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Abstract
Multidisciplinary scientific organizations have sought to face the challenges of digital transformation through new govern-
ance models that optimize network collaboration and innovation. We studied the collaboration network from the long-term 
coauthoring system of a Brazilian multidisciplinary organization (Embrapa). The study shows that nodes degree distribution 
of the network is scale free and degree correlation analysis suggests a disassortative regime from competition and minimal but 
sufficient control that emerges as a hub-and-spoke pattern. The jobs of controller and researcher are twice as many occupied 
by males, except for the jobs of analyst, who act like network gatekeeper. With the largest number of individuals in product 
units, the southern region of the country is more likely to form clusters. Alternatively, hubs in thematic and ecoregional 
units in the Midwest have greater gravitational attraction, positioning themselves in the inner core of the giant component. 
The optimization of innovation by the organization should combine greater individual autonomy through improved human 
capital, with a universal labeling of units as, for instance, centers of innovation.

Keywords  Business intelligence · Innovation process · Hub-and-spoke · Organization control

Introduction

Studies of scientific collaboration have fertile grounds on the 
principles of network science [1, 2]. Emerging from statisti-
cal physics and the science of complexity [1–4], network 
science is a transversal discipline providing the theoretical 
bases for studying and modeling real systems with empiri-
cal data [5]. Vertices (nodes) and links (edges) constitute a 
network, in which nodes with many edges have high-degree 
k. The distribution of values of k is important because the 
structure or the anatomy of a network reflects its internal 

dynamics of evolution and affects important functions like 
the dissemination of information/disinformation and the 
resistance to failure [1, 3, 6].

Barabási and Albert [7] have shown that heavy-tailed 
degree distributions p (k) are emergent properties of sto-
chastic growth models. New nodes continuously attach 
themselves to existing network nodes with probability 
proportional to k of the target node [8]. Observed in many 
empirical data and in a variety of systems, the phenomenon 
was coined as preferential attachment [9].

The heavy-tailed degree distribution is described by a 
power law function p(k) ∼ k−� , with or without exponen-
tial cutoffs [10], where a giant component (many connected 
nodes) exists for 2 ≤ γ < 3.47 [5, 11]. The fast decaying p (k) 
with the increase in k indicates that a very small number 
of high-degree nodes coexists with a very large amount of 
low-degree nodes. The former are called hubs, which affect 
both the topology and the evolution of the system. Moreo-
ver, the heavy-tailed distribution is scale free, i.e., the first 
moment <k> has less relevance, since the second moment 
diverges as the total number of nodes n and k increases. 
Above all, in scale-free networks with hubs and random 
clustering, the average path length <l> between nodes is 
reduced and proportional to n [5], which agrees with the 
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concept of highly connected communities of small world 
networks [6].

Scientific collaboration is an undirected social network, 
where the nodes are scientists and the edges denote co-
authorship. Coauthoring systems have been considered 
reliable patterns of social network dynamics, from which 
graph, clustering and centrality measures are useful to reveal 
hidden facets of scientific development in many fields of 
research [12, 13]. In turn, big data from metadata derived of 
digital publication databases are useful sources of informa-
tion for business intelligence [14, 15]. In addition, network 
science can be valuable in the search of topological arrange-
ments that optimize innovation internally and among small 
and large multidisciplinary organizations [16, 17], where 
preferential attachment is affected by hierarchy-energy 
dynamics [18].

By rule, a coauthoring topology indicates the type of 
association between nodes in a scientific network. For 
example, the co-authorship clustering was found higher in 
physics rather than mathematics and biology communities 
[13]. Furthermore, the degree correlation knn(k) ∼ k� , i.e., 
the tendency of nodes to connect to other nodes with simi-
lar (assortative, µ > 0) or dissimilar (disassortative, µ < 0) 
degrees, has been found assortative in many scientific col-
laboration networks [2, 13]. On the other hand, it has been 
shown that scale-free networks can be controlled by a finite 
subset of the network, called the dominant set Γ (γ, µ, <k>) 
for which Γ ≤ n/2 [19, 20].

This article explores the big data of preferential scientific 
collaboration in Embrapa (Brazilian Agricultural Research 
Corporation), a multidisciplinary government research 
organization responsible for the Brazilian ‘green revolution’ 
in rural areas. In the last 47 years, Embrapa played an impor-
tant role in changing the Brazilian status of food importer to 
a global player in sustainable food markets [21, 22], placing 
the country among the main global traders responsible for 
food security and sustainability [23].

