Menten enzyme kinetics model, and the

curve with best coefficient of determination (R2) was used to determine Km and Vmax.

Adjusted values were used to plot a non-linear curve (Michaelis-Menten) and a linearized

model (Lineweaver-Burke).

2.6. Accession number

The BGL11 nucleotide sequence (i.e. not codon-optimized) was deposited at GenBank data-

base under GenBank accession number MN661154.

3. Results

3.1. Screening and in silico analysis of BGL11

Functional screening of a goat rumen metagenomic library identified three positive clones that

displayed a dark halo on petri plates containing LB medium supplemented with esculin and

iron citrate. Clone 11 showed a larger halo than other positive clones (S1 Fig). Sequencing and

analysis of its 3,185 bp insert, revealed two complete ORFs (open reading frame), and one par-

tial ORF related to carbohydrate metabolism (Fig 1).

According to BlastP analysis, ORF1 encodes a small peptide with only 25 amino acids long,

76.32% identical and 84% similar to an alpha/beta hydrolase family protein from Prevotella sp.

BP1-148 (Genbank ID SDG26698.1). ORF1 also showed 76.32% identity and 84% similarity to

a carbohydrate-binding protein (CBM) from Prevotella sp. BP1-148 (NCBI Reference

Sequence: WP_091814266.1).

Analysis of the complete ORF2 identified the encoded protein as a member of the GH3

family of carbohydrate active enzymes. It is 78% identical to a beta-glucosidase from a Prevo-
tellaceae bacterium, as well as 73% identical and 84% similar to a Glycoside Hydrolase Family

3 protein from Prevotella sp. (FD3004 NCBI Reference Sequence: WP_036910324.1), and it

was named BGL11. BGL11 was also analyzed for the presence of conserved domains and seven

of these were identified (Table 1).
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Blastp analysis of ORF3, which is incomplete, revealed a 69.15% identity and 79% similarity

to endo-1,4-β-D-glucanase Y of Prevotella sp. BP1-148 (Genbank ID: SDG13112.1). It also

showed 39.23% identity, and 54% similarity to a family 10 glycoside hydrolase from Rhodopir-
ellula europaea SH398 (Genbank ID: EMI26865.1).

The BGL11 ORF was also compared to the Prevotella ruminicola 23 complete genome (gb|

CP002006.1) using Blastp. BGL11 showed 69% identity and 81% similarity to a GH3 ORF

PRU_2312 (ADE81919.1). The BGL11 gene was also aligned with PRU_2312 in Geneious soft-

ware, showing 67% identity. Analysis of the region surrounding PRU_2312, identified genes

involved in carbohydrate degradation on both sides: GH2—PRU_2313 (ADE82711.1), alfa-

glucosidase- PRU_2314 (ADE81436.1), putative glycosyl hydrolase -PRU_2308 (ADE82976.1)

and putative polygalacturonase/ beta-xylosidase -PRU_2307 (ADE83743.1).

Analysis of the Clone 11 insert using the promoter prediction software Bprom identified six

putative promoters, but only one located upstream the BGL11 initiation codon, with the -10

box region located at site 119 and the -35 box region at site 100. A similar analysis using the

PePPER prokaryotes promoter software identified seven promoters, two of them located

Fig 1. Schematic of Clone 11 insert obtained in a functional screen of a goat rumen metagenomic library for hydrolysis of the glucoside esculin. The Clone

11 insert has 3,185 bp, and a total of 3 ORFs related to carbohydrate metabolism are present; ORF1 and 2 are complete and ORF3 is partial. Results for

Blastp analysis of each ORF are shown in gray boxes. ORF2 (118 to 2,544 bp), which showed similarity to a beta-glucosidase from an unknown Prevotella
ceaebacterium, was named BGL11 and chosen to be investigated.

https://doi.org/10.1371/journal.pone.0245118.g001

Table 1. Conserved domains present in BGL11.

