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Abstract: Monitoring of soybean genotypes is important because of intellectual property over seed
technology, better management over seed genetics, and more efficient strategies for its agricultural
production process. This paper aims at spectrally classifying soybean genotypes submitted to diverse
water availability levels at different phenological stages using leaf-based hyperspectral reflectance.
Leaf reflectance spectra were collected using a hyperspectral proximal sensor. Two experiments were
conducted as field trials: one experiment was at Embrapa Soja in the 2016/2017, 2017/2018, and
2018/2019 cropping seasons, where ten soybean genotypes were grown under four water conditions;
and another experiment was in the experimental farm of Unoeste University in the 2018/2019
cropping season, where nine soybean genotypes were evaluated. The spectral data collected was
divided into nine spectral datasets, comprising single and multiple cropping seasons (from 2016
to 2019), and two contrasting crop-growing environments. Principal component analysis, applied
as an indicator of the explained variance of the reflectance spectra among genotypes within each
spectral dataset, explained over 94% of the spectral variance in the first three principal components.
Linear discriminant analysis, used to obtain a model of classification of each reflectance spectra
of soybean leaves into each soybean genotype, achieved accuracy between 61% and 100% in the
calibration procedure and between 50% and 100% in the validation procedure. Misclassification was
observed only between genotypes from the same genetic background. The results demonstrated
the great potential of the spectral classification of soybean genotypes at leaf-scale, regardless of the
phenological stages or water status to which plants were submitted.

Keywords: Glycine max (L.) Merrill; drought stress; phenological stages; soybean varieties; spectral
signature; principal component analysis; linear discriminant analysis; hyperspectral reflectance

1. Introduction

Soybean production plays a role in world crop production, with impacts on food
security and financial markets. Brazil is responsible for one-third of the world’s soybean
production [1,2]. Hence, precise, timely, and efficient understanding of soybean production
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is important for government and corporate decisions over technical issues, supply regula-
tion, food security, financial market, and strategic planning relative to social environmental
and economic policies [3–6].

Drought periods, as some of the most harmful factors that interfere in soybean produc-
tion, especially when they occur in the reproductive phenological stages, have impaired
around 30% of the Brazilian soybean production [7] and, in 38 years, caused financial losses
of over 79 billion US$ [8]. Thus, exploring soybean genotypes with different mechanisms
of drought tolerance has proven to be an essential and a necessary task to cope with water
deficit periods [9,10].

In this context, accurate monitoring of soybean genotypes becomes extremely im-
portant due to the major international issue on intellectual property rights over seed
technology [11–17]. The traditional methods for genotype identification in field conditions
are laborious, time-consuming, and expensive. Hence, there is a rising need for method-
ologies to characterize soybean production in terms of location, extent, and genotype
identification, which would facilitate royalty collection, better management of the seed
genetics, and more efficient strategies over its production process.

Thus, remote sensing has great potential to provide information about soybean produc-
tion areas in a less-time-consuming and non-destructive manner. Therefore, many scientists
have been studying mapping soybean areas in the last years [18–20] and detecting plant dis-
eases [21,22], invasive plants [23,24], nutritional deficiency [25–28], drought stress [29,30],
characterizing crop phenological stages [31], and predicting grain yield [32–34].

The effectiveness of using leaf or canopy spectral response for genotype monitoring,
identification, and classification has been demonstrated by several authors on different
crop types. Aouidi et al. [35] applied mid-infrared spectral analysis from dried powdered
leaf samples to discriminate five olive cultivars. Diago et al. [36] used hyperspectral
imagery in laboratory to classify three grapevine varieties; Maimaitiyiming et al. [37]
used canopy reflectance in field conditions to discriminate nine grapevine genotypes
within two closely related species; while Gutiérrez et al. [38] used near-infrared leaf-
based reflectance to classify grapevine varieties at site-specific and global modeling scales.
Sinha et al. [39] differentiated twelve banana genotypes using leaf-based hyperspectral
reflectance. Lin et al. [40] assessed the canopy hyperspectral response across the cropping
season to monitor rice genotypes and developed their classification model at the booting
stage. Ajayi et al. [41] evaluated the spectral behavior of twenty wheat genotypes with
wide genetic background under irrigated and dryland conditions using hyperspectral data
collected at the canopy level; while Garriga et al. [42] assessed the spectral response of
384 wheat genotypes at two phenological stages. Although much effort has been taken,
there is a small number of research works addressed to discriminate and classify soybean
genotypes by its spectral response [4,43–45] and data analysis from multiple phenological
stages, cropping seasons, and water availability were not addressed.

One major issue regarding the spectral classification of soybean genotypes is the
difficulty of evaluating soybean plants at the same phenological stage. In Brazil, the
sowing time extends for more than a month within each region, which may impose some
restrictions on the spectral classification of soybean genotypes in large areas because crops
are never at the same phenological stage. Another issue is the occurrence of water deficits,
which may undermine the spectral evaluation on a large scale since soybean plants are
rarely under the same water status.

This research aims at spectrally classifying soybean genotypes, regardless of the
phenological stage or water status to which plants are submitted, using leaf-based visible,
near-infrared, and shortwave infrared hyperspectral reflectance. Our hypothesis is that
soybean genotypes might present different spectral responses among them when assessed
under different water availability and at different phenological stages, and our research
question addresses the potential of leaf hyperspectral reflectance to distinguished and
classify soybean genotypes assessed under different water availability and at different
phenological stages.
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2. Materials and Methods
2.1. Experimental Setup

Two experiments were conducted as field trials at two different locations (Figure 1):
Londrina Municipality (as described in Section 2.1.1) and Presidente Bernardes Municipal-
ity (as described in Section 2.1.2), located in Parana State and Sao Paulo State, southern
and southeast Brazil, respectively.
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2.1.1. Experiment I: 2016/2017, 2017/2018, and 2018/2019 cropping seasons

This experiment (Figure 2) was undertaken in the experimental farm of the National
Soybean Research Center (Embrapa Soja), a branch of the Brazilian Agricultural Research
Corporation, located in Londrina Municipality, Paraná State, Southern Brazil (23◦11′ 37′′ S,
51◦11′03′′ W, 630 m above sea level), in the 2016/2017, 2017/2018, and 2018/2019 crop-
ping seasons.
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Figure 2. Experimental area overview (a) and description of the weather station and treatment plots (b): irrigated (IRR),
non-irrigated (NIRR), and water deficits induced at vegetative (DIV) and reproductive (DIR) stages. RGB image obtained by
an UAV carrying a regular digital camera.