Embrapa infrastructure of research, development and 
innovation (RD&I) ramifies into the inner Brazilian regions 
as departments or decentralized research units whose des-
ignations have been associated to national products of large 
importance (Product), edaphic–climatic conditions or biome 
(Ecoregional) or other exceptional knowledge (Thematic) 
[24–26]. In addition to administrative and assistance work, 
the main occupations are Analysts engaged in lab, field or 
administrative support, and Researchers committed to a 
shared RD&I agenda.

The technological disruptions of information and commu-
nication, the escalation of startups and the torrent of social 
(web) interactions have mutually challenged Embrapa. The 
need to improve efficiency is highlighted by redesigning 
communication, partnerships and funding sources. Among 
the responses to these challenges, one can underline: (1) the 

numeric reduction of RD&I projects in strategic portfolios 
[27], (2) interfaces reorganization to improve open innova-
tion; and (3) the adoption of TRL—Technological Readiness 
Levels [28] to strengthen collaboration with the private sec-
tors [29, 30].

In summary, the motivation of the present work is to 
decipher the unknown preferred scientific collaboration 
in the multidisciplinary Embrapa through network science 
[5, 31, 32], assuming that the network topology reflects a 
canonical pattern of the organization’s social dynamics [1, 
6]. Embrapa, in its complexity of research areas, and conse-
quently the degree of researchers (different areas of knowl-
edge), could help explain different behaviors of co-author-
ship and collaboration [10, 13, 33]. For that goal, this paper 
explores network science principles and provides informa-
tion about the big data compilation in Sect. 2. Results are 
depicted in Sect. 3, subdivided into statistical (3.1 and 3.2) 
and graph (3.3) analyses. Related works and conclusions are 
presented in Sects. 4 and 5, respectively.

Materials and Methods

There are five essential characteristics to be explored with 
network science: (1) structural complexity, (2) connectiv-
ity and node diversity, (3) network evolution, (4) dynami-
cal complexity and (5) meta-complication [1]. The present 
work focuses on items (1) and (2) associated with the current 
topological state of the network.

Dataset

The co-authorship dataset was compiled from Embrapa’s 
publication repository in the Agricultural Research Database 
(BDPA) under CC BY-NC-ND 4.0 license. The data mining 
consisted of organizing a list of nodes with the attributes: 
name (<publication_name> or <proxy_name>), gender 
(<female> or <male>), unit type (<product> , <ecore-
gional> or <thematic>), location (<south> , <mid-
west> , <northeast> , <southeast> and <north>), and job 
position (<analyst> , <researcher> , <controller> or external 
collaborator <extcollab>).

The alphabetic list of n nodes with attributes allowed 
searching each of them through name attribute in BDPA. 
Node queries were carried out from December 2019 to 
March 2020. It were recorded for each node the values 
of <publication_name> (surname and initials) of the ten 
closest nodes (preferred or most frequent coauthors), includ-
ing the node itself. In this way, a maximum of 10 <publica-
tion_name> values were recorded, of which the searched 
node is the first element of an array i with j closest coauthor 
nodes represented by ai,j. Iteratively, an adjacency matrix 
mn,j with 1 ≤ j ≤ 10 undirected coauthoring nodes was 
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produced. In any case, whenever <publication_name> of the 
ai,1 node was unattainable, her/his surname and initials in the 
alphabetic list were assumed as <proxy_name>.

Gephi 0.9.2 [34] and Microsoft Excel® supported the 
numbering or codification of nodes and edges of the adja-
cency matrix mn,j. Initially, mn,j was imported into Gephi to 
create and export a CSV data file with a list of paired edges 
of attributes <publication_name> or <proxy_name> when 
needed.

As the codes and attributes of nodes ai,1 are known, it 
was possible to compare them with all other edge nodes 
in Excel to produce a new list of paired edges coded by 
nodes. For that purpose, a conditional matrix was created 
to code ai,j = ai,1 if <publication_name> (or <proxy_name>) 
attribute was the same. In addition, the procedure was use-
ful for identifying and reviewing <proxy_name> attributes 
because some nodes do not adopt surnames like <publica-
tion_name> or because BDPA provided the attribute ai,j with 
j > 1. Finally, the remaining coded nodes without any other 
attribute information, associated with external collaborators 
(non-employees), were assigned as <extcollab>.