Domain name Accession Description Amino acids E-value

BglX COG1472 Periplasmicβ-glucosidase and related glycosidases; 35–435 5.95e-59

Glyco_hydro_3_C pfam01915 Glycosyl hydrolase family 3 C-terminal domain; 398–666 3.44e-58

Glyco_hydro_3 pfam00933 Glycosyl hydrolase family 3 N-terminal domain; 87–354 1.15e-53

Fn3-like pfam14310 Fibronectin type III-like domain; 698–771 5.52e-16

PRK05337 PRK05337 β-hexosaminidase; Provisional 125–283 1.04e-09

PRK15098 PRK15098 β-D-glucoside glucohydrolase; Provisional 9–787 2.67e-107

PLN03080 PLN03080 Probable β-xylosidase; Provisional 102–738 1.32e-52

https://doi.org/10.1371/journal.pone.0245118.t001
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upstream the BGL11 initiation codon, p1 starting at site 74 and p2 at site 94. The last software

used, Neural Network Promoter Prediction, identified 3 promoters upstream the BGL11 initi-

ation codon starting at 70, 79 and 93 positions. No terminator was identified in Clone 11 using

three different terminator prediction programs.

In silico analysis of the protein encoded by BGL11, estimated a molecular mass of 89,978.1

Daltons (including the 6 x His-tag) and a theoretical isoelectric point (pI) of 5.26. A signal pep-

tide was identified by Signal-BLAST software, with a putative cleavage site after BGL11 amino

acid 16 and 43% identical to GFCA_ECOLI, from threonine-rich inner membrane protein

gfcA (UniProt acession number P75885). The Software SignalP 5.0 predicts a signal peptide

with a cleavage site between positions 15 and 16: LAG-CQ (probability: 0.9957). The signal

peptide type was the Sec/SPII: lipoprotein signal peptide transported by the Sec translocon and

cleaved by Signal Peptidase II (Lsp). ProtCompB software predicted BGL11 to be secreted.

A phylogenetic tree constructed with BGL11 and 30 other protein sequences similar to

BGL11 retrieved from NCBI is shown in Fig 2. All but three of the most closely related

sequences were from Prevotella spp. BGL11 clustered with Prevotellaceae bacteriumMN 60

WP 094151041.1 sequence and Prevotellaceae bacterium sequence HUN156 WP 072290102.1;

however, it remained in a separate branch. None of the 30 proteins in this phylogenetic tree

have been purified or biochemically characterized.

To determine the phylogenetic relationship between BGL11 and 34 biochemically character-

ized β-xylosidases, another phylogenic tree was constructed (Fig 3). Enzymes clustered according

to the glycoside hydrolase family, rather than group of origin (i.e., fungi, bacteria, and plant).

BGL11 clustered with other GH3 family enzymes. The phylogenetic tree shows that BGL11 is

Fig 2. Molecular phylogenetic tree of BGL11 obtained with the software MEGA6, using the maximum likelihood

method and bootstrap analysis (1,000 replicates). The percentage of trees in which the associated taxa clustered

together is shown next to the branches. In addition to BGL11 (indicated by the arrow), a total of 30 protein sequences

similar to BGL11 and retrieved from NCBI are presented in the tree. A beta-glucosidase from Xanthomonas campestris
(CEM59903.1) was used as outgroup. Each sequence presented shows the species of origin followed by the

corresponding Genbank or NCBI identity. Branch lengths are proportional to the number of substitutions per site (bar

at the bottom).

https://doi.org/10.1371/journal.pone.0245118.g002
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closest to the β-xylosidases XynB5 from Caulobacter crescentus, xylD from Corynebacterium
alkanolyticum, and RuBGX1 from the Chinese yak rumen metagenome. To compare conserved

domains, these three β-xylosidase protein sequences were aligned to BGL11 (Fig 4). These four

β-xylosidase sequences have a similar pattern of predicted domains. All four sequences have

from the Pfam conserved domains Glyco_hydro_3 (PF00933), Glyco_hydro_3_C (PF01915) and

Fn3-like (PF14310). The Fn3-like conserved domain was also predicted using the databank

SMART (SM01217). Using the Superfamily databank, all sequences showed a (Trans)Glycosi-

dase domain (SSF 51445), and a Beta-D-glucan exohydrolase C-terminal domain (SSF 52279).

The domain GLHYDRLASE3 was predicted to be present in all sequences using the PRINTS

database (PR00133). Except for xylD from Corynebacterium alkanolyticum, all the sequences

have predicted signal peptides using databanks SIGNALP_EUK and PHOBIUS.

