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ABSTRACT: 

 

Net Primary Productivity (NPP) is an important indicator of vegetation growth status and ecosystems health. NPP can be estimated 

through remote sensing data, using vegetation indices such as NDVI. However, this index may show systematic differences when 

using several orbital sensors. Therefore, the objective of this paper was to compare the NDVI data obtained from different sensors 

and evaluate the impact over the soybean biomass and NPP estimates. NDVI data were recorded from 4 sensors, one on the field and 

others 3 orbitals sensors (Landsat 8/OLI, Sentinel 2/MSI and Terra/MODIS). Measured data on the field, Photosynthetically Active 

Radiation (PAR) and Dry Matter (DM), were used to modeling the total DM and also NPP. The NDVI data from different sensors 

showed differences throughout the cycle, but compared to the reference data there was a correlation greater than 0.84. The DM 

presented a correlation of 0.91 with the field measured MS data while the NPP presented differences of up to 240 gC/m²/month from 

in relation to the reference data. Therefore, NDVI obtained from multiple sensors can be used to estimate NPP for surface analysis. 

However, for more consistent evaluations, a function of adjustment between the NDVI sensor data and NDVI reference data is 

required, so that the NPP estimation be better correlated to the actual data.  

 

 

1. INTRODUCTION 

Accurate estimates of crop production are crucial especially in 

developing countries (Sivasankar et al, 2018), and the yield of 

these crops is mainly linked to the dynamics of biophysical 

variables during the growth season (Basso, Cammarano, 

Carfagna, 2013). One of the indicators of crop yield that has 

gained prominence in scientific studies in recent years is NPP 

(Bao et al, 2016; Potter, Klooster, Genovese, 2012; Haberl et al, 

2004; Potter , 1993), which represents the amount of carbon 

fixed by plants through photosynthesis per unit of time and 

space (Potter, Klooster, Genovese, 2012; Yu et al., 2009). NPP 

is not only an important indicator of vegetation growth status 

and ecosystem health, but exerts an important influence on the 

global biosphere carbon cycle (Potter, Klooster, Genovese, 

2012). 

 

NPP is considered a key component for a wide range of studies 

on ecological processes (Running et al., 2004). The importance 

of knowing the NPP of terrestrial ecosystems is linked to the 

main role played in the carbon cycle and its energy flow (Rosa, 

Sano, 2013). Thus, quantitative estimates of NPP at regional to 

global scales are essential for understanding changes in 

ecosystem structure and function, predicting terrestrial carbon 

cycle trends (Yu et al., 2009) and determining their sustainable 

use. 

 

Remote sensing is now considered a powerful tool and unique 

data source for characterizing vegetation structure and 

development globally, and has played an increasing role in NPP 

estimates of ecosystems (Bao et al, 2016). The relationship 

between remote sensing and biophysical variables can be done 

by simple sensor bands and also by applying vegetation indices 

(Monteiro et al., 2013). Vegetation indices are often used to 

estimate vegetation parameters, and their physical basis is 

attributed to the high absorption of solar radiation by 

chlorophyll and their scattering by leaves in the red and near 

infrared spectral regions, respectively (Gates et al., 1965).  

 

Among a variety of indices, the Normalized Difference 

Vegetation Index (NDVI) has been widely used. The NDVI, 

calculated by the difference of near infrared (NIR) and red (R) 

reflectances and normalized by their sum, is one of the most 

commonly indices used to monitor plant status. This index also 

has a high correlation with vegetation cover percentage 

(Purevdorj et al., 1998) and green leaf biomass (Gitelson, Gritz, 

Merzlyak, 2003). In addition, it can be used to estimate 

biophysical parameters, such as leaf area index (LAI) and the 

fraction of photosynthetically active radiation that is absorbed 

(APAR) (Myneni, Williams, 1994), or even to compose models 

for crop yield estimations (Monteiro et al., 2013; Raun et al., 

2001; Dorigo et al., 2007, Martorano, 2007). 