Encoded nodes with attributes and edges in CSV data 
files were opened in Gephi 0.9.2 and explored via network 
science (see below). The links were imported by averag-
ing parallel edges. Preliminary drawing, sizing and coloring 
according to partitions (node attributes, centralities and clus-
tering indexes) were useful to rectify the big data, ensuring 
consistency and quality.

Network Graphs and Measures (Theory 
and Calculation)

Graph Layout

Gephi 0.9.2 [34] was used to draw networks, identify com-
munities with modularity class [35], and to calculate cluster-
ing coefficients [6] and other measures of centrality [31, 32, 
36]. The default layout Yifan Hu [37] was chosen to expand 
the initial randomly distributed nodes in the overview graph 
window. Subsequently, ForceAtlas2 algorithm [38] was 
adjusted to scale 3 with approximate repulsion and prevent-
ing overlapping of nodes. The measures of centrality of the 
network were then computed and nodes were size-ranked by 
betweenness centrality [36], ranging from 25 to 250 with an 
exponential spline function to facilitate the visualization of 
nodes and edges. Then, the attributes of nodes were explored 
through color pallets.

Degree Correlation, Centrality and Clustering Measures

The measures of centrality compute the importance of nodes 
in a network. To study the co-authorship network, three 
measures of centrality were evaluated:

•	 Degree (k): it measures the number of edges or links con-
nected to a node. The more edges the greater the node 
degree, and highly connected nodes are known as hubs 
[31].

•	 Betweenness: it is positively correlated with k, corre-
sponding to the frequency at which a node appears in the 
shortest paths between all pairs of nodes in a network. 
Higher values confer hub skills [31, 32].

•	 Closeness: it is the mean of the shortest path length from 
one node to all other nodes. A low value suggests that the 
node is closely connected to every other node; therefore, 
it is considered a gatekeeper (cluster connector) in a net-
work [31, 32].

The degree correlation captures the relationship between 
each node degree k with the averaged degree knn (k) of edged 
nodes (immediate neighbors). The degree correlation func-
tion is knn(k) ∼ k� where µ = 0 relates to a neutral regime, 
µ < 0 to a disassortative regime (low-degree nodes connect 
to large-degree nodes and vice versa) and µ > 0 to an assor-
tative regime (nodes tend to connect to other nodes with 
an equivalent degree) [5]. The degree correlation was cal-
culated for the co-authorship network by implementing a 
conditional matrix in an Excel datasheet to address k values 
for coded and paired edges. Then, knn (k) function could be 
obtained by calculating the average values of k for all undi-
rected (in and out) nodes.

In addition, clustering coefficient and modularity class 
have been also evaluated:

•	 Clustering: it is a measure of the degree to which nodes 
in a graph tend to group together [6].

•	 Modularity class: it is a clustering algorithm that detect 
communities of nodes [35].

The distributions of network measures were studied with 
nonparametric (median-oriented) tests and boxplots grouped 
by attributes with the aid of Past 4.02 software (https​://
www.nhm.uio.no/engli​sh/resea​rch/infra​struc​ture/past/). 
The nonparametric statistical analyses are available in the 
Appendices.

Results

Degree Distribution and Correlation

The entire network with 9207 undirected nodes and 15,696 
edges showed a degree distribution ranging from 0 ≤ k ≤ 409, 
with mean network degree <k>  = 3.41, diameter 12, null 
density and average path length <l>  = 5.466. The normal-
ized log-binned probability distribution p (k) is shown in 
Fig. 1.

https://www.nhm.uio.no/english/research/infrastructure/past/
https://www.nhm.uio.no/english/research/infrastructure/past/
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Despite a few internal and many external collaborators 
for whom k = 1 (6923 nodes), the frequency of nodes with 
k < 9 is very small (318), indicating that most nodes has at 
least nine preferential coauthors. Nodes with k ≥ 9 (1777) are 
those with increasing co-authorship of scientific documents. 
The distribution p (k) indicates a free scaling network with 
large hubs resulting from preferential attachment [9].