The climate of the study location is classified as Cfa according to the Köppen climate
classification, i.e., subtropical climate, with mean temperature in the hottest month higher
than 22 ◦C, with no defined dry season and rainfall concentrated in the summer months,
which corresponds to the soybean cropping season [46,47]. Although dry season is not
observed in the entire soybean crop season, periods of water deficit often provoke large
yield losses [7].

The soil of the experimental area is characterized as Udox Oxisol [48], with the
following characteristics: pH (in water): 4.9; H+Al: 3.5 cmolc dm−3; Al3+: 0.03 cmolc dm−3;
Ca2+: 3.9 cmolc dm−3; Mg2+: 1.8 cmolc dm−3; K+: 0.7 cmolc dm−3; SB: 6.5; CTC: 10.0 cmolc
dm−3; V%: 64.8; P: 24.2 mg dm−3; C: 15.6 g dm−3; 710 g kg−1 of clay; and 75 mm of water
holding capacity (soil analysis in March 2016).

The following water condition treatments were distributed in the field plots: irrigated
(IRR, receiving rainfall and irrigation when necessary, with a soil water matric potential
between −0.03 and −0.05 MPa); non-irrigated (NIRR, receiving only rainfall); water deficit
induced at the vegetative stages (DIV), and water deficit induced at reproductive stages
(DIR). Soybean genotypes, with drought tolerance genes and different responses to water
deficit, were distributed in the subplots. The collected data were analyzed following a
split-plot model in a randomized complete block design, with four blocks.

To simulate water deficit, DIV and DIR plots were established under rainout shelters
programmed to cover the subplots (at the vegetative or reproductive stages) when rainfalls
above 0.1 mm were recorded. To prevent water lateral movement from outside into the soil,
the plots had in their perimeter vertical concrete barriers (buried up to 90 cm depth). Once
rainfalls had ceased, shelters automatically uncovered the plots. The DIV treatment was
induced after plant establishment until the flowering period. From the flowering period to
the harvesting period, the DIR treatment was induced in previously rain-watered plots. In
turn, the DIV plots began to be rain watered.

In the 2017/2018 cropping season, there was no need for irrigation. Therefore, plants
of IRR and NIRR treatments were under the same experimental conditions.
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In the 2016/2017 cropping season, sowing was performed on 19 October 2016, the DIV
treatment was induced from 25 November to 12 December 2016, and the DIR treatment
was induced from 12 December 2016 until the harvesting period.

In the 2017/2018 cropping season, sowing was performed on 18 October 2017, the DIV
treatment was induced from 20 November to 19 December 2017, and the DIR treatment
was induced from 19 December 2017 until the harvesting period.

In the 2018/2019 cropping season, sowing was performed on 16 October 2018, the DIV
treatment was induced from 26 November to 19 December 2018, and the DIR treatment
was induced from 19 December 2018 to 14 January 2019 (when DIR plots began to receive
rainfall again, until the harvesting period).

In 2016/2017 and 2017/2018 cropping seasons, five genotypes (‘1Ea15’, ‘2Ha11’, ‘2Ia4’,
‘BR16’, and ‘BRS 184’), named from now on, respectively, as genotypes 1, 2, 3, 4, and 5,
were sown in the experimental plots mentioned above.

In the 2018/2019 cropping season, five different genotypes (‘1Ea2939’, ‘3Ma2’, ‘BRS
283’, ‘BRT18-0089’, and ‘BRT18-0201’), named from now on, respectively, as genotypes 6,
7, 8, 9, and 10, were sowed in those plots and genotypes 1, 2, 3, 4, and 5 were sowed in
secondary experimental plots and subjected to the NIRR treatment, receiving only rainfall.

The spectral assessments performed in 2016/2017, 2017/2018, and 2018/2019 cropping
seasons are described in Section 2.3 (Spectral data acquisition and processing).

2.1.2. Experiment II: Unoeste University Experiment

This experiment (Figure 3) was conducted in the experimental farm of the Unoeste
University, located in Presidente Bernardes Municipality, São Paulo State, Southeast Brazil
(22◦17′08′′ S, 51◦40′27′′ W), in the 2018/2019 cropping season.
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The study area, which soil and climatic characteristics are distinct from Londrina-PR,
indicating differences between their crop-growing environments [49], is located on a climate
transition between Cfa and Aw (i.e., tropical climate, with mean temperature in the coolest
month higher than 18 ◦C, with rainfall concentrated in the summer months, and less than
60 mm of rainfall in the driest month), according to the Köppen climate classification [47].

The soil of the experimental area is characterized as Udult Ultisol [48] with the follow-
ing characteristics: pH (in water): 5.6; H+Al: 1.76 cmolc dm−3; Al3+: 0.0 cmolc dm−3; Ca2+:
2.95 cmolc dm−3; Mg2+: 1.6 cmolc dm−3; K+: 0.17 cmolc dm−3; SB: 4.7; CTC: 6.5 cmolc
dm−3; V%: 72.8; P: 6.7 mg dm−3; C: 14.2 g dm−3; 170 g kg−1 of clay; and 55 mm of water
holding capacity (soil analysis in April 2018).

Following the soybean production technologies [50], soybean genotypes 1, 2, 3, 4, 5,
6, 8, 9, and 10 were sowed in experimental plots subjected to the non-irrigated treatment,
receiving only rainfall. The sowing date was 18 October 2018.
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The spectral assessments performed in the Unoeste University experiment are de-
scribed in Section 2.3 (Spectral data acquisition and processing).

