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Abstract: Medicinal plants are still the major source of therapies for several illnesses and only part of
the herbal products originates from cultivated biomass. Wild harvests represent the major supply
for therapies, and such practices threaten species diversity as well as the quality and safety of
the final products. This work intends to show the relevance of developing medicinal plants into
crops and the use of micropropagation as technique to mass produce high-demand biomass, thus
solving the supply issues of therapeutic natural substances. Herein, the review includes examples
of in vitro procedures and their role in the crop development of pharmaceuticals, phytomedicinals,
and functional foods. Additionally, it describes the production of high-yielding genotypes, uniform
clones from highly heterozygous plants, and the identification of elite phenotypes using bioassays as
a selection tool. Finally, we explore the significance of micropropagation techniques for the following:
a) pharmaceutical crops for production of small therapeutic molecules (STM), b) phytomedicinal
crops for production of standardized therapeutic natural products, and c) the micropropagation
of plants for the production of large therapeutic molecules (LTM) including fructooligosaccharides
classified as prebiotic and functional food crops.

Keywords: medicinal plants; in vitro propagation; medicinal crops; phytomedicines

1. Introduction

For over a century, plant tissue culture technology has been an important tool in
crop improvement and development: producing disease-free plant material [1], obtaining
transgenic plants [2,3], breaking dormancy, and micropropagating elite plants with highly
desirable chemotype [4], thereby leading to more uniform plant production [5,6]. This is
the technology for conserving in vitro germplasm of elite [7,8], rare, and endangered plant
species [9–11], implementing breeding programs for innumerous crops as well as encapsu-
lated seeds [12], and studying plant biosynthesis through cell and root cultures [12,13], the
interaction between endophytes and the hostplant [14,15].

High-demand plants face great challenges: Depletion of species diversity due to over-
harvesting and environmental pollution affecting natural populations are strong factors
that support the argument for cultivating rare and elite high-yielding medicinal plants. In
addition, the cultivation of medicinal plants is the most effective way of addressing the gap
between supply and demand. Breeding studies are necessary both to develop pharmaceu-
tical plants as crops and to scale up their production [16]. Still, few success stories about
breeding medicinal plants such as Artemisia annua L. exist. Because micropropagation is
the tool of producing clones—especially with high-yielding chemotypes—for industrial
purposes, it solves this target-breeding problem. Moreover, as the Echinacea study [17]
showed, micropropagation’s demonstrated ability for mass selection suggests that together
with bioassays it could form part of an overall strategy to screen elite phenotype lines.
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Micropropagation is an in vitro technology of rapidly multiplying elite plants using
modern plant tissue culture methods. It is well-known for its applications in the agro,
horticultural and forestry industries, this review focuses on a less-commonly known
area which is on medicinal plants and the need to develop them as medicinal crops.
Li et al. [18] defined pharmaceutical crops in three distinct categories: 1) crops for the
production of small therapeutic molecules (STMs), 2) standardized therapeutic extracts
(STEs), and 3) large therapeutic molecules (LTMs). In addition, this review also examines
micropropagation of functional food plants to ensure their development as crop.

2. Pharmaceutical Crops for Production of Small Therapeutic Molecules (STM)

Drug discovery programs and the formation of knowledge of different pharmaco-
logical classes of pharmaceuticals owe much to traditional medicine in countries such as
China and India [19,20]. Some natural compounds are extracted or used as templates for
synthesis or as a precursor for the semi-synthesis (e.g., paclitaxel, artemisinin, podophyllo-
toxin, cannabinoids, galantamine, vinca alkaloids, atropine, ephedrine, digoxin, morphine,
quinine, reserpine, tubocurarine etc.). Many of these compounds provide therapeutic relief
for several major illnesses including cancer, Alzheimer, malaria, high blood pressure, fever,
and anxiety. As researchers confirm the medicinal utility of these natural resources, they
suffer depletions with the increased demand.