3.2. Enzyme expression, purification, and characterization

ORF2 encoding BGL11 was heterologously expressed in E. coli strain BL21(DE3), and the

resulting protein was purified and biochemically characterized. The BGL11 sequence has a

Fig 3. Molecular phylogenetic tree of BGL11 obtained with the software MEGA 6 using the maximum likelihood

method and boostrap analysis (1,000 replicates). The percentage of trees in which the associated taxa clustered together

is shown next to the branches. In addition to BGL11 (indicated by arrow), the tree shows 34 beta-xylosidase protein

sequences whose biochemical characterization has been reported. Each sequence presented shows the species of origin,

followed by the protein name, and the Genbank number. Different glycoside hydrolase families (GH1, GH3, GH30,

GH39, GH43, GH52) are separated by boxes. Branch lengths are proportional to the number of substitutions per site

(bar at the bottom).

https://doi.org/10.1371/journal.pone.0245118.g003
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predicted peptide signal, and when the autoinduction expression protocol was used, BGL11

protein was found to be secreted to the growth medium. After E. coli cells were pelleted,

BGL11 was purified from the supernatant by immobilized metal affinity chromatography with

a Ni-NTA column. As shown in Fig 5, a band of 90 kDa corresponding to BGL11 was

obtained.

3.3. Enzyme properties

To determine substrate specificity of recombinant BGL11, 12 different aryl-glycoside and

disaccharide substrates were tested (Table 2). BGL11 exhibited catalytic activity towards five

synthetic substrates (i.e., pNPG, pNPX, pNPGal, pNPC, and pNPαG), as well as four natural

substrates (i.e., cellobiose, lactose, salicin, and xylobiose). BGL11 exhibited maximum activity

toward xylobiose (0.995687 ± 0.0111 U/mg), and showed no activity toward pNPM, pNPR

and maltose.

Optimal pH for BGL11 was determined to be 5.6 (Fig 6); however, BGL11 maintains activ-

ity higher than 80% between pH 5.2 and 6.4. Optimal temperature was 50˚C, but higher than

80% activity occurred between 43 to 50˚C. Enzyme stability was determined at two different

temperatures, 40˚C and 50˚C. BGL11 was more stable at the lower temperature, maintaining

activity for more than 15 hours (i.e., 900 minutes). At 50˚C, after 7 hours (i.e., 420 minutes) of

incubation, BGL11 remained 60% active.

Using xylobiose, kinetic parameters of BGL11 were determined. By non-linear regression

analysis, the values of Km were calculated as 3.88 ± 0.31 mM, Vmax as 0.0385 ± 0.00084 mmol.

min-1. mg-1, Kcat as 57.79 s-1 and Kcat/Km as 14.89 s-1. mM-1. The R2 for the Michaelis-Menten

adjustment of data using a non-linear regression model was 0.99 (S2 Fig). For comparison, the

kinetic parameters of other β-xylosidases also characterized using the natural substrate xylo-

biose are shown on Table 3.

4. Discussion

The rumen is a complex anaerobic environment. There the ingested food is fermented by

microorganisms to a mixture of volatile fatty acids, which is the major nutritional source for

the ruminant animal [46]. The rumen microbiota has evolved to hydrolyze plant biomass, and

therefore it is a perfect environment for finding different enzymes involved in this process.

The Caatinga is a semiarid biome in the Northeastern part of Brazil. Despite the many

Fig 4. Alignment of BGL11 and the closest phylogetically biochemically characterized related sequences. Sequences used in

alignment were: BGL11 (this study), Caulobacter crescentus XynB5 (Genbank ID CCNA03149), Corynebacterium
alkanolyticum xylD (Genbank ID AJY53618.1) and Rumen Metagenome from Chinese yaks RuBGX1 (Genbank ID

GQ324952.1) in this order of presentation. Software Geneious was used to generate this picture, using databanks Pfam,

PHOBIUS, PRINTS, SIGNALP_EUK, SMART and Superfamily.

https://doi.org/10.1371/journal.pone.0245118.g004
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similarities of the rumen from different animals, the environment where the animal lives may

influence its microbiota as well. For instance, uncultured archaeal sequences belonging to

methanogens of “uncultured marine bacteria” groups II and III were identified in the Caatinga

goat rumen [12]. The free ranging Caatinga goats from which samples were taken had access

to high-salt water ponds, which may be the reason for the presence of these groups in the

Fig 5. SDS-PAGE analysis of purified BGL11. Lane M, PageRuler™ Plus Prestained 10–250 kDa Protein Ladder

(Thermo Scientific™); Lane BGL11, purified protein with the size of 90 kDa.

https://doi.org/10.1371/journal.pone.0245118.g005
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Moxotó goat rumen. A total of 16.4% of the solid fraction sequences from the goat rumen were

from unclassified Bacteria. This fact highlights the presence of many unknown microorganisms,

which make the Caatinga Moxotó goat rumen an interesting place for enzyme discovery.