For scientific collaboration, a p (k) distribution is usually 
scale free and decays with an exponent γ > 3, which indicate 
a random regime indistinguishable from a random network 
[5]. For the Embrapa dataset, bootstrap interval estimation 
reaches 1.6613 ≤ γ ≤ 2.273 (Fig. 1), suggesting that the net-
work results from a nonrandom scale-free regime associated 
with the interval 2 ≤ γ < 3.

In particular, the log-binned regression gives γ ~ 2, indi-
cating an anomalous scale-free regime that induces a hub-
and-spoke (centralized) configuration [5], where most nodes 
are closer to each other (constant path length l) because 
almost all of them connect to a common central hub. Since 
the largest hub (kmax) is given by k

max
= k

min
× n(�−1)

−1 , then 
the number of hubs increases linearly with n in that anoma-
lous scale-free case [5]. In brief, Fig. 1 illustrates that, over 
the organization timespan (currently 47 years), only a very 
small fraction of nodes gained much more connections (very 
large hubs) than other nodes in the scientific collaboration 
network of Embrapa.

Another interesting property of networks is given by the 
degree correlation function knn(k) ∼ k� . The exponent µ 
is associated with the modus operandi of interconnection 
between nodes. If the nodes connect randomly, then µ = 0. 
In cases where nodes with similar values of k connect, the 
degree correlation is assortative and µ > 0. In contrast, when 
hubs preferentially connect to low-degree nodes (tending to 
a radial topology with a centered hub), then µ < 0 and the 
degree correlation is disassortative.

Figure 2 presents the plot knn(k) ∼ k� for the coauthor-
ing network. A disassortative regime is expected theoreti-
cally for the anomalous scale-free regime γ ~ 2. Accordingly, 
statistical regressions and bootstrap of the empirical data 
provide µ ≤ 0 (Fig. 2).

As the network is a product of the evolving dynamics of 
preferential attachment, then the hub-and-spoke radial pat-
tern of co-authorship emerges as a response of long lasting 
internal organizational dynamics, in which some nodes have 
better competitive fitness (characteristic individual features) 
to gain more edges than others nodes [5].

Nonparametric Statistical Analyses

Measurements of network centralities (normalized 
betweenness, closeness and degree), modularity and clus-
tering might be also useful to unveil internal dynamics 

Fig. 1   Log-binned prob-
ability distribution p(k) ∼ k−� 
with γ = 1.9768 ± 0.1215 
(r2 = 0.98146, p = 1.5993 × 10–5) 
and 1.6613 ≤ γ ≤ 2.273 in 
95% bootstrapped confidence 
intervals with 1999 iterations. 
The 189 nodes for which 
k = 0 were dismissed, and the 
frequencies of the log-bins 
centered in k = 1, 2.5 and 5.5 
were averaged as <k>  = 4. 
For k ≥ 10, regression reaches 
γ = 1.9784 ± 0.18016 within 
1.4315 ≤ γ ≤ 2.4937
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configuring social network topology. Table S1 (Appendi-
ces) provides the descriptive statistics of network meas-
urements obtained for internal collaborators (n = 2231), 
whose attributes data of gender, organization post (posi-
tion), and unit type and region are available (see Sect. 2.1 
in Methods). For selecting the best network measure-
ments for statistics, it was studied the linear strength of 

redundancy or randomness between centralities, modular-
ity and clustering by means of Pearson correlations and 
the corresponding statistical significances (Table S2 and 
cross-plot Figure S1).

The correlation analysis evidenced strong redun-
dancy between degree k and betweenness (r = 0.8379, 
p < 0.0001), and moderate redundancy between k and 
closeness (r = 0.2269, p < 0.0001). Furthermore, modular-
ity correlations with network measurements were very low 
(0.008 < r < 0.073) indicating randomness. Consequently, 
for evaluating differences between grouped attributes, it 
was considered only the variables of normalized between-
ness and closeness to assess hub and gatekeeper proper-
ties, respectively, and clustering. Descriptive statistics of 
the selected network measurements for each attribute are 
shown in Tables S3 to S6.

Table 1 shows the p and F statistics obtained with non-
parametric Permutational Multivariate Analyses of Vari-
ance (PerMANOVA) in the Euclidian space to evaluate 
differences between the selected attributes. The study was 
made with 9999 permutations as a two-way PerMANOVA 
for checking any mutual interactions between attributes.