According to McChesney et al. [20], pharmaceutical natural substances require consid-
erations beyond supply and demand: the establishment of successful production systems
must be sustainable, environmentally safe, reliable, and affordable. Thus, the development
of medicinal crops is a key factor to obtaining a commercially viable source of medicinal
biomass for the pharmaceutical industry. In fact, non-stable supply sources could lead to
bottlenecks that limit potentially beneficial products. For example, researchers pointed
to insufficiency in the biomass supply of anti-cancer pharmaceutical ingredients such as
podophyllotoxin and paclitaxel, as the major limiting factor at phase III clinical trials,
which led to overharvesting of the natural resources of Podophyllum emodi Wall ex Royle in
India [21] and Taxus baccata L. in Europe [22].

Given the shortage of biomass supply limiting clinical phase III trials of paclitaxel
and podophyllotoxin, several laboratories engaged in different research approaches that
included bioprospecting studies searching for alternate sources with high yields of the
active compounds [23–25]. Clippings of cultivated Taxus sp. became the reliable source
for production of paclitaxel [18], and Sisti et al. [26] reported methods of semi-synthesis
using abundant intermediates for production of paclitaxel. Majada et al. [27] reported
a procedure to obtain high-yielding T. baccata plantlets by screening micropropagated
juvenile seedlings that accumulate 10-deacetyl baccatin III. The selected genotypes of T.
baccata grow faster and contain high taxene content.

For its part, podophyllotoxin is the starting compound for semisynthesis of etoposide
and teniposide, two potent DNA topoisomerase cancer drugs utilized in the treatment of
small lung and testicular cancers, lymphomas/leukemias and the water-soluble etoposide
phosphate, also known as etopophos (Figure 1). To assure podophyllotoxin supply, a
buffer extraction procedure using leaf biomass of mayapple plants provides a sustainable
alternative source [28]. Later, we published a survey and a database of high-yielding
podophyllotoxin colonies [29,30] and an in vitro propagation protocol of Podophyllum
peltatum L. to rapidly produce podophyllotoxin-rich plantlets [5].
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basis). The leading commercial source, ‘Artemis,’ exhibited extensive variation of meta-
bolic and agronomic traits; artemisinin content on a µg/mg dry basis for individual plants 
ranged 22-fold, plant fresh weight varied 28-fold, and leaf area ranged 9-fold [31]. 

While Ferreira and Janick [32] found that the in vitro production of artemisinin will 
never be commercially feasible, Wetzetein et al. [33] suggested that cultivation of micro-
propagated high-yielding artemisinin plants with levels above 2% and improved agro-
nomic traits (high leaf area and shoot biomass production) may reach productivity of 70 
kg/ha artemisinin using a crop density of 1 plant m−2. We include in Table 1 examples of 
pharmaceutical plant species classified as small therapeutic molecules STM’s (18) and 
their micropropagation protocols to produce elite clones for higher yields. Taxol® is an-
other success story. According to McChesney et al. [20], the path from the discovery to a 
pharmaceutical drug requires a viable production system (cultivation, harvest, extrac-
tion, purification and isolation) where every step of a natural product must be systemat-
ically evaluated. Micropropagation of the superior source (chemotype or variety of the 
species) may help to produce biomass with a high and consistent concentration of the 
natural product or a precursor of the natural product that can be converted economically 
by semi-synthesis to the final bulk active product. 

  

Figure 1. Structures of (−)-podohyllotoxin present in Podophyllum sp and its commercial chemother-
apeutic derivatives.

Artemisia annua L. is the source of artemisinin, an endoperoxide sesquiterpene lactone
that is very difficult to synthesize, precursor of a common anti-malarial drug (Artemether).
Artemisinin production comes from cultivated plants selected for their high artemisinin
content [18]. Selection of genotypes with high artemisinin concentration in wild popu-
lations resulted in lines containing up to 1.4 percent artemisinin (on dry leaves basis).
The leading commercial source, ‘Artemis,’ exhibited extensive variation of metabolic and
agronomic traits; artemisinin content on a µg/mg dry basis for individual plants ranged
22-fold, plant fresh weight varied 28-fold, and leaf area ranged 9-fold [31].