Table 2. BGL11 specific enzymatic activity towards synthetic aryl and natural substrates.

Substrate U/mg

pNPG 0.130008 ± 0.0090

pNPX 0.132400 ± 0.0081

pNPGal 0.001385 ± 0.0005

pNPC 0.083247 ± 0.0026

pNPαG 0.003779 ± 0.0015

pNPM 0

pNPR 0

Cellobiose 0.005577 ± 0.0010

Maltose 0

Lactose 0.002144 ± 0.0001

Salicin 0.024972 ± 0.0003

Xylobiose 0.995687 ± 0.0111

The aryl substrates used are 4-nitrophenyl-β-D-glucopyranoside (pNPG), 4-nitrophenyl-β-D-xylopyranoside

(pNPX), 4-nitrophenyl-β-D-galactopyranoside (pNPGal), 4-nitrophenyl-β-D-mannopyranoside (pNPM),

4-nitrophenyl-α-D-glucopyranoside (pNPαG), 4-nitrophenyl-β-D-rhamnopyranoside (pNPR), 4-nitrophenyl-β-D-

cellobioside (pNPC) and salicin; and natural disaccharide substrates used are cellobiose, xylobiose, maltose, and

lactose.

https://doi.org/10.1371/journal.pone.0245118.t002

Fig 6. Biochemical characteristics of BGL11. Effects of pH (A), and temperature (B) and thermal stability at 40˚C and

50˚C (C) of the purified BGL11 relative activity. The assays were performed in triplicate, error bars represent standard

deviation.

https://doi.org/10.1371/journal.pone.0245118.g006
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Sequencing of microbial genomes followed by bioinformatics analysis is one approach to

identify new candidate enzymes. However, this method has been criticized as it is biased

towards related sequences. Functional screens of metagenomic libraries, which are based on

enzymatic activity rather than sequence, are a powerful method to identify new enzymes.

Regardless of the method used to initially identify a new enzyme, its detailed biochemical char-

acterization is extremely important as enzyme properties (e.g., substrate specificity, optimum

temperature) cannot be inferred from sequence, and practical applications are dependent on

these biochemical properties.

A Moxotó goat rumen metagenomic library had been previously constructed [13], and here

we report a functional screen of this library using esculin as substrate. Esculin consists of a glu-

cose molecule bound to esculetin, which upon release through hydrolysis reacts with iron cit-

rate from the medium forming a dark precipitate. The dark precipitate observed indicates a

potential glucosidase enzymatic activity. Using this assay, a functional screen of 10,839 metage-

nomic library clones was performed, and yielded three confirmed positive clones. Of these,

Clone 11 showed the strongest activity on the esculin plate assay, and was chosen to be

completely sequenced.

In silico analysis of Clone 11 showed the presence of three ORFs; ORF1 and ORF2 being

complete, and ORF3 being partial. BlastP analysis showed that ORF2, named BGL11, is 78%

identical to a beta-glucosidase from a Prevotellaceae bacterium and 73% identical to a GH3

family carbohydrate active enzyme from Prevotella sp (FD3004). Bacteria from the genus Pre-
votella play important roles in rumen carbohydrate and nitrogen metabolism [46, 47]. Prevo-
tella ruminicola strain 23 has been studied since its isolation in 1958. This species is not

cellulolytic, but can efficiently breakdown hemicellulose and pectin. As expected, P. ruminicola
23 genome sequence showed a large number of GHs for hemicellulose depolymerization and

utilization [48].

Because BGL11 comes from an unknown bacterium from the family Prevotellaceae, the

BGL11 sequence was compared to the Prevotella ruminicola 23 complete genome sequence.

BGL11 protein sequence is 69% identical to a GH3 encoding gene (PRU_2312); which has on

both sides genes involved in carbohydrate metabolism: a GH2 coding gene (PRU_2313); an

alfa-glucosidase (PRU_2314); a putative glycosyl hydrolase (PRU_2308), and a putative poly-

galacturonase/ beta-xylosidase (PRU_2307). Similarly, in silico analysis of the Clone 11 insert

showed a cluster of three carbohydrate metabolism-related ORFs and no terminator (Fig 1).

