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Abstract

Fusarium head blight (FHB), caused mainly by Fusarium graminearum, is best controlled with 

demethylation inhibitor (DMI) fungicides during flowering. However, the use of premixes of 

DMI and quinone outside inhibitor (QoI) fungicides to control FHB has increased in Brazil. Data 

on FHB severity and wheat yields measured in field experiments conducted in Brazil were 

Page 1 of 37



                                                                                               Barro et al. Plant Disease  Page 2

gathered from both peer- and non-peer-reviewed sources published from 2000 to 2018. After 

applying selection criteria, 73 field trials from 35 bibliographic sources were identified, among 

which 50% of the data were obtained from cooperative network trials conducted after 2011. To 

be included in the analysis, a DMI+QoI premixes or tebuconazole (TEB) were tested in at least 

14 trials and three years. Four premixes met the criteria. Estimates of percent control (and 

respective 95% confidence interval) by a network model fitted to the log of the treatment means 

ranged from 44.1% (pyraclostrobin + metconazole applied once; 32.4 to 53.7) to 64.3% 

(pyraclostrobin + metconazole; 58.4 to 69.3); the latter not differing from TEB (59.9%, 53.6 to 

65.3). Yield response was statistically similar for pyraclostrobin + metconazole (532.1 kg/ha, 

441 to 623) and trifloxystrobin + prothioconazole (494.9 kg/ha, 385 to 551), and both differed 

statistically from a group composed of TEB (448.2 kg/ha, 342 to 554), trifloxystrobin + TEB 

(468.2 kg/ha, 385 to 551), azoxystrobin + TEB (462.4 kg/ha, 366 to 558) and pyraclostrobin + 

metconazole applied once (413.7 kg/ha, 308 to 518). The two categories of FHB index (7% cut 

off) and yield (3,000 kg/ha cut off), both in the non-treated check, did not explain the 

heterogeneity in the estimates. Two sequential sprays of TEB or one spray of pyraclostrobin + 

metconazole as management choices are likely more profitable than DIM+QoI premixes sprayed 

twice during flowering considering only the fungicide effects on yield.

Keywords: chemical control; Fusarium graminearum, meta-analysis; profitability; systematic 

review
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Fusarium head blight (FHB, or wheat scab), caused mainly by Fusarium graminearum, is one of 

the most economically damaging wheat diseases worldwide, including Brazil (Del Ponte et al. 

2015; Goswami and Kistler 2004). FHB-affected wheat crops produce small-sized, shriveled and 

discolored kernels, which may contain dangerous mycotoxins produced by the fungus (Ponts 

2015). The presence of mycotoxins may downgrade grain price or even reject the product at the 

elevators in countries where maximum limits have been promulgated (ANVISA 2011, 2017; 

McMullen et al. 2012). In Brazil, model-based estimates of relative losses to wheat yield due to 

FHB across more than 25 years averaged 10%, ranging from 3 to 25% (Duffeck et al. 2020). The 

estimates of decadal averages in yield losses were in agreement with reports from field 

experiments that suggested FHB being of no economic importance prior to the 1990s (Casa et al. 

2004; Reis et al. 1996). Multi-toxin surveys in commercial wheat produced in Brazil have shown 

that trichothecenes, such as deoxynivalenol (DON) and nivalenol, as well as zearalenone, are 

common contaminants (Del Ponte et al. 2012; Duffeck et al. 2017; Mallmann et al. 2017). 

Although several methods have been evaluated for managing FHB, effective and economic 

control has been achieved with fungicides applied during full flowering in combination with the 

use of less susceptible cultivars (Mesterházy et al. 2003; Wegulo et al. 2011; 2015; Willyerd et 

al. 2012). Among them, those of the demethylation inhibitor (DMIs) group have been ranked 

more consistently as the best options to suppress FHB and DON, but their control efficacy varies 

among the different active ingredients (Machado et al. 2017; Mesterházy et al. 2011; 2018; Paul 

et al. 2008). For example, metconazole or prothioconazole, applied solely or mixed together, 

have provided the highest reduction in FHB and DON than tebuconazole and propiconazole 

applied alone in the United States (Paul et al. 2008, 2018). In Brazil, a meta-analysis study 

showed wheat yields numerically higher with two sprays of tebuconazole (+100kg/ha on 

average), which performed better than propiconazole and carbendazim (Machado et al. 2017). A 

28-year simulation study used the meta-analytic estimate of yield gain from a second spray of 
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tebuconazole (Machado et al. 2017) when linking historical weather, a crop model, a disease 

model, and a model relating FHB index and yield. The authors of that study showed that the risk 

of not-offsetting the costs was generally higher for two sprays given the variability in the disease 

risk in the historical weather for a location in southern Brazil (Duffeck et al. 2020). 