 

Sensors aboard different platforms may provide NDVI, but it is 

important to consider that there are differences in central 

wavelengths or bandwidths used for index calculation (Kim et 

al., 2010). In addition, the index value may be influenced by 

several other factors, which may introduce interpretation noise 

when multi-sensor NDVI data are used in change detection 

studies. In this way, Chander (2013) warned that difference in 

remotely detected data may not correspond to changes in the 

surface, but partly due to differences in provenance in the 

sensors. Also Teillet et al. (2007) addressed this theme, pointing 

out that data from different sensors cannot be directly 

compared, due to differences in sensor response functions. 

Therefore, in multi-decade environmental studies, NDVI data 

from multiple sensors should be processed initially in an effort 

to generate a consistent spatial, temporal and spectral data set 

(Pahlevan et al., 2016). These analyzes provide assurance that 

these data can be used to reliably estimate biophysical 

parameters.  
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However, in crops studies there is often the need to merge data 

from more than one sensor to characterize the temporal and 

spatial variability of a given crop. This is because many sensors 

have low temporal resolution and also the excessive amount of 

clouds in some periods. Thus, it is essential to evaluate and 

compare the differences between data obtained from multiple 

sensors for a better understanding and characterization of 

vegetation and its spatio-temporal changes through biophysical 

parameters. Based on this, we obtained NDVI data from four 

different sensors (involving one field- sensor and three orbital 

sensors), in order to compare the NDVI data and evaluate their 

impact over the soybean biomass and NPP estimation.  

 

2. MATERIALS AND METHODS 

The data included in this study and used as reference were 

obtained from a soybean experiment conducted in Carazinho / 

RS during the 2017/2018 crop season (Figure 1). 

 

 
Figure 1. Study area location and pixel size of each orbital 

sensor used. Carazinho/RS, 2017/18. 

 

2.1 Reference measured data 

During the field experiment, data were measured for the 

components of incident (PARinc), transmitted (PARt) and 

reflected (PARref) photosynthetically active radiation. These 

measurements were performed using a set of bars equipped with 

amorphous silicon cell sensors (Pandolfo, 1995), installed in 

parallel and spaced at a distance of 0.20 m. From these, the 

absorbed PAR (APAR) was determined through equation 1:  

 

APAR = PARinc – PARt – PARref                                       (1) 

 

Reference NDVI data was measured in order to adjust functions 

for the estimation of the FPAR component. The index was 

obtained from incident (SRS NDVI Hemispheric) and reflected 

(SRS NDVI with Vision Limiter) radiation sensors in the red 

(0.6 to 0.7 µm) and near infrared (NIR) (0.805 to 0.815 µm) 

spectrum. These spectral sensors were attached to a mast, at a 

height of 1m above the top of the canopy, adjustable throughout 

the cycle (Figure 2). In order to obtain an average between the 

soil and soy mixture present in the cultivation, they were 

installed in different positions in the experimental area. 

 

 
Figure 2. Incident (SRS NDVI Hemispheric) and reflected (SRS 

NDVI with Vision Limiter) radiation sensors installed in the 

experimental area. Carazinho/RS, 2017/18. 

 

The accumulated MS was determined weekly from the 

collection of 0.5 m from a plant line. Four samples were taken 

in each collection. The green biomass of each sample was 

placed in paper packaging and placed for drying in a proper 

oven for drying plant material at a temperature of 70 ° C until 

reach constant mass. DM was quantified and calculated for g m-

2. This procedure was adopted from the emergence of plants at 

the end of the cycle. At this time, after the physiological 

maturation of the pods, four biomass samples of 9 m² were 

made to determine the grain yield. 

 

2.2 Data obtained from satellites 

In addition to reference NDVI, NDVI data were obtained from 

different orbital sensors for the 2017/2018 crop season (Table 

1). For this purpose, the most used sensors in agricultural 

studies were chosen, such as Landsat, MODIS and Sentinel, due 

to their availability on the Google Earth Engine platform. 
 