While Ferreira and Janick [32] found that the in vitro production of artemisinin will
never be commercially feasible, Wetzetein et al. [33] suggested that cultivation of microprop-
agated high-yielding artemisinin plants with levels above 2% and improved agronomic
traits (high leaf area and shoot biomass production) may reach productivity of 70 kg/ha
artemisinin using a crop density of 1 plant m−2. We include in Table 1 examples of pharma-
ceutical plant species classified as small therapeutic molecules STM’s (18) and their micro-
propagation protocols to produce elite clones for higher yields. Taxol® is another success
story. According to McChesney et al. [20], the path from the discovery to a pharmaceutical
drug requires a viable production system (cultivation, harvest, extraction, purification
and isolation) where every step of a natural product must be systematically evaluated.
Micropropagation of the superior source (chemotype or variety of the species) may help
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to produce biomass with a high and consistent concentration of the natural product or a
precursor of the natural product that can be converted economically by semi-synthesis to
the final bulk active product.

Table 1. Commercial sources of pharmaceuticals often used in therapies of several illnesses that are micropropagated [17].

Plant Species Natural Substance Therapy Micropropagation Protocol

Artemisia annua L. Artemisinin Antimalarial Etienne et al. [34]
Catharanthus roseus (L.) G. Don Vincristine, Vinblastine Anticancer Kumar et al. [35]
Campotheca acuminata Decne Camptothecin Anticancer, antiviral Nacheva et al. [36]

Leucojum aestivum L. Galantamine Anti-alzheimer Zagorska et al. [37]
Narcissus sp. L. Galantamine Anti-alzheimer Khonakdari et al. [38]

Hyoscyamus niger L. Scopolamine Parasympatholytic Uranbey et al. [39]
Pilocarpus sp. Vahl Pilocarpine Anti-glaucoma Saba et al. [40]

Podophyllum emodi Wall ex
Royle Podophyllotoxin Anticancer, antiviral Chakraborty et al. [41]

Podophyllum peltatum L. Podophyllotoxin Anticancer, antiviral Moraes-Cerdeira et al. [5]
Rauwolfia serpentina (L.) Benth

ex Kurz Reserpine Hypotensive, sedative Bhatt et al. [42]

Taxus sp L. Paclitaxel Anticancer Abbasin et al. [43]

3. Phytomedicine Crops for the Production of Standardized Therapeutic
Natural Products

Herein, we describe the category of phytomedicinal crops similar to what Li et al. [18]
reports regarding pharmaceutical crops for production of standardized therapeutic extracts
(STEs). Additionally, we relate examples wherein micropropagation proves useful as a
method for ensuring the stability of biomass supply of phytomedicines by allowing breed-
ers to select phytomedicinal crops with an eye towards maintaining genetic consistency
and the sustainability of wild plant population.

Also known as botanical drugs, herbal remedies, and herbal medicines, phytomedicines
are classified in the United States as dietary supplements according to the specific claim as
described in the Dietary Supplement Health and Education Act (DSHEA) of 1994 [18]. In
Europe, the phytomedicines are standardized and certified medicinal products and in Asia
they have a status of traditional medicine. Phytomedicinal crops relate to the cultivation of
medicinal species by which a mixture of multiple active compounds commercialized as
standardized products. Usually, phytomedicines are evaluated for quality as the means to
ensure safety, as complex mixtures of secondary compounds, to maintain consistency is fun-
damental to their efficacy. Thus, authenticity and uniformity and well-defined cultivation
practices and postharvest processes are essential to certify safety and efficacy. Govidaragha-
van and Sucher [44] reinforce that herbal productions must follow good agricultural and
collection practice (GACP), good plant authentication and identification practice (GPAIP),
good manufacturing practice (GMP) before and during the manufacturing process, guided
by analytical tools, and micropropagation is an important tool in ensuring uniformity and
consistency in open pollinated crops.