This genomic organization suggests that BGL11 is part of an operon.

A more detailed analysis further suggests that the Clone 11 operon, which includes BGL11,

is involved in hemicellulose degradation. This hypothesis is supported by the fact that the

upstream region of BGL11 is an ORF 76.32% identical to an alpha/beta hydrolase family pro-

tein from Prevotella sp. BP1-148, and also 76.32% identical to a CBM6 carbohydrate-binding

protein from Prevotella sp. BP1-148. The CBM6 domain is usually appended to GH11 glyco-

side hydrolases or GH43 xylanase domains. The downstream region of BGL11 presented simi-

larity to two sequences: an endo-1,4-beta-D-glucanase Y from Prevotella sp. BP1-148 (69.15%

identity) and a glycoside hydrolase, family 10, from Rhodopirellula europaea SH398 (39.23%

identity). Therefore, both the upstream and downstream regions of BGL11 may contain genes

involved in hemicellulose degradation.

Furthermore, seven conserved domains were found in BGL11 (Table 1), however, informa-

tion is available for only a few of these. Three Pfam conserved domains were predicted to be

present in the BGL11 protein (i.e., Glyco_hydro_3_C, FN3-like, and Glyco_hydro_3). Glyco_-

hydro_3_C is involved in catalysis, and may play a role in beta-glucan binding [49]. The con-

served FN3-like module can be present in cellulosomes, independently or as part of another

protein. Cellulosomes are large protein complexes that act on cellulolytic substrates. In this
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system, multiple enzymatic domains are linked to structuring proteins bound to the bacterial

cell wall. Cellulosomes contain carbohydrate-binding modules (CBMs), glycoside hydrolases

(GHs), and some domains of unknown function such as X-domains, X-modules, and fibronec-

tin type 3-like (Fn3-like) modules [50, 51]. It has been hypothesized that Fn3-like domains

work as a linker peptide to connect different modules of an enzyme which can be extended or

they can be simply act as spacers between domains [52]. Other studies support the idea that

this module can work as a cellulose disruptor improving the hydrolytic capability of cellulases

[53, 54].

BGL11 has four other conserved domains (i.e., BglX, PRK05337, PRK15098, PLN03080).

BglX modules are found in GH3 family periplasmic beta-glucosidases. BglX conserved domain

includes a signal peptide that addresses the enzyme to the periplasmatic space. This corrobo-

rates the Signal-BLAST and SignalP5.0 results that predict a signal peptide in the BGL11 N-ter-

minus. Conserved domain PRK05337 is related to the Glyco_hydro_3 conserved domain.

In this work, the native sequence for BGL11 was cloned into the pET21a(+) expression vec-

tor. For protein expression, the autoinduction protocol was used, resulting in BGL11 being

expressed and secreted to the medium. Production of secreted heterologous proteins in E. coli
increases the amount of expressed protein, and facilitates the purification step, reducing cost

and saving time [55].

BGL11 enzyme specificity was tested using synthetic aryl substrates, a common practice in

biochemical studies. The data obtained using these synthetic substrates suggested that BGL11

was a bi-functional β-glucosidase/β-xylosidase enzyme, with similar activities towards the sub-

strates pNPG and pNPX. However, upon further investigation of BGL11 substrate specificity

using natural substrates, activity towards xylobiose, cellobiose, salicin, and lactose was revealed.

BGL11 activity is highest towards xylobiose. Therefore, these data suggest that BGL11 is a β-

xylosidase with multiple substrate specificity. This result highlights the fact that testing enzyme

activity towards natural substrates is fundamental. The use of synthetic substrates is very practi-

cal, but often misleading. Dodd, D. and I. K. O. Cann. (2009) [5] argued that the catalytic pro-

miscuity exhibited by many GHs shows the limitations of artificial substrates to determine

function of unknown enzymes. For industrial application of new enzymes, the use of natural

substrates for biochemical characterization is crucial because these are the substrates enzymes

will act upon. Other biochemical properties of BGL11 were also determined. BGL11 optimal

pH of 5.6 is similar to those of other β-xylosidases from bacteria (Table 3); and higher than that

of many β-xylosidases of fungal origin. The optimum temperature of 50˚C suggests that BGL11

can be used in mesophilic industrial processes. Regarding enzyme stability, at 40˚C purified

BGL11 remained active for more than 15 hours (i.e., 900 minutes) without any significant

reduction in activity. At 50˚C, after 7 hours (i.e., 420 minutes) of incubation, BGL11 remained

60% active. A review of biochemical properties of β-xylosidases [56] places BGL11 enzyme sta-

bility as higher than that of many other β-xylosidases for which this parameter was studied. It is

important to note that enzyme stability can be further increased at higher temperatures by for-

mulation with additives such as salts, polyols and sugars. In future work, BGL11 may also be

immobilized and/or engineered for even higher stability.

