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Abstract: The phosphorus (P) chemistry of biochar (BC)-amended soils is poorly understood. This 

statement is based on the lack of published research attempting a comprehensive characterization 

of biochar’s influence on P sorption. Therefore, this study addressed the kinetic limitations of these 

processes. This was accomplished using a fast pyrolysis biochar made from a mix of waste materials 

applied to a highly weathered Latossolo Vermelho distrofico (Oxisol) from São Paulo, Brazil. 

Standard method (batch method) was used. The sorption kinetic studies indicated that P sorption 

in both cases, soil (S) and soil-biochar (SBC), had a relatively fast initial reaction between 0 to 5 min. 

This may have happened because adding biochar to the soil decreased P sorption capacity 

compared to the mineral soil alone. Presumably, this is a result of: (i) Inorganic phosphorus 

desorbed from biochar was resorbed onto the mineral soil; (ii) charcoal particles physically covered 

P sorption locations on soil; or (iii) the pH increased when BC was added SBC and the soil surface 

became more negatively charged, thus increasing anion repulsion and decreasing P sorption. 
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1. Introduction 

More than 3 billion people live in the tropics, which was larger than the world’s 

population in 1950 [1]. They rely on the soil to provide food, fiber, and bioenergy. Of the 

134 million hectares in humid, tropical South America that are potentially arable, 73 

million are located in Brazil [1]. The majority of these acres suffers from some level of 

phosphorus (P) deficiency due to low native soil P content and high P fixation capacity 

[2]. Therefore, soil P management is fundamental to sustainable agriculture and the health 

and welfare of millions. 

The weathered nature of tropical soils promotes P fixation by Fe and Al oxides which, 

when chemisorbed to the soil, are not easily released by simple equilibrium desorption 

[3]. This makes soil P fertilization both inefficient and expensive since large quantities of 

P are required to overcome the soils’ potential to sequester it. The soil management 

techniques currently used to make fertilizer P more bioavailable either satisfy the P 

fixation capacity of a soil or prevent soil P fixation. These include applying inorganic P in 

the planting hole in order to fill the fixation sites in a small soil volume near the roots or 

using organic matter where the organic matter competition for sorption sites prevents P 

fixation [4]. 
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These soil management techniques control P sorption and desorption mechanisms 

while reducing the cost of inputs. Once P enters the soil system it chemically reacts with 

the soil surface and eventually reaches an equilibrium or quasi-equilibrium. What 

happens to P on its way to an equilibrium soil solution concentration is described by the 

kinetic path of the reaction(s). Likewise, for P on the solid phase to become bioavailable, 

it must be released from the solid phase while again seeking an equilibrium or quasi-

equilibrium with the soil solution. Maybe this state is reached in a system defined by a 

dynamic biology of microorganisms and plant roots, but certainly it routes toward that 

state in the kinetic path. The speed kinetics of these reactions that determine the soil 

solution concentration can affect P bioavailability [5]. However, there are restricted data 

on the kinetics of these processes in tropical soils which, if more fully understood, could 

lead to better management of soil solution concentrations. 

While a relatively low, but highly buffered, soil P solution concentration is sufficient 

to meet the needs of many plants, a high soil P fixing capacity combined with fast sorption 

kinetics and slow desorption kinetics would be an impediment for adequate solution 

concentrations to be maintained. [5] suggested that soil solution concentrations that 

provide adequate P bioavailability range from 0.2 to 10 μM, depending on crop type. This 

conclusion was partially based on work by [6] and [7] who reported adequate 

concentrations of 0.2 uM for cassava (Manihot esculenta Crantz.) to 10 uM for lettuce 

(Lactuca sp.), with intermediate values for peanuts (Arachis hypogaea L.), cabbage (Brassica 

oleracea), corn (Zea Mays), sorghum (Sorghum sp.), soybean (Glycine max), and tomato 

(Solanum lycopersicum).  

Biochar (BC), a product resulting from the pyrolysis of organic materials, is a soil 

amendment that affects P bioavailability [8-10]. Under limited circumstances it can be a 

source of inorganic P [11-13] and it retains nutrients while improving soil physical, 

chemical, and biological properties [9, 14, 15]. 

A key physical feature of most BCs is their highly porous structure and large surface 

area. This structure can provide refugia for beneficial soil micro-organisms such as 

mycorrhizae and bacteria, while also influencing the kinetics of the sorption and 

desorption reactions of important plant nutritive cations and anions. The pore structure 

should affect the importance of diffusion from the pores to both sorption and desorption 

reactions. Biochar pyrolysis concentrates nutrients like P, making them more bioavailable 

and a source for plant uptake [11].  