2.2. Weather Monitoring

Weather data—air temperature, relative air humidity and rainfall—were monitored
by the weather station located within the experimental areas, as described by Sibaldelli and
Farias [51–53] and the climatic water balance was calculated according to Thornthwaite
and Mather [54] for each experimental treatment of each cropping season. The calculated
climate water balances are presented in Figure 4.
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Figure 4. Climatic water balance at 10-day periods in the DIV (a), DIR (b), NIRR (c), and IRR (d) treatments on the 2016/2017
cropping season, at Embrapa Soja; DIV (e), DIR (f), and NIRR (g) treatments on the 2017/2018 cropping season, at Embrapa
Soja; NIRR (h) treatment on the 2018/2019 cropping season, at Unoeste University; DIV (i), DIR (j), NIRR (k), and IRR (l)
treatments on the 2018/2019 cropping season, at Embrapa Soja.

It is possible to observe, by the deficits of the climate water balances, the efficiency of
the induced water deficit in the DIV at December 1 and 2 10-day periods (Figure 4a,e,i) and
DIR treatments at December 3 and January 1, 2, and 3 10-day periods (Figure 4b,f,j) in the
three cropping seasons.

The water deficit imposed on the DIR treatment was demonstrated to be more harmful
than the water deficit imposed on DIV plants, because of the longer period to which plants
were deprived of natural rainfall. Besides that, the water deficit in the DIR occurred during
the reproductive stages of plant development, when plants are more sensitive to the water
deficit since the reproductive structures and grains are being formed. During this period,
the plant reaches its maximum need for water, close to 8 mm per day.

Although severe natural water deficit was not observed in the 2016/2017 cropping
season (Figure 4c), the irrigation was enough to maintain plants under good conditions of
water availability on November 3 and December 1 10-day periods (Figure 4d).

Severe natural water deficit was observed in the 2018/2019 cropping season (Figure 4k),
both in vegetative (Figure 4i) and reproductive (Figure 4j) periods and the irrigated treat-
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ment promoted good conditions of water availability at December 1, 2, and 3, January 2,
and February 2 10-day periods (Figure 4l).

The climate differences between Embrapa Soja and Unoeste University are demon-
strated by the water balance of the non-irrigated treatment of both experimental areas
(Figure 4h,k).

2.3. Spectral Data Acquisition and Processing

Soybean leaf reflectance was collected by the FieldSpec 3 Jr spectroradiometer (Ana-
lytical Spectral Devices, Boulder, CO, USA), with a spectral resolution of 3 nm between 350
and 1400 nm and 30 nm between 1400 and 2500 nm (Figure 5).
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Figure 5. Spectral assessment in the field (a,b) and detail of the plant probe device (c). Figure 5 (b,c): Photo by Décio de
Assis—Embrapa Soja.

Each spectral reading was the average of 20 internal automatic spectral readings, and the
output spectra were given in single bands of 1 nm intervals, 2151 spectral bands. To prevent
illumination interferences of adjacent targets and atmospheric scattering and attenuation,
we used the leaf reflectance plant probe device connected to the FieldSpec by a one-meter
optical bare fiber (Figure 5c). The plant probe device has an internal 99% reflectance board
(Spectralon®), used as reflectance standard, and a 1% reflectance opaque and black board,
used during the spectral assessment to ensure pure leaf reflectance spectra collection, without
the need for applying spectral filters for noise remove and data smooth [4,55–57].

The central leaflet of the fullest expanded third trifoliate leaf from the top was selected
for spectral acquisition. A total of 9061 leaf reflectance samples were collected and divided
into nine spectral datasets (Table 1), as described below.

Table 1. Description of the spectral datasets composed by field trial assessments: experimental
treatments, genotypes, and the numbers of samples.

Spectral
Dataset

Field Experimental
Treatments

Days of
Assessment Genotype Samples Total Dataset

Samples

Embrapa
2016/2017

Irrigated;
Non-irrigated;

Drought stress in
vegetative and

reproductive stages

7

G1 112

444
G2 108
G3 112
G4 112
- -

Embrapa
2017/2018

Irrigated;
Non-irrigated;

Drought stress in
vegetative and

reproductive stages

8

G1 128

640
G2 128
G3 128
G4 128
G5 128

Embrapa
2018/2019

[I]
Natural rainfall 9

G1 180

900
G2 180
G3 180
G4 180
G5 180
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Table 1. Cont.

Spectral
Dataset

Field Experimental
Treatments

Days of
Assessment Genotype Samples Total Dataset

Samples

Embrapa
2018/2019

[II]

Irrigated;
Non-irrigated;

Drought stress in
vegetative and

reproductive stages

9

G6 144

720
G7 144
G8 144
G9 144
G10 144

Embrapa
2016–2019

Irrigated;
Non-irrigated;

Drought stress in
vegetative and

reproductive stages

24

G1 420

1984
G2 416
G3 420
G4 420
G5 308

Unoeste
2018/2019

[I]
Natural rainfall 4

G1 105

525
G2 105
G3 105
G4 105
G5 105

Unoeste
2018/2019

[II]
Natural rainfall 4

G6 105

420
- -

G8 105
G9 105
G10 105

Embrapa
2016–2019

+
Unoeste

[I]

Irrigated;
Non-irrigated;

Drought stress in
vegetative and

reproductive stages

28

G1 525

2509
G2 521
G3 525
G4 525
G5 413

Embrapa
2018/2019

+
Unoeste

[II]

Irrigated;
Non-irrigated;

Drought stress in
vegetative and

reproductive stages

13

G6 249

1140
G7 144
G8 249
G9 249
G10 249

(1) Embrapa 2016/2017 was comprised of spectral data of genotypes 1, 2, 3, and 4 collected
in 29, 34, 45, 58, 70, 90, and 113 days after sowing (DAS) in the four experimental treat-
ments during the 2016/2017 cropping season at Embrapa Soja, with four subsamples
in each plot, resulting in 1776 leaf reflectance spectra, totaling 444 spectral samples.