Table 1. Spectral and spatial resolution of the sensors used and 

total pixels present in the study area of each sensor. 

Carazinho/RS, 2017/18 

 
To obtain NDVI data from the orbital sensors, the Google Earth 

Engine platform was used. The programming was performed 

using the JavaScript language on the programming platform and 

the GEE cloud processing, called Code Editor. 

Cloud filters were applied to each imported collection and then 

NDVI (Equation 2) was calculated from the reflectances in the 

NIR and Red bands, as proposed by Rouse et al. (1973). 

 

                                                         (2) 

                                                                                                             

For NDVI values of orbital sensors, the average value of the 

pixels covering the entire study area for each of the 3 satellites 

was generated. These data, combined with the surface sensor 

Satellite Sensors/ 

Products 

Spetral Resolution 

Spatial 

Resolution 

 

 

Number of 

pixels  Bands Wavelanght 

Sentinel 2 MSI 
B4 – Red  0,64 – 0,68  

10 m 2734 
B8 – NIR 0,77 – 0,90 

Landsat 8 OLI 
B4 – Red  0,64 – 0,67 

30 m 307 
B5 – NIR   0,85 – 0,88 

 

Terra 

 

MODIS – 

MOD13Q1 

B1 – Red 0,62 – 0,67   

250 m 

 

4 

B2 – NIR  0,84 – 0,87  
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NDVI data, were graphically presented and used for the 

characterization of the 2018 soybean temporal profile. In 

addition, we analyzed the differences in NDVI values 

associated with the different sensors, for data intervals of 15 

days, in order to match the dates of images. 

 

Linear regression equations were also applied between the 

reference measured NDVI values and the NDVI values from the 

three orbital sensors. From these equations, the NDVI values of 

the different orbital sensors were adjusted. 

 

2.3 DM and NPP estimates 

For the estimation of DM, an adaptation of the concept 

developed by Montheith (1972) was used (Equation 3), 

considering biomass production as the product of 

Photosynthetically Active Absorbed Radiation (APAR) by the 

efficiency of conversion of APAR to DM (Ɛa) of these plants: 

 

DM = APAR * Ɛa                                                                    (3) 

 

In this work, the value of 1.57 g / MJ was assigned to Ɛa, which 

was determined for soybean cultivation under adequate water 

conditions and also management conditions similar to the one 

under study (Martorano, 2007). APAR was obtained through 

the equation 4: 

 

APAR = FPAR * PARinc                                                       (4) 

 

Where PARinc is the monthly accumulation of incident PAR, 

given in MJ.m-².month-1 and FPAR is the fraction of PAR 

intercepted by plants. 

 

An FPAR can be modeled as a function of NDVI and often 

assumes a linear relationship with NDVI (Huemmrich et al., 

2010). In the present work a linear regression between the 

FPAR, obtained through the relationship between APAR and 

PARinc, and reference NDVI (Fig. 3), was adjusted. This 

equation was used to estimate or FPAR from the NDVI of the 

three orbital sensors used in the work. 

 

Estimated DM data from equation 3 using reference NDVI 

dataset were compared with field-measured DM data over the 

cycle. 

 

 
Figure 3. Linear regression between the Photosynthetically 

Active Absorption Radiation Fraction (FPAR) and the Surface 

Normalized Difference Vegetation Index (NDVI). 

Carazinho/RS, 2017/18. 

 

Crop NPP was considered to be 40% of the total DM produced 

during the crop cycle (Pillon, Mielniczuk, Neto, 2004). NPP 

values were calculated using reference and orbital NDVI data as 

well as reference adjusted NDVI data. This last analysis aimed 

to verify the impact of differences in NDVI values from various 

sources on NPP estimation. 