Biochar application to soils affects P complexation with metals (Al3+, Fe3+, and Ca2+), 

which determine P sorption and desorption reactions [11, 16]. Biochar could promote 

delayed P sorption or precipitation, hence influencing the kinetics of these reactions. 

Sorption of organic molecules onto BC surfaces reduces the chelation of Al3+, Fe3+, and Ca2+ 

in soil [17] enhancing P desorbability [18] and possibly changing P desorption kinetics. 

The capacity of BC to influence soil P sorption and desorption kinetics is not well 

understood, yet the literature suggests a potential influence.  

Thereby, agricultural practices have to be applied aimed to decrease phosphorus 

sorption in tropical soils. Our specific objective in this study was to investigate the role 

that BC has on the kinetics of P sorption in a soil/BC complex. Our hypotheses were that 

(1) BC reduces P sorption onto soil due to the covering of potential sorption sites and the 

role that diffusion may play due to the high porosity of the BC; and (2) during the kinetics 

of sorption in the presence of BC, the soil solution P concentrations remain higher, which 

would make P more bioavailable for a longer period of time. 
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2. Material and Methods  

2.1. Biochar Formation and Characterization  

The fast pyrolysis BC was developed from a sequence of three distinct BCs produced 

by sawdust of mixed woods and leaves of elephant grass (Pennisetum purpureum 

Schumach) and sugar cane (Saccharum officinarum). The three BCs were combined in a 1:1:1 

ratio. Each of these three BCs was the by-product of bio-oil extraction created in a 

fluidized bed reactor (200 kg h−1 capacity) produced by Bioware (Biotechnology company 

in Campinas, State of São Paulo, Brazil). The procedure was done in a controlled 

temperature from 450 to 500 °C, under 120 to 250 mm of H2O pressure for about 8 s in an 

ambience of 10% air.  

The BC’s water-soluble nutrients (P, Ca, Mg, K and Na) were determined by 

sequential water extractions. Twenty grams of the combined BC were mixed through 350 

mL of deionized water and shaken for 24 h. The supernatant was filtrated, and the 

procedure was performed for 30 times. The atomic absorption spectroscopy was used to 

quantify Ca, Mg, and K in the supernatant. To measure inorganic P, [19] method was used. 

The dissolved organic carbon (DOC) was measured using a TOC-Analyzer (Shimadzu 

TOC-VCPH; Columbia MD, USA). Porosity and specific surface area were measured with 

a Micromeritics ASAP 2021 analyzer sorptometer (Norcross, GA, USA). Microstructure 

and surface topography was photographed by scanning electron microscopy (515-Philips, 

Eindhoven, Holland) with a magnification of 42–2000 times and resolution of 3–100 nm 

(Verhoeven, 1986). The functional groups on the BC surface were analyzed by the method 

of [20] 
According to [21], a few other methods of determining total N [22], pH in water 

(1:2.5); organic C (volumetric oxidation method), total Ca, Mg, Cu, Fe, Mn, and Zn 

(extraction by nitric-perchloric acid solution and determined by atomic absorption 

spectrometry), total K and Na (extraction with nitric-perchloric acid solution and 

determination by flame photometry), total S (extraction with nitric-perchloric acid 

solution and determination by photocolorimetry), and the total P (digestion with sulfuric 

acid and peroxide) were used. 

2.2. Soil Collection and Preparation 

The study was carried out on a research field in the Fazenda Lageado at the State 

University of São Paulo in Botucatu, in the state of São Paulo, Brazil (between coordinates: 

22°51” S, 48°26” W; elevation of 786 m above sea level.). The soil type used was a Latossolo 

Vermelho distrofico (Brazilian Soil Taxonomic System; or a Typic Kandiudult in the U.S. 

System or Oxisol for WRB) degraded by laminar erosion of elimination of 20 cm of the 

surface when the cultivation was started. The climate of the region is classified as type 

Cwa (Monsoon-influenced humid subtropical climate), according to the Köppen–Geiger’s 

classification, with rainy periods between October and April and dry ones between May 

and September. The rainfall and temperature averages are 1500 mm/yr and 21.4 °C. 