Betweenness centrality has shown not useful to distin-
guish network differences between gender, position, and 
unit type and region, suggesting that hubs are relatively 
well distributed among groups in the network. On the other 
hand, significant network differences were encountered for 
closeness centrality (Table 1). In particular, the two-way 
PerMANOVA tests between gender (p = 0.0229) and posi-
tion (p = 0.0001), and gender (p = 0.0318) and unit type 
(p = 0.0479) provided significant statistical interactions 
(p = 0.0492 and p = 0.0278, respectively). Nonetheless, 

1

10

100

1 10 100

k n
n(k

)

k

Fig. 2   Degree correlation function for the Embrapa coauthor-
ing network (straight line). The statistical regression gives 
µ = −  0.09358 ± 0.040969, r2 = 0.08253, p < 0.026041, and bootstrap 
interval of − 0.18902 ≤ µ ≤ − 0.0032878 with 1999 iterations

Table 1   Two-way 
PerMANOVA tests to evaluate 
differences of network 
properties between attributes: 
gender (male, female); position 
(controller, researcher, analyst), 
unit type (product, thematic, 
ecoregion), region (South, 
Midwest, North, Southeast, 
Northeast)

Significance levels are marked at α = 0.05* and 0.001**

Attribute Betweenness Closeness Clustering

F p F p F p

Gender 0.0586 0.8645 2.8318 0.0229* 0.7483 0.2538
Position 2.1094 0.2392 20.052 0.0001** 19.183 0.0001**
Interaction − 406.83 0.4719 − 396.37 0.0492* − 491.10 0.8186
Region 0.9469 0.2504 0.4405 0.6325 5.2000 0.0001**
Unit type 0.1888 0.9198 2.0815 0.0500* 9.2453 0.0001**
Interaction − 97.519 0.5324 − 73.007 0.0574 − 84.004 0.1536
Gender 0.0874 0.8618 3.9532 0.0357* 1.1785 0.2468
Region 1.3879 0.2039 0.5539 0.6446 6.6307 0.0001**
Interaction − 28.973 0.4402 − 41.952 0.1438 − 57.461 0.1699
Gender 0.1109 0.8489 4.2068 0.0318* 1.2131 0.2397
Unit type 0.3511 0.8550 2.7850 0.0479* 12.135 0.0001**
Interaction 225.86 0.2689 − 21.657 0.0278* − 86.216 0.2165
Position 1.9267 0.2672 20.088 0.0001** 20.274 0.0001**
Unit type 0.1696 0.9044 1.8781 0.0455* 7.9113 0.0001**
Interaction − 233.30 0.4200 − 197.03 0.1699 − 230.89 0.9716
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the interaction between gender (p = 0.0357) and region 
(p = 0.6446) was not significant (p = 0.1438).

The results suggest that closeness centrality is independ-
ent of the region and somewhat driven by gender (lower 
for females) and position (lower for analysts), but unclear 
concerning unit type (nonparametric Mann–Whitney and 
Kruskal–Wallis tests at Sect. 2 of the Appendices). These 
findings are corroborated by a contingence table analysis 
(Fischer’s exact test) indicating high proportion of females 
enrolled as analysts rather than controllers and researchers 
(Sect. 3 of the Appendices).

Concerning the clustering network variable, significant 
differences were detected for position, region and unit type 
however without significant interactions (Table 1). Differ-
ences in the attribute position are mostly due to lower clus-
tering values for analysts, which reinforces their gatekeeper 
role in the network. However, differences in clustering 
seems more associated with region and unit type. A paired 
Mann–Whitney U test indicated that clustering at the South 
region is significantly higher than that measured for Midwest 
and North regions. In addition, the same test evidenced that 
clustering at product units is significantly higher than that 
measured for thematic and ecoregional units (Sect. 2 of the 
Appendices).

Graph Explorations

Network analysis has identified 206 connected components. 
The giant component for which k ≥ 10 has 1107 nodes with 
4943 edges. Graph analyses with partitions of attributes by 
color are shown in Figs. 3 and 4 for the whole network (on 
the left) and for the giant component (right sided).

In agreement with the estimated values for γ and µ (see 
Sect. 3.1), the graphs reveal a radial hub-and-spoke pattern, 
in which a constellation belt of low-order nodes surround a 
core of internal collaborators permeated by external collabo-
rators (Fig. 3a). In the void between the core and the belt, 
small components reproduce the hub-and-spoke pattern.