(2) Embrapa 2017/2018 was comprised of the spectral data of genotypes 1, 2, 3, 4, and 5
collected in 30, 38, 43, 58, 79, 97, 107, and 113 DAS in the four experimental treatments
during the 2017/2018 cropping season at Embrapa Soja, with four subsamples in each
plot, resulting in 1920 leaf reflectance spectra, generating 640 spectral samples.

(3) Embrapa 2018/2019 [I] was comprised of spectral data of genotypes 1, 2, 3, 4, and 5
collected in 42, 51, 58, 65, 80, 88, 95, 102, and 108 DAS in the ‘non-irrigated’ treatment
during the 2018/2019 cropping season at Embrapa Soja, totaling 900 spectral samples.

(4) Embrapa 2018/2019 [II] was comprised of spectral data of genotypes 6, 7, 8, 9, and 10
collected in 42, 51, 58, 65, 80, 88, 95, 102, and 108 DAS in the four experimental treat-
ments during the 2018/2019 cropping season at Embrapa Soja, with four subsamples
in each plot, resulting in 2880 leaf reflectance spectra and 720 spectral samples.

(5) Embrapa 2016–2019 was comprised of the ‘Embrapa 2016/2017’, ‘Embrapa 2017/2018’,
and ‘Embrapa 2018/2019 [I]’ spectral datasets, adding up to 1984 spectral samples of
genotypes 1, 2, 3, 4, and 5.

(6) Unoeste 2018/2019 [I] was comprised of spectral data of genotypes 1, 2, 3, 4, and
5 collected in 51, 62, 92, and 107 DAS during the 2018/2019 cropping season at the
Unoeste University farm, resulting in 525 spectral samples.

(7) Unoeste 2018/2019 [II] was comprised of spectral data of genotypes 6, 8, 9, and 10
collected at 51, 62, 92, and 107 DAS during the 2018/2019 cropping season at the
Unoeste University farm, totaling 420 spectral samples.
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(8) Embrapa 2016–2019 + Unoeste [I] was comprised of the ‘Embrapa 2016–2019’ and ‘Un-
oeste 2018/2019 [I]’ spectral datasets, for a total of 2509 spectral samples of genotypes
1, 2, 3, 4, and 5.

(9) Embrapa 2018/2019 + Unoeste [II] was comprised of the ‘Embrapa 2018/2019 [II]’
and ‘Unoeste 2018/2019 [II]’ spectral datasets, summing up to 1140 spectral samples
of genotypes 6, 7, 8, 9, and 10.

The statistical analysis of each spectral dataset composed by field assessments was
performed, aiming at the classification of soybean genotypes by their spectral responses,
comprising different phenological stages and water status to which plants were submitted.
Wavelengths between 350 and 399 nm were not considered for spectral analysis because of
the frequent noises observed on vegetation analysis in this spectral interval [58,59].

2.4. Statistical Analysis
2.4.1. Principal Component Analysis (PCA)

The principal component analysis (p-value <0.05) was performed by Unscrambler X
software, version 10.4 (Camo Analytics), as an indicator of whether the variance of the
reflectance spectra among genotypes within each spectral dataset could be explained, and
how effectively soybean genotypes could be clustered.

PCA, a widely used data mining method that reduces the number of variables to
be analyzed (e.g., spectral bands), promotes, by a covariance matrix composed by all
spectral bands of the full reflectance spectra, the transformation of those variables into a
new group of variables, called principal components (PCs). The PC can be described as
the linear combination of all analyzed variables to explain their variance, and each PC has
its associated score, which denotes the percentage of variance that can be explained. The
first principal component (PC1) carries the most information of data variance, the second
principal component carries the residual information of PC1, the third principal component
carries the residual information of PC2 and so on [60,61]. According to Wang [62], when the
cumulative contribution of the first several components is more than 80%, the remaining
components can be omitted in further analysis.

2.4.2. Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA), performed by the Statistical Analysis System®

software (SAS Institute, Inc., Cary, NC, USA), was used to obtain a model of classification of
each reflectance spectra of soybean leaves into each soybean genotype. Before the LDA, the
stepwise procedure was carried out to select the wavelengths that statistically distinguish
the analyzed soybean genotypes and to maximize the Mahalanobis distance among the
soybean genotypes [44]. In this procedure, each variable (wavelength) is added (forward)
and removed (backward) from a multilinear regression function, evaluated by the F-test
and by the Wilk’s Lambda value, following the likelihood principle [27,63–67]. Variables
with p-value <0.05 (defined a priori) were added and not removed in/from the function.
The stepwise procedure was carried out until no variable could be entered or removed from
the function [27,67,68]. Using the selected wavelengths, the linear discriminant analysis
was carried out.

Each spectral dataset (Table 1) was randomly divided by the SAS software into two
subsets: calibration and validation, containing 60% and 40% of the reflectance spectra,
respectively. The LDA was carried out using the calibration subset, of which accuracy
was evaluated by the replacement of each reflectance spectra (60%) in the generated
linear discriminant function and the percentage of success in their classification into the
correct soybean genotype. The validation subset (40%) was tested in the linear discriminant
function (generated using the calibration subset) and the validation accuracy was evaluated
by the replacement of each reflectance spectra (40%) in the linear discriminant function
(60%) and the percentage of success in their classification into the correct soybean genotype.
The LDA was repeated 50 times in the calibration and validation process to avoid a tendency
in the discriminant function [69].



Remote Sens. 2021, 13, 172 10 of 24

The results of the LDA of each spectral dataset is provided as a contingency matrix,
expressed in percentages of correct classification and misclassification among all evaluated
groups (soybean genotypes). The contingency matrix was transformed into graphic bars
for better visual interpretation.