Soil samples were collected at a 30–50-cm depth, air-dried, sieved through a 2 mm 

screen, and characterized by standard methods (Table 1). The soil surface was removed 

to avoid contamination from organic matter surface. The chemical properties (Table 1) 

was determined [23], showing the following: pH in CaCl2 (0.01 M) (1:2.5); total acidity (H 

+ Al) by SMP (Shoemaker-McLean-Pratt) buffer solution (pH 7.0); P, Mg, Ca, and K 

extraction by “exchangeable ions resin” and quantified by photocolorimetry, K, Ca, and 

Mg by atomic absorption; exchangeable Al by extraction with 1 M KCl; organic C by the 

volumetric oxidation method with K2Cr2O7 and titration with ammonium ferrous 

sulphate; B extraction by hot water and determined by photocolorimetry by azometine-H 

method; Cu, Fe, Mn, and Zn extraction using DTPA (diethylentriaminepentaacetic acid) 

solution (pH 7.3) and determination by spectrometry of atomic absorption; the potential 

acidity (H + Al), exchangeable bases, and exchangeable Al were used to calculate the total 

cation exchange capacity (CEC) and effective cation exchange capacity (CECe). 
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Table 1. Chemical properties of the tropical weathered soil and the fast pyrolysis biochar 

Soil Chemical Properties 

pH Ca Mg K Al H+Al CEC P Zn Fe Mn B Cu OM 

CaCl2 mmolc kg−1 mg kg−1 g kg−1 

4.1 3 1 1 11 67 71 6 0.1 58 1 0.1 1 16 

Soil/BC Mixture Chemical Properties 

8.0 70 13 41 0 7 132 60 0.8 16 7 5 0.4 27 

Fast Biochar Chemical Properties 

N P K OM C C/N Ca Mg S Na Cu Fe Mn Zn 

g kg−1(dry weight) mg kg–1 (dry weight) 

06 1.48 16 550 310 48 21 2 190 580 22 4500 264 42 

Source: Morales et al. 2013. [11] 

The samples of the soil were incubated for 240 days under greenhouse conditions. 

Additionally, completely randomized design was used and designed with three replica-

tions of three treatments. The treatments consisted of the following three substrates: Soil 

alone (S), biochar alone (BC), and soil/BC mixture (SBC) combined (26% by weight or 35% 

by volume). The biochar used came from a study investigating the formation of biochar 

soils under long-term occupation of native Amerindians of South America. High levels 

are found in those soils [24], and have been used in other studies [25-27]. Pots were placed 

in a greenhouse at an average day temperature of 22 °C, under field capacity of the soil 

contained in the pots. Samples were air-dried after 240 days in the laboratory and sieved 

through a 2-mm mesh. 

Chemical analysis of the soil and soil/BC mixture (Table 1) was carried out [23] to 

determine: pH in CaCl2 (0,01 mol L−1) (1:2.5); total acidity (H+Al) by SMP buffer solution 

(pH 7.0); and P, Mg, Ca, K, and DOC by extraction with exchangeable ions resin then 

quantified by photocolorimetry. Exchangeable Al was determined by extraction with 1 

mol L−1 of KCl, while organic C was by the volumetric oxidation method with K2Cr2O7 

and titration with ammonium ferrous sulfate. Boron was extracted with hot water and 

determined by photocolorimetry using the azometine-H method, and Cu, Fe, Mn, and Zn 

was analyzed with extraction by DTPA solution (pH 7.3) and atomic absorption spectrom-

etry. The cation exchange capacity (CECe) and total cation exchange capacity (CEC) were 

determined by the extraction of exchangeable bases and exchangeable Al. 

2.3. Sorption Studies 

The P sorption kinetic study was carried out using two-gram samples of S, SBC, and 

BC, in triplicate placed in 50-mL centrifuge tubes and gently shaken at 96 cycles min−1 for 

0.1, 0.2, 0.3, 0.5, 1, 1.5, 2, 3,6, 12, 24, 48, 72, and 96 h with 20 mL of solution containing 400 

mg P kg−1 of soil. This amount of P is also often found in Terra Preta de Índio [28]. Upon 

removal from the shaker, the tubes were centrifuged for 10 min at 2000 rpm and the su-

pernatant was removed and filtered through 0.45-μm filter paper. The solution concen-

tration of P in the supernatant was measured colorimetrically [19]. 

2.4. Statistical Methods 

Data were analyzed by fitting sorption curves to each treatment and were regressed 

against natural logarithms of time to estimate the P sorption (mg kg−1). The linear model 

as selected for the treatments, and the model coefficients were compared for their equality. 

To this purpose, we used the likelihood ratio test with accuracy given by the chi-square 

(χ2) statistic [29]. This method involves the addition of two independent variables, D1 and 

D2, in order to calculate the maximum likelihood estimates of the parameters under no 

restrictions in the parametric space representing the complete model and under restriction 
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in the reduced model. The complete model was adjusted under no restrictions and the 

reduced model was adjusted with respect to restrictions defined in H0. 