Quinone-outside inhbitor (QoIs), also known as strobilurins, are generally not 

recommended for FHB control due to their lower efficacy than triazoles (Bolanos-Carriel et al. 

2020; Feksa et al. 2019; Magan et al. 2002; Pirgozliev et al. 2002). In addition, small reduction, 

or even an increase, in DON in the grain relative to untreated check plots of wheat in the field 

treated with the QoI azoxystrobin have been reported (Ellner 2005; Feksa et al. 2019; 

Mesterhazy et al. 2003; Simpson et al. 2001). The underlying mechanisms leading to the increase 

in mycotoxin production by QoI are not entirely clear and increases in mycotoxin levels seem to 

be dependent on the active ingredient. Recently, several QoIs including coumoxystrobin, 

picoxystrobin, fluoxastrobin, azoxystrobin, fenaminstrobin and pyraclostrobin were associated 

with DON production by up-regulating the expression of Tri5 and Tri6 genes and increasing 

acetil-CoA production (Duan et al. 2020). 

Although recommendations contrary to the use of QoIs to manage FHB, the potential 

benefits from their use, especially mixed with a DMI, include extended protection against foliar 

diseases including powdery mildew, tan spot and rusts (Barro et al. 2017; Blandino et al. 2006; 

Paul et al. 2018; Ransom and McMullen 2008; Willyerd et al. 2012). Studies conducted in 

controlled conditions have shown that QoIs can alter wheat physiology, resulting in enhanced 

stress tolerance, increased photosynthesis rate and yield (Blandino et al. 2011; Oerke et al. 2001; 

Paul et al. 2018). Therefore, the possibility of extending the flag leaf life may result in improved 

yields especially in disease-conducive environments (Blandino et al. 2011; Wegulo et al. 2011). 

In Brazil, DMI+QoI premixes have been evaluated for many years, but a plethora of new 

data became available after the establishment of an industry-partnered network of cooperative 
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fungicide trials (CFTs) in 2011 (Santana et al. 2012, 2014, 2016a, 2016b, 2016c, 2019a, 2019b, 

2020). Analyses of those data, both at the trial level and all trials combined within a year, do not 

provide a clear picture whether and under which conditions the use of premixes is justified and 

profitable for protecting wheat yields. Similar, peer-reviewed studies in the country have shown 

inconsistent results when QoI-amended premixes were compared to single active ingredients or 

other premixes. For example, in a four-trial study in Rio Grande do Sul state, significant 

differences in yield response favored the pyraclostrobin + metconazole compared to metconazole 

alone in some trials (Spolti et al. 2013). Conversely, in a four-year study in Paraná State, triazole 

and benzimidazole fungicides performed better than the DMI+QoI premixes with regards to 

FHB and DON control (Feksa et al. 2019).  Similarly, in the United States, studies have reported 

flowering applications of DMIs as more effective in reducing FHB and DON, but most of the 

data were based on applications of a QoI alone (Bolanos-Carriel et al. 2020) or DMI+QoI 

premixes prior to anthesis because they are not recommended during flowering (Paul et al. 

2018).

To resolve inconsistencies on treatment effects, meta-analysis is a useful approach to 

synthesize results from several bibliographic sources, which are selected following a defined 

criteria, to estimate the significance, size and uncertainty of the effect of a treatment of interest 

(Madden and Paul 2011; Madden et al. 2016). The method has gained popularity to summarize 

the effect of treatments in plant disease management, especially for data from uniform fungicide 

trials, including FHB research (Barro et al. 2019;  Dalla Lana et al. 2018; Edwards Molina et al. 

2019; Machado et al. 2017; Paul et al. 2008, 2018). This source of data is critical to minimize 

issues associated with publication bias, or when larger than average effects are more likely to be 

published (Mueller et al. 2013; Pannucci and Wilkins 2010).

