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Genetic parameters for worm resistance in Santa Inês sheep  
using the Bayesian animal model
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Objective: The objective of this study was to estimate the genetic parameters for worm 
resistance (WR) and associated characteristics, using the linear-threshold animal model 
via Bayesian inference in single- and multiple-trait analyses. 
Methods: Data were collected from a herd of Santa Inês breed sheep. All information was 
collected with animals submitted to natural contamination conditions. All data (number 
of eggs per gram of feces [FEC], Famacha score [FS], body condition score [BCS], and 
hematocrit [HCT]) were collected on the same day. The animals were weighed individually 
on the day after collection (after 12-h fasting). The WR trait was defined by the multivariate 
cluster analysis, using the FEC, HCT, BCS, and FS of material collected from naturally infected 
sheep of the Santa Inês breed. The variance components and genetic parameters for the 
WR, FEC, HCT, BCS, and FS traits were estimated using the Bayesian inference under the 
linear and threshold animal model. 
Results: A low magnitude was obtained for repeatability of worm-related traits. The mean 
values estimated for heritability were of low-to-high (0.05 to 0.88) magnitude. The FEC, 
HCT, BCS, FS, and body weight traits showed higher heritability (although low magnitude) 
in the multiple-trait model due to increased information about traits. All WR characters 
showed a significant genetic correlation, and heritability estimates ranged from low (0.44; 
single-trait model) to high (0.88; multiple-trait model). 
Conclusion: Therefore, we suggest that FS be included as a criterion of ovine genetic selec
tion for endoparasite resistance using the trait defined by multivariate cluster analysis, as it 
will provide greater genetic gains when compared to any single trait. In addition, its measure
ment is easy and inexpensive, exhibiting greater heritability and repeatability and a high 
genetic correlation with the trait of resistance to worms.
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INTRODUCTION 

Worm diseases are those that affect sheep and cause productive and economic damage in 
sheep breeding. The selection of sheep genetically resistant to worms (WR) is a promising al-
ternative in the control of the disease since this trait is inheritable and can be improved 
in a herd. The WR is the animal ability to avoid infection, reduce parasitic burden, or re-
cover from an infection [1]. This ability is strongly influenced by environmental factors 
[2] and varies substantially among breeds [3].
  The number of eggs per gram of feces (FEC) is the most commonly used information 
for selection of resistant animals [4]. The FEC is a direct, but a very variable, information 
about host-parasite load [5]. Due to this variability, other traits may be included to help in 
the process of identification of resistant animals using multivariate analysis methods, such 
as the Famacha method [6] and hematocrit (HCT), since verminosis caused by Haemonchus 
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contortus is the main cause of anemia in sheep [7]. Body con-
dition assessment can also be applied when weight loss in 
sheep is caused by parasite load [8]. Thus, ovine selection for 
these traits requires the knowledge of genetic parameters such 
as heritability.
  In the estimation of genetic parameters for worm-related 
traits, two situations are commonly found: data with non-
normal distribution (e.g., FEC) and categorical variables (e.g., 
Famacha score [FS]). To estimate the genetic parameters of 
these traits, Bayesian inference, using the animal threshold 
model, has been demonstrated to be adequate for this type 
of variable [9,10].
  Bayesian inference does not require normal distribution 
of data since a probability density function (a posteriori dis-
tribution) can be calculated on all possible parameter vectors. 
This can be done from the information included in the anal-
ysis, using an a priori distribution of the parameters to be 
analyzed, together with the uncertainty about it [11].
  As compared to linear models, the use of threshold models 
is recommended for traits that assume exhibit discrete distri-
bution because they have a greater ability to detect variability 
of genetic origin. These models are based on the assumption 
that the categorical data classes are related to a normal un-
derlying scale [12].
  Therefore, the objective of this study was to estimate the 
variance components and genetic parameters for WR and 
associated traits, using the linear and threshold animal model, 
via Bayesian inference, in uni- and multiple-trait analyses.