3. Results and Discussion 

3.1. Biochar and Soil/BC Mixture Characteristics 

The BC specific surface area (reactive surface area per unit weight of soil) was 9 m2 

g−1. The BC morphology was diverse due to it being a mixture of three different biochars—

sawdust of mixed woods, elephant grass, and sugar cane leaves (Figure 1). Total porosity 

was 0.0112 cm−3 g−1 with an average pore size of approximately 200 μm. The particle sur-

face texture was irregular, with micropores (<20 A) accounting for 87% of the total poros-

ity, while mesopores (between 20 to 500 Å) were 13%. Macropores were lacking.  

 

Figure 1. Scanning electron micrograph images for the three different types of particles that com-

posed the fast pyrolysis biochar, expanded 600 times (left) and 2000 times (right). 

These properties are related to the BC’s capacity to sorb nutrients and to serve as 

microsites for soil microorganisms [30]. In addition, slow P adsorption increased with spe-

cific surface area, micro and meso-porosity, and ferrihydrite impurities [31]. BC functional 

surface groups with the potential to influence sorption reactions were composed of phe-

nolics (80%), carboxylics (17%), and lactones (3%). Cumulative water extractable Ca, Mg, 

K, and Na totaled 5835, 1014, 19,713, and 5.835 mg kg−1 (Figure 2a), and dissolved organic 

Carbon (DOC) equaled 23.9 g kg−1. BC was 62% ash with a pH of 9.8. The initial high 

electrical conductivity of the BC rapidly decreased as it was sequentially leached with 

water, while the BC pH remained relatively high after an initial decrease (Figure 2b).  
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Figure 2. (a) Electrical conductivity and pH water extractable (b) salts released (Ca, Mg, K, and Na) from fast pyrolysis 

biochar. 
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4.1 to 8.1. The soil pH affects mechanisms of P fixation. For instance, pH at 4.1 chemical 

fixation occurs by soluble Fe and Al, when the dominate form of phosphate is H2PO4-, and 

for 8.1 the fixation is mostly as calcium-phosphate when it is HPO4−2 [32]. 

This BC P fertilizer potential is based on it having a total P value equal to 1484 mg 

kg−1 (0.148% P) which would require over 20 metric t ha−1 to provide 30 kg total P ha−1. 

With inorganic P (Pi) being 61% of total P (909 mg kg−1) that amount increases to 33 metric 

t ha−1 (Figure 3).  

 
Figure 3. Water extractable P from fast pyrolysis biochar. 

The Pi content was mainly due to high P concentration of the BC ash [13], and it can 

be desorbed from biochar fast and continue slowly (Figure 4). In contrast, [33], working 

with BC made from herbaceous species over a pyrolysis temperature range of 220 to 550 

°C found water-soluble P to be from 20% to 80% of total P depending on whether the 

plants were grown in soil in P-limited versus high legacy P soils, respectively.  
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Figure 4. Kinetics of P sorption behavior in fast pyrolysis biochar (BC). 

Our data fall within the range described. When plant tissue was warmed, organic C 

volatilized at around 100 °C. Phosphorus did not volatilize up to 700 °C [34, 35]. Thus, all 

of the P remained in the solid phase and much was converted to inorganic which became 

water soluble.  

In treatment of soil by itself, the P content was 6.0 mg kg−1 (Table 1). Low P content 

was expected in these weathered, acid soils where most P is strongly bounded to hydrox-

ides and oxides of Fe, Al, and Mn [36]. When BC was added to soil, its content rose to 60 

mg kg−1 (Table 1) or approximately equivalent to 123 kg P ha−1. Other studies also sug-

gested enhanced P availability in a BC amended soil, which could result in crop produc-

tion [37].  

Incorporation of organic materials into soils effect soil P sorption. In most cases, these 

effects are attributed to the introduction of DOC [38]. The DOC attributed to the addition 

of BC was 23.9 g kg−1, giving this material in this soil the distinct potential to decrease P 

sorption as DOC competes for sorption sites, making P bioavailable. 

3.2. Sorption Kinetics 

Chemical reactions naturally tend towards equilibrium; the same is true for the P in 

soil and P in SBC system. This happens when the reaction rate between Pi and soil exceeds 

the reaction rate between soil and Pi, becoming equal, reaching the equilibrium condition 

[39]. For the P in soil, the equilibrium condition was reached at 12 h and for the P in the 

SBC system at 48 h (Figure 5a). 