In this study, we combined FHB index and wheat grain yield data gathered from peer- and 

non peer-reviewed bibliographic sources and CFTs. The final dataset spanned 15 years (2000 to 
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2018) of experiments conducted at 25 locations in the main wheat-producing regions in southern 

Brazil. Our objectives were to: 1) obtain meta-analytic estimates of FHB control efficacy and 

wheat yield response to selected DMI+QoI premixes; 2) test whether at least part of the 

heterogeneity in treatment effects could be explained by baseline levels of disease or yield; and 

3) calculate the profitability of representative fungicide treatments, using meta-analytic 

estimates, based on the risk of not offsetting the fungicides cost.

Materials and Methods

    Data source and criteria for trial and fungicide selection. Data were obtained from both peer 

and non peer-reviewed articles/reports (hereafter studies) on fungicide efficacy including the 

CFT-FHB (Ensaios cooperativos de giberela). First, a search was conducted in Google Scholar 

database (https://scholar.google.com.br/) using the following English keywords such as: 

“wheat”, “Fusarium head blight” and “fungicide”; as well as the Portuguese keywords: “trigo”, 

“giberela”, “fungicida”, “eficácia”, because many studies conducted in Brazil were published in 

the native language and local venues. The publication period in the search was restricted to 2000 

to 2018. A total of 50 studies were found (as of March 2020). After duplicate removal (n = 1), 49 

studies were scrutinized to check those conforming with the following criteria:  a) field trial 

conducted after 2000 year in Brazil; b) means of FHB index (%) and/or wheat grain yield 

(kg/ha), together with a measure of sampling variance, reported in tables or charts; c) a non-

treated check treatment included for comparison. Forty-two studies did not match the criteria and 

were excluded. Other sources included the literature section of the studies, abstracts and posters 

presented at scientific meeting and available in digital format. These were scrutinized and 22 

studies were selected. Finally, we used all data available at the annual reports of the Ensaios 

cooperativos de giberela website, totaling six reports (http://www.ensaioscooperativos.net/). The 

selected studies were further inspected to select the treatments of interest for analysis. To be 
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included in the meta-analysis, a DMI+QoI premix treatment, as well as DMI for comparison, 

should have been evaluated in at least 14 trials and during three years, applied either singly or 

twice during flowering. A total of 113 independent trials (from 35 studies) met the criteria. 

Screenshots of the tables and graphs from where the data were extracted from the 35 studies used 

for the analyses are available at https://osf.io/8b3cq/.   

    Database description. Data from CFTs conducted during an eight-year period (2011 to 2018) 

constituted the largest portion (50%) of the trials. The remaining trials were obtained from the 

literature, such as thesis (6%) and extended abstracts or manuscripts (44%) published from 2000 

to 2015. The total period encompassed 15 years (2000 to 2018) and the trials were conducted at 

25 locations in three states of south of Brazil (RS, PR, and SC). The number of trials differed 

between the two response variables (FHB index and yield). There were 65 trials for FHB index 

and 73 trials for yield because FHB index was not obtained in all trials. All experiments were 

performed as a randomized complete block design with four or five replicates.

Four premixes met the criteria and tebuconazole was included for comparison (Table 1). 

Most treatments (all trials from the CFTs) were tested with two applications: first spray at the 

mid- flowering and the following 10 days later. For one premix treatment (PYRA + METC), data 

were available for one spray (peer-reviewed literature only). This treatment was included in the 

analysis to compare the single versus two applications of a representative premix (Table 1).
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    Meta-analytic model. Estimates of the control efficacy and yield response were obtained 

from fitting an arm-based network model, also known as two-way unconditional linear mixed 

model, to the data. In this approach, the model is fitted directly to data on treatment means 

(absolute or log-transformed) (Machado et al. 2017; Madden et al. 2016; Paul et al. 2008) and 

not to the pairwise differences of treatments, known as contrast-based models. While means of 

FHB index were log-transformed, no transformation or standardization was required to obtain 

the mean absolute difference in yield, given the statistical properties of the data (Supplementary 

Fig. S1). The arm-based model can be written as Equation 1:

                                                                    (1)𝑌𝑖~𝑁(𝜇, ∑ + 𝑆𝑖)

where  is the vector of L (log of the means of yield or FHB index) or absolute yield for the six 𝑌𝑖

treatments plus the non-treated check for the ith study,  is a vector representing the mean of  𝜇 𝑌𝑖

across all studies, ∑ is a 7 x 7 between-study variance-covariance matrix (for the seven 

treatments, including the non-treated check), and  is a within-study variance-covariance matrix 𝑆𝑖

for the ith study. N indicates a multivariate normal distribution.