Most of the β-xylosidases characterized kinetically belong to the GH43 family, and charac-

terization was performed using the synthetic substrate pNPX. A literature search identified 73

β-xylosidases whose kinetic parameters have been reported. Only 19 of these enzymes have

been characterized using xylobiose in enzyme kinetic experiments, and these were shown

on Table 3. For BGL11 the Km was 3.88 ± 0.31 mM, the Vmax 0.0385 ± 0.00084 mmol. min-1.

mg-1, Kcat 57.79 s-1 and Kcat/Km 14.89 s-1. mM-1. To the best of our knowledge, BGL11 is the

first bacterial GH3 β-xylosidase to have its kinetic parameters determined using the natural

substrate xylobiose. There are two other GH3 β-xylosidases, BxTW1 and AnBX, which have

PLOS ONE Novel goat rumen GH3 β-xylosidase

PLOS ONE | https://doi.org/10.1371/journal.pone.0245118 January 15, 2021 13 / 19

https://doi.org/10.1371/journal.pone.0245118


also been characterized using xylobiose, but these are fungal enzymes [41, 45]. The Km for

BxTW1 and AnBX was 0.48 ± 0.05 mM and 30.8 ± 3.7 mM, respectively. Therefore, BGL11

has higher affinity towards xylobiose than AnBX, but a lower affinity than BxTW1. The BGL11

Km is in a similar range to those of other six GH43 β-xylosidases on Table 3 (i.e., 2–3 mM).

BGL11 also has a Km similar to that of another metagenome derived GH43 enzyme, CoXyl43

(i.e., Km = 2.02 ± 0.06 mM), but a higher Kcat (57.79 s-1 in comparison to 17.82 s-1). Regarding

the constant that gives the kinetic specificity or efficiency of the enzyme (Kcat/Km), for BGL11

this value is 14.89 s-1. mM-1. There are no other bacterium β-xylosidases from family GH3

available for comparison.

β-xylosidases such as BGL11 have several possible applications in industry [56]; some in

association with cellulases, and others in association with other hemicellulases. For example,

Table 3. Biochemical parameters of β-xylosidases previously characterized using xylobiose as substrate.

Name (Accession

number)

GH Origin Species Opt.

Temp.�
Opt.

pH��
Km

(mM)

Vmax (mmol.

min-1. mg-1)

Kcat (s-1) Kcat/Km (s-1.

mM-1)

Ref

BGL11

(MN661154)

GH3 Rumen

metagenome

Closest hit Prevotella sp. 50 5.6 3.88

±0.31

0.0385±0.00084 57.79 14.89 This

work

CoXyl43

(LC025936)

GH43 Compost

metagenome

Closest hit Bacteroides ovatus 55 7.5 2.02

±0.06

- 17.82

±0.14

8.82 [32]

XynB2 (KF305641) GH43 Bacterium Lactobacillus brevis 50 6.0 4.8±0.4 0.228±0.008 233 48.54 [33]

BoXA (AAB08024) GH43 Bacterium Bacteroides ovatus - - 0.61

±0.08

- 69.0±3.7 113.11 [34]

WXyn43

(KP903368)

GH43 Bacterium Weissella strain 92 55 6–6.5 7.2±0.5 - 961±25 133.47 [11]

EcXyl43

(JX569191)

GH43 Bacterium Enterobacter sp. Closest hit

Enterobacter cloacae
40 6.0 17.8 - 380 21.34 [35]

BpX

(CAA29235.1)

GH43 Bacterium Bacillus pumilus - - 5.21

±0.41

- 38.8±1.4 7.45 [36]

LbX (ABJ65333.1) GH43 Bacterium Lactobacillus brevis ATCC 367 - - 2.96

±0.24

- 407±9 137.5 [36]

BsX (CAB13642.2) GH43 Bacterium Bacillus subtilis subsp. subtilis str.