 

3. RESULTS AND DISCUSSIONS  

3.1 NDVI of the different sensors 

The NDVI data presented a similar pattern for the different used 

sensors, consistently representing soybean growth and 

development during the growing season. The cycle began at the 

end of November, when NDVI was low, followed by a rapid 

increase during December. From the beginning of January, the 

maximum NDVI values were reached, which remained constant 

until the end of February, characterizing the period of maximum 

green biomass in the crop. Soon after, it is possible to observe 

the decrease of NDVI values as a function of the onset of crop 

senescence. The highest similarity of NDVI data from the 

different sensors occurred from early January until the end of 

February, when NDVI data was saturated. Under conditions of 

higher biomass density, an absorption peak occurs in the red 

band (Povh et al, 2008), while infrared reflectance remains 

stable saturating the index.  

 

The NDVI profile for each sensor presented an expected pattern 

and already observed in several studies for soybean cycle in the 

region (Fontana, Potgieter. Apam, 2007; Santos et al., 2014). 

Despite the similarity, it can be observed that there are 

variations in NDVI values from one sensor to the other, 

especially in the early and late crop periods. This is because 

each sensor has different characteristics and configurations 

(Table 1), and even for spectral bands designed to observe the 

same region of the electromagnetic spectrum, the result is 

relative spectral response functions that differ significantly 

between sensors (Teillet, Fedosejevs, Thome, 2004). Despite 

these differences, most of these indices were originally designed 

for broadband sensors, and therefore the broad spectral 

characteristics of vegetation in the red and near infrared regions 

allow these indices to transfer well between sensors of different 

bandwidths and positions (Cundill et al, 2015). 

 

 
Figure 4. Normalized Difference Vegetation Index (NDVI) data 

during the Soybean Crop 2017/2018, for the different sensors 

used. Carazinho/RS, 2017/18 

 

A greater difference from MOD13Q1 data to the other sensors 

is observed precisely in the initial period of crop growth. Most 

likely this is due to spectral mixing within the pixel, as the 

MODIS sensor has a moderate spatial resolution compared to 

the high resolution of Sentinel 2 and Landsat 8 (Table 1). 

However, this difference does not affect the relationship 

between the NDVI data from the MOD13Q1 and the measured 

data in the crop, with a high R² of approximately 0.95. This high 
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association occurs because during the final stage of the crop 

cycle, the MOD13Q1 came closest to the crop data (Fig. 4). The 

main advantage of using MODIS sensor data is the availability 

of products with quality and temporal frequency adequated for 

crop monitoring, minimizing the difficulties in obtaining 

spatiotemporal profiles of crop areas due to cloud cover (Santos 

et al., 2014). 

 

Even though Sentinel 2 and Landsat 8 satellites have very 

similar configurations, the difference in their NDVI from the 

measured data was high. Possibly the low temporal resolution 

of Landsat and, consequently, the lack of images for a longer 

period of time, due to the large cloud coverage during the crop 

development period, was the cause of the observed differences 

in relation to field data.  

 

Despite these differences, the data from the different sensors 

presented a high correlation with the field measured data with 

minimum R² of 0.78 and RMSE 0,18. Nevertheless, due to the 

low temporal resolution (low availability of images during a 

crop season) and the high probability of cloud incidence during 

the crop development period, it is convenient to use the 

MOD13Q1 product to better characterize the crop growth 

profile, or the fusion of data from different sensors by 

establishing functions between them. These functions are 

therefore expected to make viable the integrated NDVI use of 

these sensors throughout the soybean cycle (Fig. 6). 

 

 
Figure 5. Normalized Difference Vegetation Index (NDVI) data 

for soybean crop obtained from different orbital sensors 

compared to surface measured data. Carazinho/RS, 2017/18 

 

 
Figure 6. Normalized Difference Vegetation Index (NDVI) data 

for soybean crop obtained by functions of the reference data. 