The within-study variability (sampling variance) of L and D was calculated from the 

reported coefficient of variation (CV) or the mean square error (MSE); the latter when the data 

were available at the replicated plot level, as described (Machado et al. 2017; Paul et al. 2008, 

2010). An unstructured (UN) matrix ∑ was used, given its better fit to the data than other 

structures such as heterogeneous compound symmetry (HCS) (data not shown). Maximum 

likelihood estimation models were fitted to the data using the rma.mv function of metafor 

package (Viechtbauer 2010) of R (R Core Team 2019). 
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To express the model estimates in more intuitive responses such as percent FHB control (

) and percent yield increase ( ) we calculated the differences of the estimated means of the logs 𝐶 𝑌

( IND and YLD) which equals the ratio of the two means (Paul et al. 2008). The  and  values 𝐿 𝐿 𝐶 𝑌

and their 95% confidence intervals (CIs) were obtained by back-transforming IND and YLD and 𝐿 𝐿

the respective upper and lower limits of their 95% CIs as described in Equations 2 and 3. 

                                                                                                        (2)                           𝐶 = (1 ― (exp (𝐿𝐼𝑁𝐷))𝑥100)

                                                                                            (3)𝑌 = ((exp (𝐿𝑌𝐿𝐷) ― 1)𝑥100)

The yield difference ( ) was calculated directly after model fitting by subtracting 𝐷

estimated means of fungicide treatment and non-treated check (Madden et al. 2016). 

When performing a multi-arm network meta-analysis, assessment of the inconsistency or 

the extent to which different sources of evidence are compatible is an important component 

(Higgins et al. 2012). The most important source is known as "design inconsistency" for which a 

design-by-treatment interaction provides a useful general framework for investigating 

inconsistency (Higgins et al. 2012; Madden et al. 2016; Piepho et al. 2014). We used a factorial-

type ANOVA model to determine the significance of the treatment × design interaction, 

evaluated based on the Wald test statistic. The null hypothesis suggests that the network is 

consistent (Madden et al. 2016; Piepho et al. 2014). Eleven different designs (here design refers 

to the set of treatments in the trial) were found in the trials reporting both FHB index and yield 

response. 
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    Analysis of moderator effects. The model was expanded to include categorical or continuous 

moderator variables that could explain, at least portion of, the heterogeneity of the effects across trials 

(Madden et al. 2016). As categorical variables, we created baselines for FHB disease index and wheat 

grain yield based on the median of the mean values in the non-treated check. The FHB index class was 

split into two groups, or baselines, representing low (<7% FHB index) and high (≥7% FHB index) disease 

scenarios. This threshold (7% FHB index) has been used to separate low from moderate FHB epidemic 

levels in Brazil (Del Ponte et al. 2005), which is close to the 10% FHB index used in the United States to 

define an epidemic case (De Wolf et al. 2003). The baseline yield was defined as low as 3,000 kg/ha (and 

elsewhere) based on the median yield in the non-treated check plot. As continuous moderators, FHB 

index in the non-treated check and year were included in the model; the latter to check whether there was 

any trend of decline in fungicide efficacy over time (Dalla Lana et al. 2018). 

The moderator variables were included in the model and tested using a Wald-type chi-

square test to determine if the moderator variables directly affected the differences in logs of 

FHB index and the non-transformed yield values (Paul et al. 2008).

 

Economic risk and profitability of fungicides

With the estimates of mean yield difference ( ) and the respective between-study 𝐷

variance ( ) obtained from the meta-analysis, we calculated the risk probability (Ploss) of not 𝜏

offsetting the costs of fungicide plus application (FC) as described in Equation 4 used in previous 

studies (Barro et al. 2019; Machado et al. 2017; Paul et al. 2008):

                                                                                                             (4)𝑃𝑙𝑜𝑠𝑠 = 1 ― Φ(𝐷 ―

𝐹𝐶
𝑊𝑃

𝜏)

where  is the cumulative standard-normal function,  is the wheat price, and  is the Φ 𝑊𝑃 𝐹𝐶

fungicide costs (product + application). 
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Based on the meta-analysis results, three treatments were selected for comparison: the 

best performing premix (PYRA + METC) applied once or twice was compared with TEBU 

applied twice. For each fungicide treatment, 25 combinations were simulated (five  x five 𝑊𝑃 𝐹𝐶

), totaling 125 scenarios. For the calculations, we used an exchange rate as of July 2020 ($5.2 

BRL = $1 USD) and a central value of fungicide price practiced in the 2019/20 cropping season. 