3. Results and Discussion
3.1. Visual Analysis of Leaf Reflectance Spectra

Figure 6 displays the average reflectance spectra of each soybean genotype in each
spectral dataset (defined in Table 1), in which a very small difference among the average
reflectance spectra can be observed, and the shape of the spectral curve does not vary
among genotypes and spectral datasets.
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Figure 6. Average reflectance spectra of soybean genotypes 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 in Embrapa 2016/2017 (a), Embrapa
2017/2018 (b), Embrapa 2018/2019 [I] (c), Embrapa 2016–2019 (d), Unoeste 2018/2019 [I] (e), Embrapa 2016–2019 + Unoeste
[I] (f), Embrapa 2018/2019 [II] (g), Unoeste 2018/2019 [II] (h), and Embrapa 2018/2019 + Unoeste [II] (i).

In the spectral datasets composed by genotypes 1, 2, 3, 4, and 5 (Figure 6a–f), a close
relation between genotypes 1 and 4 and among genotypes 2, 3, and 5 was observed around
1400 and 2220 nm. Similarly, in the spectral datasets composed by genotypes 6, 7, 8, 9, and
10 (Figure 6g–i) differences can also be observed around 1400 and 2200 nm, indicating three
groups of genotypes. Such differences are due to the interaction between crop phenological
stage, plant water status, and environmental conditions. However, the spectral variability
among vegetation groups is not the same across the wavelengths due to leaf biochemical
properties and structure [37,66–69].

Figure 7 presents the standard deviation of soybean genotypes and the overall stan-
dard deviation of each spectral dataset (defined in Table 1). The standard deviation,
comprising multiple days of assessment, different levels of water availability, and distinct
crop-growing environments, was lower than 0.04 in all spectral datasets. The lowest stan-
dard deviation was observed in wavelengths corresponding to the blue and red spectrum,
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around 450 and 670 nm. In wavelengths corresponding to the green spectrum, the standard
deviation presented a peak.
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Figure 7. Standard deviation of soybean genotypes and overall standard deviation of Embrapa 2016/2017 (a), Embrapa
2017/2018 (b), Embrapa 2018/2019 [I] (c), Embrapa 2016–2019 (d), Unoeste 2018/2019 [I] (e), Embrapa 2016–2019 + Unoeste
[I] (f), Embrapa 2018/2019 [II] (g), Unoeste 2018/2019 [II] (h), and Embrapa 2018/2019 + Unoeste [II] (i).

Price [70], Breunig et al. [71], and Crusiol [72] have discussed the influence of crop
development in the spectral reflectance. Specifically, in the visible (VIS) wavelengths
(between 400 and 720 nm), associated with the photosynthetic active radiation [67,73–77],
changes in plant phenological development result in changes in light absorption. Therefore,
since plants were evaluated on different dates across cropping season, differences were
expected in their reflectance at visible wavelengths. It is worth mentioning that the highest
peak of standard deviation among all wavelengths was observed around 710 nm in all
spectral datasets, close to the slope between red and near-infrared wavelengths.

A complete review of the interference of plant water status in crop spectra was written
by Damm et al. [78], emphasizing that plants under water deficit demonstrate reflectance
values higher than plants submitted to good conditions of water availability. Although the
entire spectrum between 400 and 2500 nm might be affected by vegetation water status,
the shortwave infrared is the one that shows the most conspicuous changes in reflectance
due to changes in plant water status.

In the near-infrared (NIR, between 720 and 1300 nm), the interaction of the incident
light inside the mesophyll, leading to internal scattering, can be affected by the water
content [67,79–81]. Hence, at higher levels of water content, higher light absorption is
observed, leading to lower reflectance values.

In shortwave infrared spectrum (SWIR, between 1300 and 2500 nm), spectral interval
most associated to the vegetation water status [82–84], the standard deviation showed
to be around 0.02 in both spectral datasets. Although wavelengths around 1900 nm are
influenced by the leaf water content [85], the lowest standard deviation across the SWIR
spectrum was observed on these wavelengths, demonstrating low variability within all
datasets.
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3.2. Principal Component Analysis—PCA

Figure 8 displays the results of the PCA of each spectral dataset (defined in Table 1).
In each bar (spectral dataset), the first, second, and third principal components represent
the percentage of the variance that can be explained (score). Among the evaluated datasets,
none of them presented explained variances (score) in the first PC lower than 47% and all
of them presented cumulative scores in the first and second PCs over 80%. The cumulative
scores in the three first PCs of all spectral datasets showed to be over 94%. Those results
indicate the possibility of discrimination of soybean genotypes within each spectral dataset.
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Figure 8. Principal component analysis of each spectral dataset.

The obtained results are in agreement with previous research findings addressing
the use of PCA to demonstrate spectral differences in vegetation analysis, when the two
or three first PCs explained more than 90% of the spectral variance [86–90]. Analyzing
soybean leaf spectra of four genotypes at a single day assessment, Silva Junior et al. [4]
obtained cumulative scores in the first and second PCs over 95%.

The loading correlation of each PCA, expressed in (r), was also evaluated. Defined as
the correlation of each variable (wavelength) with the principal component, the loadings
describe the importance of each wavelength to the PC [61,91]. This procedure was also
adopted by Thenkabail et al. [64], Foster et al. [86], Guzmán et al. [87], and Lebow et al. [92].
In all spectral datasets, the first principal component was mainly influenced by SWIR wave-
lengths and by NIR wavelengths with lower importance. The second principal component
of the spectral datasets was mainly influenced by NIR wavelengths, but also have, with
lower importance, the influence of SWIR wavelengths. Only in the third principal compo-
nent, VIS wavelengths were found to have loadings with (r) > 0.7. Thenkabail et al. [64],
Foster et al. [86], and Clark et al. [93] also described the SWIR wavelengths to be more
suitable to distinguish vegetation spectra.

3.3. Stepwise Procedure

The spectral wavelengths selected in the stepwise procedure of each spectral dataset
(defined in Table 1) are represented in Figure 9.
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Figure 9. Spectral wavelengths (black dots) selected in the stepwise procedure of each spectral dataset.