As of today, the majority of phytomedicines are still harvested from the wild, which
causes habitat destruction, genetic diversity loss, as well as ingredient mislabeling, vari-
ability and contamination. In Brazil, products are sourced from the wild, as well as from
cultivation in agroforest or in small gardens. They are chosen without proper guide from
health-care professionals because medical schools do not include in their curriculum the
disciplines of phytomedicines or phytotherapy. In 2016 the Brazilian Health Regulatory
Agency, ANVISA, officially recognized twenty-eight medicinal plant species as herbal
drugs and published their monographs [45] in the first edition (Memento). The mono-
graphs are a complete therapeutic guide of phytomedicinals reviewed and accepted by
ANVISA as therapies used in SUS, the public health system of Brazil. The majority of the
phytomedicinals included in this first edition, was introduced to Brazil by immigrants and
later became part of traditional use especially by the rural communities.
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The increased consumption of phytomedicine offers an opportunity to develop medic-
inal plant production systems as crop. Conventional plant breeding may improve agro-
nomic traits in association with molecular markers aiding crop development. The greatest
obstacles for such a program remain predicting which extracts remain active, specifically
resembling all the medicinal properties described in the ones harvested in the wild [46]. In
this context, micropropagation may produce clones that could be screened using bioassays
to assure bioactivity. Moraes et al. [17] used tissue culture techniques to produce Echinacea
sp. clones and later screened those using human monocytes assays to identify high and
low activity. The immune response between the two selected clones after field cultivation
due to bacterial endophytes was the same [47]. The selection procedure using in vitro
propagation techniques, genetic markers, and bioassay work are approaches for selection
of elite germplasm [17].

Micropropagation allows one to mass generate plants with genetically identical chemo-
type for cultivation purposes. Reinhard [48] suggested that different chemotypes in Cat’s
Claw (Uncaria tometosa (Willd. ex Schults) DC) might have different healing properties:
tetracyclic oxindole alkaloid acting on the central nervous system, and the pentacyclic
oxindole alkaloid affecting the immune system. The immunological effect of both alkaloid
mixtures is antagonistic and therefore may be unsuitable for therapy. For Reinhard [48],
the production of safe and efficacious Cat’s Claw phytomedicinal requires chemical identi-
fication prior to harvesting and perhaps even before the cultivation.

Micropropagation also allows one to select plants based on the chemical profile in
order to standardize a particular chemotype. Morais et al. [49] reported that the chemical
composition of Lippia sidoides Cham. (syn. Lippia origanoides) varied according to cultivation
sites. Thymol is the major component of essential oil extracted from crops grown in
northeast Brazil [50–52], whereas carvacrol is the major component present in L. sidoides
harvested from Lavras, Minas Gerais [53] and 1.8-cineole, isoborneol, and bornyl acetate
in São Gonçalo do Abaeté, Minas Gerais, Brazil. Standardized essential oil of L. sidoides
is recommended for topical applications on skin, mucous membranes, mouth, throat and
vaginal washings as antiseptic [45]. According to Santos et al. [53], genotypes regulate
chemical polymorphism thymol and carvacrol. Phenotypical variation is likely to influence
biological properties and the type of industrial application. Planting thymol or carvacrol
clones ensured a high-quality biomass for safe and efficacious products [54].

Finally, micropropagation proves useful to reduce consumption pressure on poten-
tially threatened wild populations [55]. For example, bark extraction of barbatimão to
produce phytomedicine has depleted genetic diversity of Stryphnodendron polyphythum
Mart. natural resources. The bark of this Brazilian tree is widely utilized as a wound-
healing phytomedicine with anti-inflammatory, antioxidant and antimicrobial activities.
Souza-Moreira et al. [55] showed that proanthocyanidins present in the bark are responsible
for its healing properties. França et al. [10] published an efficient micropropagation protocol
to produce barbatimão plantlets, while Correa et al. [56] defined the conditions for in vitro
germplasm conservation to reduce pressure on its threatened status. Table 2 includes
in vitro propagation protocols to produce healthy plantlets for cultivation purposes, thus
aiding the development of phytomedicinal crops.