The total costs (fungicide + operational cost of $10 USD/ha) for each fungicide treatment were: 

PYRA + METC = $50 USD/ha (the half for one spray); and TEBU = $35 USD/ha. The central 

value for wheat price (160 U$/ton) was obtained from the data gathered at the AGROLINK 

database for three wheat-producing states (Rio Grande do Sul, Paraná, and Santa Catarina) 

(AGROLINK 2020). Tile plots of the probability classes of not offsetting on fungicide costs 

were produced for each fungicide. 

Results    

     FHB index and yield data at the trial level. FHB index in the non-treated check plots of the 

studies ranged from 0.08 to 92.2% (median 7.4%) with no evident pattern of significant variation 

associated with season or state (Fig. 1; Supplementary Fig. S1). Over the years, the highest 

(36.8%) and the lowest (3.8%) median FHB index in the untreated check were recorded in the 

2000 and 2008 seasons, respectively (Fig. 1A). Similarly, baseline yield ranged from 67 to 6,048 

kg/ha (median 2,993 kg/ha) across the trials. Baseline yields were generally higher in Paraná 

state (median 3,358 kg/ha) than Rio Grande do Sul and Santa Catarina states combined (median 

2,838 kg/ha). There was a general trend of decreased FHB index and increased yield in the 

fungicide treatments compared with the untreated check (Fig. 1A,B).
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    Percent FHB control. Percent control efficacy, obtained from back-transformation of the 

estimated differences of the log-transformed FHB index in the fungicide-treated and non-treated 

plots, ranged from 44.1 to 64.3%. Two sprays of PYRA + METC or TFLX + PROT reduced 

FHB index by at least 60% and did not differ significantly between them (P > 0.42), neither to 

TEBU (59.8%), but differed (P < 0.05) from AZOX + TEBU (58.7%). The latter did not differ 

significantly from TEBU (P = 0.41) and TFLX + TEBU (58.4%; P = 0.85). All fungicides 

differed from PYRA + METC applied once, which showed the least level of control (44.1%) 

(Table 2). The absolute difference in percent control efficacy between the most and least 

effective fungicide was 20.2 percentage points. The Wald test for the treatment × design 

interaction showed that the network was consistent (P = 0.49). 

    Yield response. The mean estimates of yield difference ( ) between fungicide-treated and the 𝑫

non-treated plots ranged from 413.7 to 532.1 kg/ha among the premixes and tebuconazole. Yield 

response values as high as above 500 kg/ha were estimated only for PYRA + METC applied 

twice (532.1 kg/ha), which did not differ from TFLX + PROT (494.9 kg/ha) (P = 0.2398). These 

were followed by TFLX + TEBU (468.2 kg/ha), AZOX + TEBU (462.4 kg/ha), TEBU (448.2 

kg/ha) and PYRA + METC1X (413.7 kg/ha) (Table 3). The difference between the higher and 

lower estimated yield means was 118.4 kg/ha. Similarly, the estimated mean of the relative yield 

( ) was higher (>15%) for PYRA + METC and TFLX + PROT. These were followed by AZOX 𝒀

+ TEBU (14.74%), TEBU (14.68%), TFLX + TEBU (14.66%), and PYRA + METC1X (12.97%) 

(Table 3). The Wald test for the treatment x design interaction showed that the network was 

consistent (P = 0.99).

In general, the pattern of the relationship between control efficacy and yield differences 

was consistent. The fungicides leading to the greatest mean disease control and yield response 

were PYRA + METC and TFLX + PROT.  Although TEBU performed similarly to TFLX + 

TEBU and AZOX + TEBU in control efficacy (~59%), yield response was slightly lower, 20 to 
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14.2 kg/ha, than TFLX + TEBU and AZOX + TEBU, respectively. Again, PYRA + METC1X 

provided the least yield response. 

    Effect of moderator variables. The categories of FHB index and wheat grain yield as 

baselines did not affect FHB index or yield (P > 0.05). Similarly, FHB index as continuous in the 

non-treated check did not affect yield (P = 0.2757) and year did not affect FHB index (P = 

0.8672), suggesting no decline in fungicide efficacy over time.