Carazinho/RS, 2017/18 

 

3.2 DM and NPP estimated by different sensors 

Analyzing only the surface measured data, it is verified that the 

DM estimated by equation 3 presented a high correlation with 

the field measured data, indicating that the proposed method is 

robust and can be used in the biomass estimates of agricultural 

crops (Fig. 7). Moreover, it is also inferred that the Ɛa used in 

the estimate adequately represented the efficiency of conversion 

of APAR to DM, considering the appropriate water conditions 

that were verified during the study crop season. When water 

restrictions occur, however, it is recommended to evaluate the 

adequacy of this coefficient, or even to introduce coefficients 

that express such restrictions. 

 

 
Figura 7. Linear regression between soybeans dry matter (DM), 

estimated by Montheith's adapted equation (1972), and field-

measured Carazinho/RS, 2017/18 

 

By expanding the analysis including data obtained from orbital 

sensors, it was possible to analyze the impact of differences in 

NDVI values on NPP estimates. When a monthly analysis is 

observed, NPP data were similar, especially in the months of 

highest biomass production, which are January and February. 

However, by analyzing only the total NPP produced at the end 

of the soybean cycle, there are differences between the sensors, 

with the largest difference occurred in the Landsat satellite. The 

data from this sensor underestimated the total cycle NPP 

estimate, while the MOD13Q1 and Sentinel data were the 

closest to the field data (Table 2). 

 

Platform and sensor combinations are known to differ in their 

temporal, spatial and spectral configuration. Regarding the 

spectral configuration, both Landsat and Sentinel specifications 

are designed so that there is a significant correspondence 

between the corresponding spectral bands. However, some 

differences can be expected in the recorded radiometric values 

(Mandanicci, Bitteli, 2015). Clearly, the importance of these 

differences depends on the application and the approach, since 

according to D'Odorico et al. (2013), methods based on physical 

quantities through remote sensing reflectance or empirical 

approaches based on multispectral indices, are more affected by 

the problem. 

 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-431-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165573

 
 

434



 

 

 

  

Month NPP 
Difference between satellite and 

reference estimated NPP   
Reference Sentinel Landsat MOD13Q1 Sentinel Landsat MOD13Q1 

Estimated 

NPP 

(g/m²/month) 

NOV 0,0 -4,9 -1,0 9,0 -4,9 -1,0 9,0 

DEC 28,9 9,8 -40,1 69,2 -19,1 -69,0 40,3 

JAN 385,8 345,6 365,3 425,5 -40,2 -20,5 39,6 

FEB 574,4 556,2 555,2 607,1 -18,2 -19,2 32,7 

MAR 595,5 519,0 273,7 489,5 -76,5 -321,7 -105,9 

Estimated 

NPP with 

ajusted 

NDVI 

(g/m²/month) 

NOV  2,0 16,2 2,1 2,0 16,2 2,1 

DEC  36,3 36,5 43,9 7,4 7,6 15,0 

JAN  376,5 404,9 405,8 -9,3 19,1 20,0 

FEB  596,3 600,8 580,9 21,8 26,4 6,5 

MAR  570,7 401,9 443,5 -24,7 -193,6 -152,0 

Table 2. Net Primary Productivity (NPP) of soybeans estimated using Normalized Difference Vegetation Index (NDVI) data 

obtained from different sensors and estimated NPP from NDVI adjusted data through equations. Carazinho/RS, 2017/18. 

 

 

4. CONCLUSIONS 

The NDVI data of the different sensors are adequate to 

represent the temporal profile of soybean crop. Even with a 

lower spatial resolution, the MOD13Q1 product presents 

better results, mainly due to the quality and temporal 

frequency of the data. 

 

The method adapted to estimate DM is suitable and can be 

used in soybean crop fields under adequate water conditions. 

Differences in the NPP estimation of the different sensors are 

mainly due to the low amount of images for Landsat and 

Sentinel sensors to represent NDVI variations during the crop 

season. 

 

It is recommended to use combined data from some satellites 

for a better estimate of NPP, as using only one satellite may 

not represent actual productivity over the cycle. 

 

ACKNOWLEDGEMENTS  

We thank CAPES, UFRGS and Embrapa Trigo. 