The constellation belt consists of proportions of females 
and males (Fig. 3b) distributed over regions (Fig. 4a), unit 
types (Fig. 4b), and enrolled as researcher, analyst or con-
troller (Fig. 3c).

The core of the giant component gathers mostly research-
ers associated with ecoregional and thematic units (Fig. 4b). 
The graph suggests a prevalence of males as controllers, 
confirmed by contingency tables (Sect. 3 in the Appendices).

Statistical differences in clustering by region and unit 
type (Table 1) are graphically evident in Fig. 4a, b. Southern 
units gather more nodes in product units that, as found, tend 
to develop more collaboration in clusters. However, hubs 
located in thematic and ecoregional units (Fig. 4b), in par-
ticular at Midwest (Fig. 4a), have greater gravitational force, 
sitting in the inner core of the giant component. Modularity 

class was somewhat useful for identifying singularities of 
communities mutually modulated by region and unit type 
effects (Fig. 4c).

Discussions and Related Works

Scale-free networks derive from at least three major ingre-
dients: growth, preferential attachment and fitness [5]. The 
present work mostly explores the second factor, in which 
high-degree nodes tend to increase links faster than other 
low-degree nodes. However, while a network grows over 
time, the distinct competitive fitness of nodes may also play 
a vital role in configuring hub-and-spoke topologies [5], as 
those shown in Figs. 3 and 4, which was not addressed here 
in details. Therefore, a limitation of this work is that it relies 
in a snapshot of the current state of the organization, and an 
evolutionary network approach would bring more insightful 
information. In any case, deciphering the current topology 
of the interdisciplinary Embrapa is the new contribution of 
this paper.

Network science applied in the coauthoring system of 
Embrapa revealed that the degree of network nodes follows 
a power law distribution derived from a scale-free dynamics 
with preferential attachment producing a giant component 
[9, 39]. For the present case, however, p (k) distribution 
does not require exponential cutoffs [10] and the exponent 
rests nearly γ ~ 2, a special circumstance associated with the 
development of hub-and-spoke patterns over several scales, 
in agreement with a disassortative regime [5].

Alternatively, it has been shown that scientific collabora-
tion generally creates an assortative network [13, 33]. Dis-
assortative regimes have been acknowledged as an outcome 
of technological and biological networks [13] that embed 
some degree of controllability [20]. Therefore, Embrapa’s 
scientific co-authorship network resembles networks with 
controls and constrains, which agrees with the findings by 
Zuo and Zhao [40] that more multidisciplinary institutions 
are not necessarily more collaborative.

As the Embrapa coauthoring network evolves, the control 
of individual and regional units, combined with competition 
and centralized bureaucracy, can synergistically sustain the 
observed hub-and-spoke network pattern. Such dynamics 
emerges from scale-free networks because connectivity has 
considerable effects not only on the behavior of the system, 
but also on how the dynamics of the system can be directed 
at will, where only a few nodes are needed to control the 
entire network, especially when γ ≤ 2 [19].

It has been shown that the size of a minimum dominant 
set of a network, Γ, depends on µ, γ, and <k>, but not on 
modularity and clustering [19, 20]. Decreases in Γ when 
µ ≤ 0 is due to the repulsion (competition) between hubs. 
Additionally, Nacher and Akutsu [19] have shown that p (kΓ) 
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Ext. Collab.
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Researcher
Analyst

Ext. Collab.
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Female
Male

Ext. Collab.

Fig. 3   Whole network and the giant component for k ≥ 10 partitioned by internal and external collaborators (a), gender (b) and position (c)
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Ecoregional

Ext. Collab.

Thema�c

Southeast
Midwest

Ext. Collab.

South
Northeast

North

Fig. 4   Whole network and giant component for k ≥ 10 partitioned by region (a), unit type (b) and modularity class (c, without legend for 250 
classes)
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does not preferentially aggregate hubs, but decays also as a 
power law of kΓ, which agrees with 92% of nodes in Γ with 
kΓ < 20. As a result, the hub-and-spoke pattern guarantees 
minimal, but sufficient, network control of the information 
flow, limiting the system in the transition between assorta-
tive and disassortative regimes towards the latter. Currently, 
the solution γ ~ 2 and µ ≤ 0 found for Embrapa seems driven 
by the system self-adaptation to minimize Γ that gathers 
about 14% of internal collaborators, principally males (con-
tingence table in Sect. 3 of the Appendices).