As the above paragraphs state, micropropagation can provide an effective technique
to those seeking to mold a supply chain of a product, in order to ensure the genetic
homogeneity of plant clones, chemical profile, and finally sustainability of those plants
harvested in the wild.
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Table 2. Micropropagation protocols of medicinal plants considered phytomedicine by the Brazilian Regulatory Agency
(ANVISA).

Plant Species (Common
Name) Herbal Constituents Therapy Micropropation Protocol

Actaea racemosa L.
(Black cohosh) Triterpenes Hot flashes menopause Lata et al. [57]

Aesculus hippocastanum L.
(Horse chestnut)

Coumarins (Aesculetin),
Triterpenoid Saponin

Glycoside
Varicose vein syndrome Sediva et al. [58]

Allium sativum L.
(Garlic)

Thiosulfinates (Allicin),
Terpenes

Bronchitis, asthma,
arteriosclerosis Ayabe and Sumi [59]

Aloe vera (L.) Burm. f.
(Aloe) Polysaccharides Laxative, healing burns and

wounds Roy and Sarka [60]

Calendula officinalis L.
(Calendula) Flavonoids, Terpenes, Anti-inflammatory, healing

wounds Çöçü et al. [61]

Cynara scolymus L.
(Artichoke)

Flavonoids, Caffeoylquinic
Acids

Hepatic-biliary, dysfunction
and digestive complaints El Boullani et al. [62]

Echinacea purpurea (L.)
Moench (Echinacea)

Alkamides, Cichoric Acid,
Polysaccharides Cold treatment Jones et al. [63]

Ginkgo biloba L.
(Ginkgo) Flavonoids, Terpene lactones Circulatory disorders Camper et al. [64]

Harpagophytum procumbens
DC. ex Meisn.
(Devil’s claw)

Iridoid glycosides Anti-inflammatory Kaliamoorthy et al. [65]

Hypericum perforatum L.
(St. John’s wort)

Naphthodianthrones
(Hypericin, pseudohypericin) Antidepressant Gadzovska et al. [66]

Lippia sidoides Cham.
(Pepper rosmarin) Essential Oils Anti-inflammatory,

antifungal, antiseptic Costa et al. [54]

Matricaria chamomilla L.
(Camomile) Flavonoids, Essential Oils antispasmodic,

anti-inflammatory Taniguchi & Tanakano [67]

Maytenus ilicifolia Mart.
(Espinheira santa) Flavonoids, Triterpenes Gastric disordes Pereira et al. [68]

Passiflora incarnata L.
(Passion flower)

Flavonoids, Coumarin,
Umbelliferone, Indol

Alkaloids
Anxiolytic Ozarowski &Thiem [69]

Paullinia cupana Kunth
(Guaraná) Caffeine CNS stimmulant,

antioxidant Barbosa & Mendes [70]

Peumus boldus Molina
(Boldo)

Essential oils, Aporphine
Alkaloid, Flavonoids Hepatic, diuretic, laxative Rios et al. [71]

Piper methysticum G. Forst
(Kava-kava) Kavalactones CNS activity, antidepression,

anxiolytic Zhang et al. [72]

Psidium guajava L.
(Guava)

Tannins, Flavonoids,
Triterpenes Noninfectious diarrhea Rawls et al. [73]

Stryphnodendron adstringens
(Mart.) Coville
(Barbatimão)

Tannins Wound healing França et al. [10]

Uncaria tomentosa (Willd. ex
Schults) DC.
(Cat’s claw)

Flavonoids, Alkaloids,
Saponins, Triterpenes Anti-inflammatory Pereira et al. [74]

Valeriana officinailis L.
(Valeriana)

Terpenes, Valepotriates,
Lignans

Anxiolytic, insomnia,
sedative Abdi et al. [75]

Zingiber officinale Roscoe
(Ginger)

Essential oils, Shogaol,
Zingerone, Gingerol

Anti-inflammatory,
anti-emetic and

chemo-protective
Abbas et al. [76]