 

REFERENCES 

Basso, B., Cammarano, D., Carfagna E., “Review of crop 

yield forecasting methods and early warning systems,” 

Report presented to First Meeting of the Scientific Advisory 

Committee of the Global Strategy to Improve Agriculture and 

Rural Statistics FAO, Headquarters, Rome, Italy. pp. 1-56, 

2013. 

 

Bao, G. et al., 2016. Modeling net primary productivity of 

terrestrial ecosystems in the semi-arid climate of the 

Mongolian Plateau using LSWI-based CASA ecosystem 

model. International Journal of Applied Earth Observation 

and Geoinformation, v. 46, p.84-93. 

 

Cundill, S., et al.., 2015. Adjusting Spectral Indices for 

Spectral Response Function Differences of Very High Spatial 

Resolution Sensors Simulated from Field Spectra. Sensors, v. 

15, n. 3, p.6221-6240. 

 

D’Odorico, P., et al., 2013. “Experimental Evaluation of 

Sentinel-2 Spectral Response Functions for NDVI Time- 

 

Series Continuity.” IEEE Transactions on Geoscience and 

Remote Sensing 51 (3): 1336–1348. 

 

Dorigo, W., et al., 2007. A review on reflective remote 

sensing and data assimilation techniques for enhanced 

agroecosystem modeling. International Journal of Applied 

Earth Observation and Geoinformation, v.9, p.165–193. 

 

Fontana, D. C.; Potgieter, A.; Apan, A., 2007. Assessing the 

relationship between shire winter crop yield and seasonal 

variability of the MODIS NDVI and EVI images. Applied 

GIS, v.3, p.1-16. 

 

Chander G. et al., 2013. "Applications of spectral band 

adjustment factors (SBAF) for cross-calibration", IEEE 

Trans. Geosci. Remote Sens., vol. 51, no. 3, pp. 1267-1281. 

 

Gates, D. M., et al., 1965. Spectral properties of plants. 

Applied Optics, v.4, p.11-20.  

 

Gitelson, A.; Gritz, Y.; Merzlyak, M., 2003. Relationships 

between leaf chlorophyll content and spectral reflectance and 

algorithms for non-destructive chlorophyll assessment in 

higher plant leaves. J. Plant Physiol. 

 

Haberl, H. et al., 2004. Human appropriation of net primary 

production and species diversity in agricultural landscapes. 

Agriculture, Ecosystems & Environment, [s.l.], v. 102, n. 2, 

p.213-218. 

 

Huemmrich, K.F. et al., 2010. Remote sensing of tundra 

gross ecosystem productivity and light use efficiency under 

varying temperature and moisture conditions. Remote Sensing 

of Environment, [s.l.], v. 114, n. 3, p.481-489. 

 

Kim, Y., et al., 2010. Spectral compatibility of vegetation 

indices across sensors: band decomposition analysis with 

Hyperion data. J. Appl. Remote Sens. 

 

Mandanici, E.; Bitelli, G., 2015. Multi-image and multi-

sensor change detection for long-term monitoring of arid 

environments with Landsat series. Remote Sensing. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-431-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165573

 
 

435



 

 

Martorano. L. G. Padrões de resposta da soja a condições 

hídricas do sistema solo-planta-atmosfera, observados no 

campo e simulados no sistema de suporte à decisão DSSAT. 

Tese de doutorado em Fitotecnia, Universidade Federal do 

Rio Grande do Sul, Porto Alegre, 151p., 2007. 

 

Monteiro, P. F. C. et al., 2013. Índices de vegetação 

simulados de diferentes sensores na estimativa das variáveis 

biofísicas do feijoeiro. Pesquisa Agropecuária Brasileira, 

[s.l.], v. 48, n. 4, p.433-441. 

 

Monteith, J., 1972. Solar radiation and productivity in 

tropical ecosystems. Journal of Applied Ecology, vol. 9, n. 3, 

p.747–766. 