It is possible to observe that many wavelengths are significant (p < 0.05) to differen-
tiate the soybean genotypes within each spectral dataset. The lowest number of selected
wavelengths, 16, was obtained for the ‘Embrapa 2016/2017’ spectral dataset and the max-
imum for the ‘Embrapa 2018/2019 + Unoeste [II]’ spectral dataset, 138. The numbers
of selected wavelengths in each spectral dataset were: 75 (Embrapa 2017/2018), 96 (Em-
brapa 2018/2019 [I]), 118 (Embrapa 2016–2019), 81 (Unoeste 2018/2019 [I]), 127 (Embrapa
2016–2019 + Unoeste [I]), 99 (Embrapa 2018/2019 [II]), and 117 (Unoeste 2018/2019 [II]).

Compared to several research works aiming at discriminating reflectance spectra, our
work studied a larger number of selected wavelengths. Some authors selected less than
10 spectral wavelengths [86,90,94], while others selected from 10 to around 25 spectral
wavelengths [44,95–98]. A review of selected spectral bands for species classification can
be seen in Fassnacht et al. [99].

Wavelengths selected in the stepwise procedure were well distributed in the spectral
interval from 400 to 2500 nm, except for one dataset (Embrapa 2016/2017). However, it is
important to emphasize the spectral gap in selected wavelengths between 700 and 1000 nm
in most spectral datasets, comprising the red-edge and near-infrared spectrum. Major
attention is required in those wavelengths, highlighting possible biotic and abiotic factors
that may interfere in the spectral response and differentiation of genotypes [67].

3.4. Linear Discriminant Analysis–LDA

Figure 10 presents the results of the linear discriminant analysis of the Embrapa
2016/2017 (a), Embrapa 2017/2018 (b), and Embrapa 2018/2019 [I] (c) spectral datasets.
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Figure 10. Linear discriminant analysis of Embrapa 2016/2017 (a), Embrapa 2017/2018 (b), and Embrapa 2018/2019 [I] (c)
spectral datasets: percentage of accuracy in the spectral classification of each genotype (bar) relative to all genotypes (colors
within the bar) for calibration and validation approaches.

In the 2016/2017 cropping season (Figure 10a), the calibration procedure demonstrated
accuracy between 61 and 67% for all genotypes. Since the validation procedure was
performed using external samples, it was expected to have lower accuracy compared to the
calibration procedure. Therefore, the validation procedure revealed an accuracy between
50 to 61% for all genotypes.

Figure 10b shows that in the 2017/2018 cropping season the calibration procedure
had an accuracy between 79 and 87%, while the validation procedure presented accuracy
from 52 to 66% for all genotypes. Higher accuracy of the calibration procedure, which was
expected, was also found in the 2018/2019 cropping season (Figure 10c) when the obtained
accuracy was between 90 and 92% in the calibration procedure, and between 73 and 82%
in the validation procedure for all genotypes.



Remote Sens. 2021, 13, 172 15 of 24

There was an association between genotypes 1 and 4 (red and blue bars) and between
genotypes 2 and 3 (grey and yellow bars) (Figure 10a). In the 2017/2018 and 2018/2019
cropping seasons, genotypes 2 and 3 were also associated with genotype 5 (green bars)
(Figure 10b,c).

Therefore, in the 2016/2017 cropping season, in the calibration procedure, genotype 1
had 28% of their spectra classified as genotype 4, and genotype 4 had 33% of their spectra
classified as genotype 1. In the same context, genotype 2 had 31% of their spectra classified
as genotype 3, and genotype 3 had 35% of their spectra classified as genotype 2. This
association could be consistently observed in the three cropping seasons in the calibration
and validation procedures.

In the 2017/2018 cropping season (Figure 10b), in the calibration procedure, genotype 2
had 11% of their spectra classified as genotype 3 and 9% classified as genotype 5. Genotype
3 had 10% of their spectra classified as genotype 2 and 11% classified as genotype 5, and
genotype 5 had 8% of their spectra classified as genotype 2 and 11% classified as genotype 3.

Their genetic background explains the close relations between the genotypes 1 and 4,
and among genotypes 2, 3, and 5. In the process of genetically transforming soybean with
drought tolerance genes, genotype 1 was developed from genotype 4, and genotypes 2 and
3 were developed from genotype 5. Therefore, it was expected that genotypes (isolines)
carrying the same genetic background of the parental genotypes, showing very similar
characteristics, would result in spectral misclassification among them.

From the 2016/2017 to 2018/2019 cropping seasons, an increase in the accuracy of
classifying the five soybean genotypes was observed. Such accuracy enhancement may be
due to the insertion of one extra genotype (G5), from the 2016/2017 to 2017/2018 cropping
season, and the higher number of spectral samples (Table 1).

Furthermore, in the 2017/2018 cropping season, spectral assessments were better
distributed across the phenological stages, comprising three assessments (97, 107, and 113
DAS) in R5 stage [100], while in the 2016/2017 cropping season only two assessments (90
and 113 DAS) were performed in the R5 stage. Galvão et al. [44] and Silva Junior et al. [4]
performed their soybean discrimination in the R5 phenological stage, but they did not
compare different phenological stages.

Moreover, in the 2017/2018 cropping season, irrigation was not performed, which
may have reduced the spectral variability within genotypes since plants under IRR and
NIRR treatments were under the same water condition. The interference of water deficit in
the spectral response of vegetation has been well determined by many authors [82–85].

The accuracy enhancement observed in the 2018/2019 cropping season occurred by
three reasons: higher number of collected spectra per genotype (Table 1); better distribution
in time of spectral assessments across the phenological stages relative to the previous
cropping seasons; and because soybean plants were subjected only to the non-irrigated
treatment, which reduced the spectral variance among experimental treatments.