    Probability of breaking even on fungicide cost. The probability of loss (Ploss), or not-

offsetting the costs, was generally low ranged from 38.8 to 52.8%. For an average benefit-cost 

scenario (central tile in the plot) Ploss ranged from 41.6 to 43.2%, regardless of the treatment. Ploss 

values increased to around 50% for higher fungicide costs and low wheat price for the selected 

treatments. TEBU applied twice or PYRA + METC applied once were more likely to be 

profitable (Ploss < 45%) in a higher number of scenarios than the QoI-amended premix applied 

twice (Fig. 2).

Discussion

    Quantitative summaries of the effect of DMIs applied alone or in mixture with other DMIs 

have been made available using data from several studies conducted during the last decades 

(Machado et al. 2017; Paul et al. 2008, 2010). However, just recently the performance of 

premixes, including one QoI for controlling FHB, have been studied more extensively and 

summarized in other studies that combined data from multiple trials (Bolanos-Carriel et al. 2020; 

Feksa et al. 2019; Paul et al. 2018; Spolti et al. 2013). In Brazil, there has been an increasing 

interest, mainly by the industry, in testing the performance of DMI+QoI premixes for FHB 

management. In fact, only a handful of studies testing DMI+QoI premixes conducted prior to 
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2011 were found in our review; most of the trials being tested in the industry-partnered CFT 

network (Santana et al. 2012, 2014, 2016a, 2016b, 2016c, 2019a, 2019b, 2020). 

Our results showed that two premixes, PYRA + METC and TFLX + PROT, applied at 

flowering and 10 days later, provided the greatest level of control and yield response, at least 

numerically. However, their performance did not differ statistically from TEBU, a more 

affordable option included for comparison and for which the estimates in our study were similar 

to those obtained in the previous study using the same dataset (Machado et al. 2017).

Our estimates of control efficacy for the premix PYRA + METC (64%) were very close 

to the efficacy reported other recent studies, not included in our analysis, such as a two-year 

study (62%) conducted in the north of RS state, Brazil (Bonfada et al. 2019) and a four-year 

study (64.5%) conducted in the south of Paraná (Feksa et al. 2019). In the latter, the premixes 

were applied following pathogen inoculation, differing from our dataset from natural epidemics. 

Moreover, three DMI+QoI premixes (TFLX + PROT, TFLX + TEBU and PYRA + METC) in 

that study were evaluated in curative (post-inoculation) sprays, which were less effective than 

preventative application (pre-inoculation), corroborating previous findings (Spolti et al. 2013). 

Conversely, the authors reported that DMIs or carbendazim fungicides alone provided a better 

control efficacy (>70%) compared to DMI+QoI premixes in all growing seasons when taking 

both preventative and curative applications into account (Feksa et al. 2019). Their findings 

corroborate the evidence of a superior performance of a single best DMI (metconazole) 

compared to the PYRA + METC premix in the United States (Paul et al. 2018). However, in US 

study the applications of the DMI+QoI premixes were not made during flowering, but at the 

heading stage, in some cases followed by one spray of DMI at flowering. This may explain in 

part the lower efficacy (41.8%) (Paul et al. 2018) compared with estimates in our study for 

sprays of the premix at and after flowering (64%).
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Apart from the differences due to time relative to growth stage, the generally lower 

efficacy in DMI+QoI premixes compared with some DMIs alone or in premix, reported in some 

studies, has been associated with the reduced rate of DMI, which is known to be more highly 

effective fungicide against F. graminearum (Edwards et al. 2001; Paul et al. 2018). In our 

analysis, however, the rate of TEBU alone was the same (200 g/L) as in the two premixes (TFLX 

+ TEBU and AZOX + TEBU) and did not affect control efficacy as well as yield response. 

Similarly, Dardis and Walsh (2000) also reported comparable levels of FHB control when testing 

AZOX + MET and TFLX + METC with the corresponding DMI pair alone. Bonfada et al. 

(2019) reported similar control efficacy and yield response between PYRA + METC and single-

DMI METC, both applied at anthesis and seven days later. In Italy, Blandino et al. (2006) 

reported greater control efficacy of the premix AZOX + TEBU (79%) compared to TEBU(64%) 

with applications made at mid-anthesis. 