 

Myneni, R. B. Williams, D. L., 1994. “On the Relationship 

between FAPAR and NDVI.” Remote Sensing of 

Environment 49 (3): 200–211. 

 

Pahlevan, N., et al., 2016. “Impact of Spatial Sampling on 

Continuity of MODIS–VIIRS Land Surface Reflectance 

Products: A Simulation Approach.huem” IEEE Transactions 

on Geoscience and Remote Sensing 55 (1): 183–196. 

 

Pandolfo, C. Parâmetros básicos para uso na modelagem do 

rendimento de matéria seca em alfafa (Medicago sativa l.). 

Dissertação (Mestrado) – Programa de Pós-Graduação em 

Fitotecnia, Faculdade de Agronomia, Universidade Federal 

do Rio Grande do Sul, Porto Alegre, 1995. 

 

Pillon, C. N.; Mielniczuk J.; Neto, L. M. Ciclagem da 

Matéria Orgância em Sistemas Agrícolas. Embrapa Clima 

Temperado, Documento 125, 2004. 

 

Teillet, P. M., Fedosejevs, G., Thome, K. J., 2004. Spectral 

band difference effects on radiometric cross-calibration 

between multiple satellite sensors in the Landsat solar-

reflective spectral domain. Sensors, Systems, And Next-

generation Satellites Viii, [s.l.], p.1-11.  

 

Teillet P. M., et al., 2007. “Impacts of spectral band 

difference effects on radiometric cross-calibration between 

satellite sensors in the solar-reflective spectral domain", 

Remote Sens. Environ. vol. 110, n. 3, pp. 393-409. 

 

Potter, C. S. et al., 1993. Terrestrial ecosystem production: A 

process model based on global satellite and surface data. 

Global Biogeochemical Cycles, [s.l.], v. 7, n. 4, p.811-841. 

 

Potter, C.; Klooster, S.; Genovese, V., 2012. Net primary 

production of terrestrial ecosystems from 2000 to 2009. 

Climatic Change, [s.l.], v. 115, n. 2, p.365-378. 

 

Povh, F. P. et al., 2008. Comportamento do NDVI obtido por 

sensor ótico ativo em cereais. Pesquisa Agropecuária 

Brasileira, [s.l.], v. 43, n. 8, p.1075-1083. 

 

Purevdorj, T., et al., 1998. Relationships between percent 

vegetation cover and vegetation indices. Int. J. Remote Sens. 

 

Raun, W., et al., 2001. In-season prediction of potential grain 

yield in winter wheat using canopy reflectance. Agron. J., 93, 

131–138. 

 

Rosa, R., Sano, E. E., 2013. Determinação da produtividade 

primária liquida (NPP) de pastagens na bacia do rio 

Paranaíba, usando imagens MODIS. GeoFocus (Artículos), 

nº 13-1, p. 367-395. 

 

Rouse, J.W. et al. Monitoring vegetation systems in the great 

plains with ERTS. In: Earth Resources Technology Satellite 

Symposium, 3, 1973, Washington, Proceedings Washington: 

NASA. p.309-317. 

 

Running, S. W. et al., 2004. A Continuous Satellite-Derived 

Measure of Global Terrestrial Primary Production. 

Bioscience, [s.l.], v. 54, n. 6, p.547-560. 

 

Santos, J. S. dos et al., 2014. Identificação da dinâmica 

espaço-temporal para estimar área cultivada de soja a partir 

de imagens MODIS no Rio Grande do Sul. Revista Brasileira 

de Engenharia Agrícola e Ambiental, [s.l.], v. 18, n. 1, p.54-

63. 

 

Sivasankar, T., et al., 2018. Advances in Radar Remote 

Sensing of Agricultural Crops: A Review. Int. J. Adv. Sci. 

Eng. Inf. Technol. 

 

Yu et al., 2009. Modelling net primary productivity of 

terrestrial ecosystems in East Asia based on an improved 

CASA ecosystem model. Int. J. Remote Sens., 30, p. 4851-

4866. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-431-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165573

 
 

436