Phosphorus sorption in both cases, S and SBC, had a relatively fast initial reaction 

that took place between the initial 0 to 30 min for SBC, 0 to 1 h to SBC minus BC (SBC−BC), 

and 0 to 1.5 h to S. This was followed by a slower sorption reaction (Figure 5b). Probably 

because P is initially sorbed onto charged external surfaces of soil system during the pe-

riod of fast P sorption and then diffuses into the BC particles, where slow and constant 

sorption takes place. 
Brazilian tropical Latosol soils are characterized by a high-level P-fixing capacity that 

is relative to their clay content [40].  

PBC = −5.638 ln(x) − 61.11
R² = 0.6298

-120

-100

-80

-60

-40

-20

0
0 20 40 60 80 100 120

S
or

b
ed

 P
 (

m
g 

k
g

−
1
)

Time (h)

−

−

−

−

−

−



Agriculture 2021, 11, 295 9 of 13 
 

 

 
(a) 

 
(b) 

Figure 5. (a) Soil solution concentration in a Latossolo Vermelho distrofico (Brazilian Soil Taxonomic System; or a Typic 

Kandiudult in the U.S. System); (b) sorption kinetics in a Latossolo Vermelho distrofico (Brazilian Soil Taxonomic System; 

or a Typic Kandiudult in the U.S. System). Soil = S, soil/BC mixture = SBC, and SBC minus BC = SBC−BC. The area outlined 

by a dotted rectangle indicates the zone where the reaction appears to become linear. 

P sorption between S, SBC, and SBC−BC was different under the P sorption (p = 0.00) 

and times (p = 0.0082) until 12 h. In addition, the P sorption soil and BC effect on SBC was 

differentiated, under the times up to 12 h, but soil sorption and SBC−BC had the same 

behavior (Figure 5b).  
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Sorption has been described as a two-step mechanism: (i) Moieties in an SBC system 

sorb to external surface sites and rapidly balance with the surrounding solution [41, 42]; 

(ii) then these moieties slowly diffuse to interior sites [43]. In other words, the effect of 

adding BC to soil should be to decrease the affinity of P to the soil’s Fe-oxides and increase 

soil solution concentrations, thus enhancing P bioavailability [18].  

The Le Chatelier’s principle corroborates with this statement, if a system in equilib-

rium (S) is subjected to a “perturbation” (SBC), in this case addition of Pi and OM by BC, 

which changes any factor (bioavailability of Pi, sorption sites, and pH) that determines 

the steady state, the system will react by minimizing the disturbance effect (SBC−BC) (Fig-

ure 5b) after 12 h of S and SBC−BC presenting the same behavior.  

The P sorption rate was equal for the SBC complex and S by itself: Both depended on 

the amount of soil surface, and the reaction between soil and phosphate involved more 

than one step, ultimately being controlled by the slower reaction (Figure 6). When com-

paring S and SBC, the sorption-limiting step appeared to occur after the “initial sorption” 

step. The reactions in both cases were fast at the first and then became slower and tended 

to continue; only the sorption capacity was different. This suggested that SBC mixture did 

indeed differ in the kind of adsorbing surface present (Figure 1) and not only on the 

amount of site surface (Barrow, 1983) or the amount of P in the BC. 

 
Figure 6. Phosphorus sorption ratio of soil and soil/BC mixture. 

The Boehm titration results corroborated with this statement, showing an increase of 

63%, 14%, and 43% in carboxyl, lactone, and phenol functional groups with biochar addi-

tion. In addition, these results were consistent with those of [44] and [13], who found that 

incorporating biochar with an acid soil increased the equilibrium solution P concentration.  

 In other words, adding biochar to soil decreased soil P sorption compared to the 

mineral soil alone. Three separate hypotheses have been used to explain similar results: 
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soil; (ii) charcoal particles physically covered P sorption locations on the soil (Figure 1); 

(iii) the pH increased when BC was added SBC and the soil surface became more nega-

tively charged, thus increasing anion repulsion and decreasing P sorption [11, 13, 32, 45, 

46] 

4. Conclusions 

The kinetics of sorption in the presence of BC showed that the soil solution P concen-

trations remained higher, which made P more bioavailable for a longer period of time. 

The BC reduced P sorption onto soil due to: (i) BC covering the potential P sorption sites, 

(ii) BC desorbing inorganic phosphorus that was resorbed onto the mineral soil, and (iii) 

BC increasing soil pH and the soil surface becoming more negatively charged. Biochar can 

be an alternative for P management in tropical soils. 
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