4. Micropropagation of Plants for Production of Large Therapeutic Molecules (LTM)
Including Fructooligosaccharides Classified as Prebiotic

Li et al. [18] has called on LTMs crop plants to be cultivated for production of large
molecules such as proteins and polysaccharides and engineered crops (GM) with the
ultimate goal of producing drugs or vaccines at low cost. The LTM’s crops are sources of
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proteolytic enzymes such as papain isolated from Carica papaya L., bromelain from fruits
and stems of pineapple, and the bioactive momordica anti-HIV from Momordica charantia L.
We included in the LTM’s species those that supply prebiotic dietary fibers that are carbon
sources for fermentation pathways in the colon to support digestive health. In this section,
we focus on these prebiotic fibers to highlight how micropropagation may be used to create
a stable supply of crops that produce LTMs.

Fructooligosaccharides/inulin also known as FOS are universally agreed-upon pre-
biotics [77], and species that are rich sources of dietary fibers have tremendous effect on
gut microbiome. Humans cannot digest FOS. Instead, the gut microbiome ferments these
non-digested carbohydrates and produces short chain fatty acids with health benefits
such as reducing the risk of cancer and increasing the absorption of both calcium and
magnesium. Research on the gut microbiome has increased exponentially, revealing that
the intestines greatly affect human health, especially in relation to the immune system and
behavior [78,79].

FOS are present in fruits, bulbs, rhizomes, and roots of banana, onion, garlic, and
species belonging to the Agavaceae and Asteraceae, which are the richest sources of
FOS including chicory (Chicorium intybus L.), globe artichoke (Cynara cardunculus var.
scolymus L. Fiori, Jerusalem artichoke (Helianthus tuberosus L), elecampane (Inula helenium
L.), bear’s foot (Smallanthus uvedalia (L.) Mack. ex Mack and yacon (Smallanthus sonchifolius
(Poepp.) H. Rob.). According to Roberfroid [78] chicory roots provide the commercial
source of FOS for industrial applications, also known as inulin, which are extracted and
then processed into short-chain fructans, such as the oligofructose with 2–10 degree of
polymerization by partial enzymatic hydrolysis. López and Urías-Silvas [79] reviewed the
use of Agave/FOS as prebiotics called agavins whose molecular structure is composed of a
complex mixture of fructans. The agavins stimulated the growth of Bifidobacterium breve
and Lactobacillus casei more efficiently than most commercial inulin [80]. Melilli et al. [81]
evaluated (Cyanara cardunculus var. scolymus L.) germplasm for inulin with a high degree
of polymerization in the Mediterranean environment, to reduce breeding time and offer
growers uniform, healthy globe artichoke plants. Ozsan and Onus [82] compared in vitro
micropropagation response of open-pollinated cultivars with F1 hybrids in maturity and
height. They concluded that open-pollinated cultivars are cheaper than F1 and could be
used for in vitro mass propagation.

The food industry considers FOS/inulin a natural ingredient that improves sensory
characteristics such as taste and texture, the stability of foams, emulsions and mouthfeel in
a large range of food applications like dairy products and baked goods reducing sugar and
fat content while improving health [83]. Padalino et al. [84] added inulin with different
degree polymerization with whole meal flour to improve quality of functional wheat
spaghetti as example of processed food. The Global Market Insights reported that inulin’s
(FOS) market size in 2015 was 250 kilo tons and it is expected gains of 8.5% for 2023, likely
to be worth more than US$ 2.5 billion [85]. The consumers of FOS are Europe, China,
Japan and North America, with Japan being the world’s largest market. The COVID-19
pandemic reinforced the major role of microbiota on the immune response and well-being.
We expect that more consumers will pay more attention to prebiotics that modulate the
gut microbiome.