Figure 11 displays the results of the linear discriminant analysis of the Embrapa 2016–
2019 (a), Unoeste 2018/2019 [I] (b), and Embrapa 2016–2019 + Unoeste 2018/2019 [I] (c)
spectral datasets.
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In general, the linear discriminant analysis of the ‘Embrapa 2016–2019’ spectral dataset
(performed using 1984 reflectance spectra of five soybean genotypes under variant water
status and phenological stages, assessed at 24 dates, in three cropping seasons) represented
an average accuracy of those cropping seasons (Figure 11a).

Therefore, the accuracy in calibration and validation subset of the LDA ranged, among
soybean genotypes, from 70 to 81%, and from 58 to 71%, respectively. As discussed in each
of the three cropping seasons, the close spectral relation between genotypes 1 and 4 and
among genotypes 2, 3, and 5 was sustained.

Although the results achieved for the ‘Embrapa 2016–2019’ spectral dataset seemed to
represent an average accuracy of three cropping seasons, it strengthens the possibility of
continuous development, year by year, of the linear discriminant function on every single
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cropping season, which could comprise spectral information about soybean plants under
different environmental conditions during the growing period.

The best results in the LDA of genotypes 1, 2, 3, 4, and 5 were obtained in the ‘Unoeste
2018/2019 [I]’ spectral dataset (Figure 11b). In the calibration procedure, the accuracy was
close to the maximum, 98% for genotypes 2, 3, and 5, and 100% for genotypes 1 and 4.
Good results were also obtained in the validation procedure, with accuracy ranging from
86 to 98%.

Since soybean crops are widely spread over the Brazilian territory, Embrapa Soja has
grouped soybean production areas in five macro- and twenty micro-regions based on their
soil and climatic characteristics to match specific maturity groups of soybean genotypes.
This grouping allows for better recommendations of technical practices for soybean produc-
tion [48]. Therefore, Londrina—PR and Presidente Bernardes—SP are located in distinct
macro-regions, indicating differences between their crop-growing environments.

Compared to Embrapa, enhancements in the accuracy of the LDA in the ‘Unoeste
2018/2019 [I]’ spectral dataset may be related to the crop-growing environment of Unoeste
University, which is more prone to drought stress, characterized by soil with lower water
holding capacity, higher air temperatures, and lower rainfall. Thus, the expression of
drought tolerance genes in the soybean genotypes at Unoeste University could be higher,
highlighting physiological differences among soybean genotypes [9,10,101–103], promoting
spectral differences.

Analyzing all spectral datasets containing reflectance spectra of genotypes 1, 2, 3, 4,
and 5, collected in two contrasting crop-growing environments (Embrapa 2016–2019 +
Unoeste 2018/2019 [I] spectral dataset) (Figure 11c), a decrease in the accuracy relative to
the ‘Embrapa 2016–2019’ and ‘Unoeste 2018/2019 [I]’ spectral datasets was observed. The
achieved accuracy in the calibration procedure ranged, for all genotypes, from 68 to 79%
and in the validation procedure from 53 to 69%.

However, the ‘Embrapa 2016–2019 + Unoeste 2018/2019 [I]’ spectral dataset comprises
2509 reflectance spectra, collected in three cropping seasons, under four different levels of
water availability, at 28 days of spectral assessment and at two locations with contrasting
crop-growing environments. Therefore, regardless of the phenological stages or water
status to which plants were submitted, the linear discriminant function could classify
soybean genotypes with over 53% of accuracy and almost all misclassification was observed
between genotypes from the same genetic background. Hence, the LDA of the ‘Embrapa
2016–2019 + Unoeste 2018/2019 [I]’ spectral dataset classified the 2509 leaf reflectance
spectra into the correct group of genetic background (genotype 1 and 4; and genotypes 2, 3,
and 5) with accuracy over 97% (red and blue bars summed and analyzed together; and
grey, yellow, and green bars summed and analyzed together), both in the calibration and
validation procedures.

To reinforce the obtained results in LDA, five different genotypes (genotype 6, 7, 8, 9,
and 10) were evaluated both at Embrapa and Unoeste field experiments. Figure 12 displays
the results of the linear discriminant analysis (calibration and validation subsets) of the
‘Embrapa 2018/2019 [II]’ (a), ‘Unoeste 2018/2019 [II]’ (b), and ‘Embrapa 2018/2019 [II] +
Unoeste 2018/2019 [II]’ (c) spectral datasets.
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In the ‘Embrapa 2018/2019 [II]’ spectral dataset (Figure 12a), in the calibration pro-
cedure, the accuracy in the classification of soybean genotypes 6, 7, 8, 9, and 10 ranged
from 89% to 100%, while in the validation procedure the accuracy showed to be between
74% and 100%. It is possible to observe a close spectral relation between genotypes 7
and 8 in the calibration and validation procedure, and between genotypes 9 and 10 in
the validation procedure. In soybean genetic improvement, genotype 7 was developed
from genotype 8, and genotypes 9 and 10 have the same genetic background. Hence, as
discussed in the previous spectral datasets, misclassification among genotypes from the
same genetic background was expected.

Figure 12b presents the results of the LDA of the ‘Unoeste 2018/2019 [II]’ spectral
dataset. The accuracy of LDA in the calibration procedure was 100% for all genotypes. In
the validation procedure, genotypes 6 and 8 had 100% of their spectra correctly classified,
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while genotypes 9 and 10 had little misclassification between them, with 99% and 98%
accuracy, respectively. The fact that genotype 8 achieved 100% accuracy may be due to the
absence of genotype 7 in this experiment, avoiding the spectral misclassification between
them.

As previously reported, the linear discriminant analysis performed using spectral data
collected in Unoeste University, a crop-growing environment more prone to drought, pre-
sented higher accuracy than the LDA using spectral data collected at Embrapa. This higher
accuracy can be due to genotype differential gene expression under drought conditions.
Besides that, plants were subjected only to the non-irrigated water condition, decreasing
the spectral variability.

The results of the LDA of the ‘Embrapa 2018/2019 [II] + Unoeste 2018/2019 [II]’
spectral dataset is displayed in Figure 12c. The accuracy in the calibration procedure
ranged from 82% to 100% and in the validation procedure from 75% to 100%.