Scale-free networks lying on γ ~ 2 minimize Γ because 
the trivial upper limit of Γ is described by n ~ kmax, where 
kmax is the highest degree of a network [5]. However, Γ is 
minimized for µ < 0 in which hubs are separated and can 
independently rule many of low-degree nodes. Alternatively, 
low-degree nodes also likely obtain advantages by connect-
ing at least to a single hub [39] for, e.g., paced promotions, 
considering the functional stability in the Brazilian public 
services.

On the other hand, network control seems useful to focus 
on TRL [28] to strengthen collaboration and innovation 
with the private sectors [29, 30]. The ability to control the 
information flow, however, may bring also implications for 
the institutional efforts to boost innovation in open science 
based, e.g., on FAIR (findability, accessibility, interoper-
ability, and reuse of digital assets) principles [41]. Conse-
quently, current optimization problems seem associated with 
minimal but sufficient organizational changes.

Definitely, more incentives may be necessary to exploit 
the potential benefits of multidisciplinary diversity in stim-
ulating more intra-organizational research collaborations 
that span disciplinary (and regional) boundaries [40]. For 
instance, the current division of Embrapa’s units in three 
major types (product, ecoregional and thematic) that favors 
competition and isolation could benefit from only one or 
two labels aligned to a TRL model—e.g., innovation and 
business centers—focused on a few portfolios and mixed or 
not with external RD&I associates [26].

An interesting example is the system adopted by the 
USDA-ARS, which has physical bases (laboratories) at 
universities, working in an integrated manner on specific 
research topics [24]. In addition, the programmatic figure of 
portfolios is very welcome because it replaces the current 
strategy of decentralized units with national missions for 
the coordination of large product chains, as well as making 
it possible to act on transversal themes in various regions of 
the country [27].

In general, organizations have formal and informal 
structures. Collaboration is distributed laterally due to 
more capacity, transparency and trust, rendered as human 
capital [42]. On the other hand, human capital in hierarchi-
cal topologies is asymmetrical and routinely concentrates 
between superiors and subordinates [18, 43]. Consequently, 

for increasing the pace of innovation, a widespread increase 
in human capital ought to be considered throughout the 
entire network [42]. Furthermore, an increase in the role 
of gatekeeper agents, which is now restricted for analyst 
females, may ease the establishment of innovation by bridg-
ing organization’s units.

Lastly, a multidisciplinary organization demanding more 
innovation capacity in infodemic societies [3, 4] needs to 
seek for new formal and informal rules that optimize degree 
and correlation degree distributions toward γ ≥ 2 and µ ≥ 0, 
respectively. As communication (network edges) grows, it 
seems reasonable to allocate efforts to strengthen the auton-
omy of the nodes [42] instead of increasing the controllabil-
ity of information [44, 45].

Conclusions

The topological study of the scientific collaboration net-
work of Embrapa indicates that nodes degree distribution 
is scale free and forms a giant component, whereas nodes 
degree correlation suggests a disassortative regime. A hub-
and-spoke topology likely emerges from competition and 
minimal but sufficient network control, which may, however, 
prevent a required increment in innovation capacity.

Jobs of controller and researcher are twice as many occu-
pied by males, except for the jobs of analysts, who act as 
network gatekeepers, as indicated by the measure of close-
ness centrality. Product units show greater affinity to form 
clusters than ecoregional or thematic units that, in turn, tend 
to concentrate hubs at the inner core of the giant component. 
With the largest number of individuals in product units, the 
South region tends to develop more collaborative clusters. 
Alternatively, hubs located in thematic and ecoregional units 
in the Midwest region have greater gravitational force, posi-
tioning themselves at the inner core of the giant component. 
Combining the improvement in human capital with the uni-
versalization in the labeling of units can motivate a multi-
disciplinary organization to share knowledge and hasten the 
pace of innovation internally and with external associates.

A clear limitation of this work is that it considers only a 
snapshot of the current state of scientific collaboration of the 
studied organization, and an evolutionary network approach 
would bring more insightful information regarding, e.g., the 
reasons for reaching the actual topological shape. In any 
case, the preliminary deciphering of the current network 
topology by network science remains a new contribution, 
as, to date, a network study of all of Embrapa’s scientific 
collaboration has not been carried out.
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