Recent studies on the traditional food yacon (Smallanthus sonchifolius (Poeppig &
Endlicher) H. Robinson), an Andean species, demonstrated that its roots are also a rich
source of FOS with a smaller degree of polymerization than chicory. It has great potential as
a prebiotic and sugar substitute due to its sweet taste that is related to degree of polymeriza-
tion [86,87]. The role of yacon as FOS supplementation favors a healthy microbiota while
reducing pathogenic population in the gut. Furthermore, short chain fatty acids produced
by the beneficial bacteria improve glucose homeostasis and lipid metabolism. Clinical
studies confirm that consumption of yacon as flour or syrup prevented and treated chronic
diseases [88,89]. The beneficial compounds present in storage roots of yacon classify the
spices as functional food (Figure 2).
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Figure 2. Yacon (Smallanthus sonchifolius) functional constituents.

Brazil is one of the largest agricultural producers in the world, but does not produce
inulin/FOS from either source (chicory or artichoke) for applications in the food industry.
However, in the vicinity of Sao Paulo City, yacon is produced for fresh consumption for its
health benefits. Thus, to initiate any production system for supplying FOS as an ingredient
with applications in the food and pharmaceutical industries, rhizospheres [90], along with
storage roots may be better utilized to extract FOS. Micropropagation of yacon can still be
done using axillary buds as explants of healthy plantlets for cultivation. Table 3 shows
the published in vitro protocols of FOS producing plants for development of the business
models of fructans as prebiotic.

Given the predicted increase in FOS/inulin consumption, supply of these LTM’s crop
plants will be necessary in a way such as the one suggested by McChesney et al. [20] a
sustainable system to meet the demand. Yacon micropropagation is an example to stabilize
the supply of crop plants as source of LTMs, thus ensuring that stability of production.
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Table 3. Micropropagation protocols of FOS producing species.

Plant Species Common Name Culture Purposes Microprogation Protocol

Agave sp L. Agave, maguey Production of high yielding
plants Robert et al. [91]

Chicorium intybus L.
Cuanara cardunculus var.

scolymus L.

Chicory
Globe artichoke

Germplasm conservation,
Improve root quality for

medicinal value
Propagation of

open-pollinated cultivars

Previati et al. [92]
Dolinski and Olek [93]
Ozsan and Onus [82]

Helianthus tuberosus L. Jerusalem artichoke
Large scale production of

health
plantlets

Abdalla [94]

Smallanthus sonchifolius
(Poeppig & Endlicher) H.

Robinson
Yacon Production of healthy

plantlets Viehmannova et al. [95]

5. Functional Food Crops

Metabolic syndrome is a global economic and social burden, understanding the origins,
relevant factors contributing to high rates of obesity and its physiological impacts may
reveal potential therapeutic targets.

Maintaining a healthy gut microbiome is one of the therapeutic goals that improve
human health [83]. Dietary fibers promote wellbeing, and thus they are classified as func-
tional food. Wildman [96] refers as functional food, the food, either natural or formulated,
which will enhance physiological performance or prevent or treat disease and disorders.

Royston and Tolesfbol [97] refer to term epigenetic diet class of bioactive dietary
compounds such as resveratrol in grapes, genistein in soybean, apigenin in celery, allicin in
garlic, phenolic compounds in berries and omega 3 in Portulaca oleracea L. also known
as purslanen [98] and other consumed foods, which have been shown to defend against
the development of many different types of tumors. Compounds that act as epigenetic
modulators prevent initiation and the progression of oncogenesis [97]. Micropropagation
is an important tool for the propagation of selected lines in various breeding programs, as
well as the recovery of pathogen-free material, or even for slow growth storage and the
cryopreservation of valuable germplasm of fruit and vegetable crops.

6. Conclusions

Humans have long used plants to address various problems, the solutions to which
often brought unintended consequences, such as overharvesting and environmental degra-
dation. These negative consequences teach us the solution to our problems ought to be
sustainable. Through a literature review, this paper argues that micropropagation can be a
part of a strategy to reinforce the supply and quality of crops used for medicinal purposes:
(1) small therapeutic molecules, (2) standard therapeutic extracts, (3) large therapeutic
molecules, and (4) functional foods.
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