It was observed an accuracy decrease in the classification of soybean genotypes
compared to the LDA performed using spectral data from Embrapa (Figure 12a) and
Unoeste University (Figure 12b). These results corroborate the results found in the LDA
of the ‘Embrapa 2016–2019 + Unoeste 2018/2019 [I]’ spectral dataset (Figure 11c), when
spectral data collected in contrasting crop-growing environment (Embrapa and Unoeste
University), led to a decrease in the accuracy of the LDA.

The linear discriminant analysis performed using genotypes 6, 7, 8, 9, and 10 achieved
accuracy over 66% in the classification of soybean genotypes, regardless of the phenological
stages or water status to which plants were submitted (Figure 12a–c), and misclassification
was only observed between genotypes from the same genetic background.

Considering the three groups of genetic background (genotype 6; genotypes 7 and
8; and genotypes 9 and 10), the LDA classified all the 1140 leaf reflectance spectra into
the correct group with an accuracy of 100% (red bars; yellow and grey bars summed
and analyzed together; blue and green bars summed and analyzed together) both in the
calibration and validation procedures.

Although few papers have been aimed at classifying soybean genotypes by their
spectral response, the accuracy achieved in this paper was high when compared to other
papers. Breunig et al. [43] stated that the accuracy may be influenced by the classification
method used, ranging from 44% to 100%. However, those authors performed the pixel
classification of just five soybean genotypes using only a single Hyperion scene, in a single
day, precluding the application of the obtained results to long-term analyses.

In the same context, Galvão et al. [44] achieved over 89% of accuracy in the classifica-
tion of three soybean genotypes using Hyperion scenes. Although those authors evaluated
two cropping seasons, one scene at each, they did not analyze the two cropping seasons
together, which compromises the continuous development of spectral classification models
through different cropping seasons. Silva Junior et al. [4] achieved over 97% of accuracy
in the spectral classification of four soybean genotypes. However, like the previously
mentioned authors, they evaluated soybean plants in only one date.

Nevertheless, it should be reinforced that the spectral datasets analyzed in this paper
were composed by leaf reflectance spectra acquired under variant conditions of water avail-
ability, in three cropping seasons and at different phenological stages in two contrasting
crop-growing environments, demonstrating the possibility of linear discriminant functions
to be applied in large areas of soybean crops.

4. Conclusions

This paper evaluated the potential of the spectral classification of soybean genotypes
using hyperspectral sensor and linear discriminant analysis. A very small difference among
the average reflectance spectra of soybean genotypes could be observed, and the shape of
the spectral curve did not vary among genotypes.

In each dataset, the principal component analysis explained over 94% of the spectral
variance of soybean genotypes in the first three PCs, with higher importance of SWIR
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wavelengths. The stepwise procedure selected from 16 to 138 spectral bands capable to
distinguish soybean genotypes.

The linear discriminant analysis, using leaf reflectance of soybean genotypes under vari-
ant water status and at different phenological stages, achieved accuracy between 61% and
100% in the calibration procedure and between 50% and 100% in the validation procedure.
Misclassification was observed between genotypes from the same genetic background. Thus,
if summed and analyzed together, soybean genotypes from the same genetic background
could achieve accuracy over 93%, both in calibration and validation procedure.

The obtained results demonstrate the great potential of the spectral classification of
soybean genotypes at leaf-scale regardless of the phenological stages or water status to
which plants were submitted.
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99. Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on
tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [CrossRef]

100. Fehr, W.R.; Caviness, C.E. Stages of Soybean Development; Special Report 80; Iowa State University of Science and Technology:
Ames, IA, USA, 1977.

101. Honna, P.T.; Fuganti-Pagliarini, R.; Ferreira, L.C.; Molinari, M.D.; Marin, S.R.; de Oliveira, M.C.; Farias, J.R.B.; Neumaier, N.;
Mertz-Henning, L.M.; Kanamori, N.; et al. Molecular, physiological, and agronomical characterization, in greenhouse and in field
conditions, of soybean plants genetically modified with AtGolS2 gene for drought tolerance. Mol. Breed. 2016, 36, 157. [CrossRef]

102. De Paiva Rolla, A.A.; Carvalho, J.D.F.C.; Fuganti-Pagliarini, R.; Engels, C.; Do Rio, A.; Marin, S.R.R.; de Oliveira, M.C.N.;
Beneventi, M.A.; Marcelino-Guimarães, F.C.; Farias, J.R.B.; et al. Phenotyping soybean plants transformed with rd29A: AtDREB1A
for drought tolerance in the greenhouse and field. Transgenic Res. 2014, 23, 75–87.

103. Stolf-Moreira, R.; Lemos, E.G.M.; Carareto-Alves, L.; Marcondes, J.; Pereira, S.S.; Rolla, A.A.P.; Pereira, R.M.; Neumaier, N.;
Binneck, E.; Abdelnoor, R.V.; et al. Transcriptional profiles of roots of different soybean genotypes subjected to drought stress.
Plant Mol. Biol. Rep. 2011, 29, 19–34. [CrossRef]

http://doi.org/10.1016/j.fcr.2012.06.017
http://doi.org/10.1016/S0034-4257(99)00067-X
http://doi.org/10.1016/j.rse.2016.08.013
http://doi.org/10.1007/s11032-016-0570-z
http://doi.org/10.1007/s11105-010-0203-3

	Introduction 
	Materials and Methods 
	Experimental Setup 
	Experiment I: 2016/2017, 2017/2018, and 2018/2019 cropping seasons 
	Experiment II: Unoeste University Experiment 

	Weather Monitoring 
	Spectral Data Acquisition and Processing 
	Statistical Analysis 
	Principal Component Analysis (PCA) 
	Linear Discriminant Analysis (LDA) 


	Results and Discussion 
	Visual Analysis of Leaf Reflectance Spectra 
	Principal Component Analysis—PCA 
	Stepwise Procedure 
	Linear Discriminant Analysis–LDA 

	Conclusions 
	References