168

- - 2.25

±0.05

- 128±1 56.89 [36]

AmX

(ABR49445.1)

GH43 Bacterium Alkaliphilus metalliredigens
QYMF

- - 1.44

±0.14

- 56.9±2.0 39.51 [36]

SXA (ABR49445.1) GH43 Bacterium Alkaliphilus metalliredigens
QYMF

- - 2.12

±0.11

- 211±4 99.52 [36]

β-D-xylosidase - Bacterium Bacillus pumilus - - 2.9 - 18.1 6.24 [37]

Pae1263 - Bacterium Paenibacillus terrae HPL-003 50 6.0 6.417 0.07576 - - [38]

GbtXyl43A

(DQ345777)

GH43 Bacterium Geobacillus thermoleovorans
strain IT-08

- 5.0 12.8

±0.93

- 0.065

±0.002

0.005 [39]

XylBH43

(BAB07402)

GH43 Bacterium Bacillus halodurans - - 3.02

±0.78

- 117±10 38.74 [40]

BxTW1

(KP119719)

GH3 Fungus Talaromycesamestolkiae 70 3.0 0.48

±0.05

0.055±0.0013 183 381.25 [41]

β-xylosidase

(KIF125)

- Fungus Trichoderma asperellum KIF125 60 4.0 0.14 - 32.3 230.71 [42]

β-xylosidase - Fungus Emericella nidulans 55 4.5–5 1.0 - 992.4 992.4 [43]

β-xylosidase - Fungus Trichoderma viride 55 3.5 2.1 - 36.4 17.33 [44]

AnBX (AF108944) GH3 Fungus Aspergillus niger ASKU28 70 4–4.5 30.8

±3.7

- 67.8±7.9 2.20 [45]

� Optimum temperature

��Optimum pH.

https://doi.org/10.1371/journal.pone.0245118.t003

PLOS ONE Novel goat rumen GH3 β-xylosidase

PLOS ONE | https://doi.org/10.1371/journal.pone.0245118 January 15, 2021 14 / 19

https://doi.org/10.1371/journal.pone.0245118.t003
https://doi.org/10.1371/journal.pone.0245118


they can be used to promote maceration in industrial processing of vegetable fibers. In the

wine industry, in association with other enzymes, β-xylosidases reduce β-glucans, thus

decreasing must viscosity and losses in wine clarification; and similarly, in the beer production

industry, beer viscosity and turbidity are also reduced. In the juice industry, β-xylosidases con-

tribute in fruit juice extraction and clarification, thus improving process performance and

product appearance. In the baking industry, β-xylosidases and other enzymes can be applied

to flour to improve dough handling and shelf-life, as well as bread volume and crumb struc-

ture. When applied to animal feed, β-xylosidases in combination with other enzymes increase

feed efficiency, saving costs and improving productivity. In a biorefinery, β-xylosidases can be

used to release xylose from plant biomass so that it can be fermented into valuable bioproducts

such as xylitol and ethanol.

5. Conclusions

The functional metagenomic approach is an interesting strategy to identify new enzymes. This

is the first time that the Caatinga goat rumen environment was explored for enzyme discovery.

The focus of the functional metagenomic approach is enzymes of bacterial origin. Our screen

allowed the identification of BGL11 which is encoded by a gene from an uncultivated

(unknown) bacterium. BGL11 is a novel β-xylosidase from GH3 family that carries a signal

peptide sequence, which allowed it to be secreted by E. coli. BGL11 showed similar activity

towards the synthetic substrates pNPX and pNPG. However, when tested with natural sub-

strates, BGL11 showed 179-fold greater activity toward xylobiose than cellobiose. To the best

of our knowledge, this is the first GH3 β-xylosidase of bacterial origin to be biochemically

characterized using the natural substrate xylobiose. Many scientific studies use synthetic sub-

strates to determine enzyme specificity, but these may not reveal the most relevant specificity.

BGL11 also showed activity towards cellobiose, salicin and lactose; thus, it is a multifunctional

enzyme. The BGL11 ability to hydrolyze different substrates may be an interesting property

for its utilization in a range of potential industry processes. Its stability at 40˚C and 50˚C sug-

gest it can be used in mesophilic industrial processes for plant biomass digestion.
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