Yield benefits from the use of DMI+QoI premixes for FHB control on wheat grain yields 

has been linked to a broad spectrum of protection, due to the different modes of action, that 

could be extended to foliar diseases, especially under high disease pressure conditions (Bolanos-

Carriel et al. 2020; Blandino et al. 2011; Spolti et al. 2013; Wegulo et al. 2011). For instance, 

Blandino et al. (2006) reported a 8.7% increase in yield by applying AZOX+TEBU compared to 

two DMIs applied alone (tebuconazole and prochloraz). Those reports agree with our findings of 

yield response for PYRA + METC being greater than TEBU (83.8 kg/ha). Information on the 

presence and intensity of foliar diseases was not available in the primary studies used in our 

analysis. However, the two groups of trials representing low or high baseline yield may be 

indicative of conditions that are more or less favorable for foliar diseases. When tested as 

moderator, we failed to reject the hypothesis that yield response is not influenced by the baseline 

yield. This result agrees with a previous meta-analysis on the effect of tebuconazole, 
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propiconazole and benzimidazole fungicide to control FHB in wheat, for which the estimates 

were not affected by disease pressure (Machado et al. 2017).  

Using the means and respective uncertainty of the estimates in a benefit-cost risk 

analysis, the one-time (full flowering) spray of PYRA + METC was generally of lower risk of 

loss (not offsetting costs) than two sprays of this mixture or TEBU applied twice. The economic 

benefit from an additional spray of tebuconazole for FHB control has been questioned in 

previous studies. However, caution is needed because only yield protection, not mycotoxin 

reduction, which can contribute to economic loss in some situations, was not taken into account 

in those studies, as well as in our current study (Duffeck et al. 2020; Machado et al. 2017). 

Results of our profitability analysis using data representative of specific experimental 

conditions - two sequential sprays of the same commercial fungicide, suggest that some 

DMI+QoI premixes can be as effective and affordable as tebuconazole in reducing FHB index 

and increasing wheat grain yield. This is important information for grower making more 

informed decisions to manage FHB economically. Current recommendations vary across the 

main wheat regions. In general, one spray of a DMI+QoI, premix at flowering has become 

standard practice, but two sprays are common in production situations that target high yield and 

quality such as in southern PR State (Feksa et al. 2019). Preliminary data from the CFTs has 

shown benefits from adding a third active ingredient (carbendazim) in the mixture (Santana et al. 

2019a, b, 2020) and more data will become available in the near future to confirm this. 

Another important outcome of systematic reviews is the possibility to identify knowledge 

gaps (Koricheva and Gurevitch 2014; Nakagawa et al. 2017). Our study shows clearly the need 

to invest resources on the analysis of DON data. The limited number of studies testing the effect 

of DMI+QoI premixes, both from published and CFT sources, reporting DON data (Baseggio et 

al. 2017; Bonfada et al. 2019; Feksa et al. 2019; Spolti et al. 2017) prevents us from obtaining 

reliable estimates of mycotoxin reduction or accumulation for large databases as elsewhere (Paul 
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et al. 2018). Thus far, there is very limited evidence of the effect of one or two applications of 

premixes, during flowering period, on FHB, yield and DON, which are composed of different 

combinations of QoIs and DMIs that can act differently (Blandino et al. 2006; Feksa et al. 2019; 

Paul et al. 2018; Zhang et al. 2009). 
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Table 1.  Fungicide treatments applied for controlling Fusarium head blight in wheat, 

evaluated in 73 fungicide trials conducted from 2000 to 2018 across three Brazilian states 

(PR, RS and SC).

Fungicide a.i. na Study code Commercial 
name

Spraysb Dosec

Non-treated 73 CHECK - - -

azoxystrobin + tebuconazole 25 AZOX + TEBU Azimut 2 0.50

pyraclostrobin + metconazole 23 PYRA + METC1X Opera Ultra 1 0.75

pyraclostrobin + metconazole 66 PYRA + METC Opera Ultra 2 0.75

trifloxystrobin + prothioconazole 41 TFLX + PROT FOX 2 0.50

trifloxystrobin + tebuconazole 36 TFLX + TEBU Nativo 2 0.75

tebuconazole 25 TEBU Folicur 2 0.75
a  Number of trials that each fungicide was evaluated.
b Number of applications: first spray at the beginning of flowering (25% to 50%) and the following 10 days  
apart.
c Dose (L/ha) for each fungicide.
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Table 2. Overall means and respective confidence intervals of log response ratio ( ) and calculated 𝐿

percent control ( ) of Fusarium Head Blight (FHB) relative to non-treated check provided by six 𝐶

fungicides evaluated during 15 years (2000 to 2018) across 65 studies conducted in three Brazilian 

states (PR, RS and SC).

Effect Size FHB control (%) 

Fungicidea kb 𝐿 SE( )𝐿 CIL
c  CIU

c P value 𝐶 CIL
c CIU

c

PYRA + METC 60 -1.0299 0.0774 -1.1815 -0.8783 <0.0001 64.29 58.44 69.31

TFLX + PROT 42 -0.9845 0.0821 -1.1454 -0.8235 <0.0001 62.63 56.11 68.19

TEBU 14 -0.9137 0.0742 -1.0592 -0.7682 <0.0001 59.89 53.61 65.32

AZOX + TEBU 25 -0.8844 0.0775 -1.0363 -0.7326 <0.0001 58.70 51.93 64.52

TFLX + TEBU 40 -0.8768 0.0799 -1.0334 -0.7202 <0.0001 58.38 51.33 64.42

PYRA + METC1X 16 -0.5816 0.0966 -0.7710 -0.3921 <0.0001 44.09 32.43 53.74
a See Table 1 for complete information of the evaluated fungicides.  
b Number of trials that each fungicide was evaluated.
c Upper (CIU) and lower (CIL) limits of the 95% confidence interval around  and .𝐿 𝐶
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Table 3. Overall means and respective confidence intervals of unstandardized difference in wheat 

grain yield ( ) between fungicide-treated and non-treated plots, and percent yield increase ( ) for 𝐷 𝑌

selected fungicide treatments evaluated during 15 years (2000 to 2018) across 73 studies conducted in 

three Brazilian states (PR, RS and SC).

Effect size Yield Return (%) 

Fungicidea kb 𝐷 SE( )𝐷 CIL
c  CIU

c P value  𝑌 CIL
c CIU

c

PYRA + METC 70 532.08 46.40 441.14 623.02 <0.0001 17.17 14.30 20.11

TFLX + PROT 45 494.99 45.09 406.60 583.38 <0.0001 16.21 13.14 19.37

TEBU 25 448.20 54.04 342.27 554.13 <0.0001 14.68 11.24 18.22

AZOX + TEBU 25 462.43 48.92 366.53 558.32 <0.0001 14.74 11.54 18.02

TFLX + TEBU 40 468.24 42.43 385.08 551.41 <0.0001 14.66 11.92 17.46

PYRA + METC1X 23 413.72 53.66 308.53 518.90 <0.0001 12.97 9.70 16.35
a See Table 1 for complete information of the evaluated fungicides.   
b Number of trials that each fungicide was evaluated.
c Upper (CIU) and lower (CIL) limits of the 95% confidence interval around  and  .𝐷 𝑌
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Fig. 1. Box plots for the within-season variation across trials in the nontreated check (A), and 

means for a set of fungicide treatments (B) of FHB Index (%) and wheat grain yield (kg ha-1) 

obtained from 73 trials conducted during 15 years across three Brazilian states (PR, RS and SC). 

The thick horizontal line inside the box represents the median, the limits of the box represent the 

lower and upper quartiles, and the circles represent yearly means of each treatment (See Table 

1).
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Fig. 2. Probability categories of not-offsetting on fungicide investment for different scenarios of 

wheat prices and fungicide costs (product price + operational costs [fixed at $10.00 U.S./ha]) for 

three representative fungicide treatments (see Table 1) applied once (at flowering) or twice (10-

days apart) for Fusarium Head Blight control. Probability for each fungicide treatment was 

calculated using the estimates of the mean difference ( ), and respective between-study variance 𝐷

( ), obtained from meta-analysis of data from 73 studies conducted over 15 years (2000 to 2018) 𝜏

in three Brazilian states.
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Supplementary Figure for

Are DMI+QoI Fungicide Premixes During flowering Worthwile for Fusarium head 
blight Control is Wheat? A meta-analysis

Barro JP et al.

Fig. S1: Histograms for the distribution of FHB index (A) and wheat grain yield (C) 

to check normality; B: log-transformed FHB index data for normalizing the 

distribution and use in the meta-analysis. 

Page 37 of 37