MATERIALS AND METHODS 

The experimental procedure was approved by the Institu-
tional Animal Care and Use Committee at Federal University 
of Piauí, Brazil (414/17).
  This study was conducted with data collected from the 
herd of Santa Inês breed sheep (total 516 animals), of both 
sexes, kept in an experimental farm ("Sol Posto", Campo 
Maior, PI, Brazil; a property of Embrapa Meio-Norte) in the 
period Aug 2012 to Jul 2015. All collections were carried out 
on animals submitted to the natural conditions of contami-
nation, without any change in the management used in the 
farm, because conservation of the herd breed was the main 
objective of the study.
  The herd food base was a native pasture where the grass 
species Axonopus purpusii (capim-mimoso) predominates. 
Mineral supplementation was carried out throughout the 
year, using a mineral supplement suitable for the species. In 
the driest season of the year, when food scarcity occurred, 
the herd received supplementation with voluminous and/or 
concentrated food.
  In the experimental period, the sanitary management com-
prised worming, vaccination, and treatment of animals that 

sickened individually for any reason. Vermifuge was admin-
istered after the FEC and HCT results.
  All data, FEC, FS, body condition score (BCS), and HCT 
were collected on the same day. On the day after collection, 
after a 12-h fast, the animals were weighed individually.
  The FEC was counted by the method of Gordon and Whit-
lock [13], modified by Ueno and Gonçalves [5]. Coproculture 
was performed according to the methodology described by 
Roberts and O’Sullivan [14].
  The anemia degree was evaluated by the Famacha method, 
observing the color of the ocular mucosa of sheep and as-
signing a score (1 to 5) according to the Famacha card [6].
  In the evaluation of BCS, scores were attributed to the 
animal based on palpation and visualization of the lumbar 
region. This was done mimicking pincer movement, with 
the application of constant pressure around and between 
the transverse and spinal apophyses. This was also done in 
the sternum region, and the amount of skin, muscle and fat 
density was evaluated in both anatomical regions, according 
to the methodology cited by Ribeiro [15]. The score attrib-
uted in the evaluation was based on the perception of fat 
and muscle deposited in the evaluated regions, based on 
the one-to-five scale, in which body condition five indicates 
excessive fat deposition in the animal.
  The HCT was determined using the microhematocrit 
technique. For this purpose, blood samples were collected 
from the jugular vein, and antisepsis (iodized alcohol) of 
the site was performed using a needle directly coupled to 
vacuum tubes containing ethylenediamine tetraacetic acid. 
Subsequently, the samples were analyzed in the hematologi-
cal packvet equipment (University Veterinary Hospital of 
Teresina, Federal University of Piauí, UFPI).
  To define the resistance trait, as proposed in this study, 
the animals were grouped into three classes (resistant, in-
termediate, and sensitive) and multivariate analysis of the 
characteristics FEC, HCT, BCS, and FS was performed. The 
classification was performed with the standardized data, 
using the K-means algorithm (skmeans package) available 
in the R language [16]. After the classes were formed, the 
data were submitted to analysis of variance to determine 
the differences between the characteristics used in grouping 
the animals into the three classes attributed to the WR trait. 
The values for the FEC trait underwent a logarithmic trans-
formation (log10[FEC+1]) and were renamed as LFEC.
  The database was edited and formatted, using the statistical 
[17] software. Information on animals with less than three 
repeated measurements, as well as that of animals without 
pedigree information, was discarded. The collection months 
were grouped into two collection seasons: rainy season (Jan-
Jul), with greater food supply (ECO1) and dry season (Aug-
Dec), with smaller food supply (ECO2). The birth months 
were grouped into two periods (EN1 and EN2), similarly to 
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what was done with the collection seasons. Regarding age, 
the animals were grouped into four age classes: less than one 
year (CI1); between one and two years (CI2); between two 
and four years (CI3); and greater than four years (CI4). As for 
the physiological status, the animals were grouped into six 
categories (CAT): matrices in gestation (in the first thirds of 
gestation, CAT1); matrices in peripartum (last month of ges-
tation and lactation period, CAT2); dry matrices (females 
after weaning and not pregnant, CAT3); pups aged less than 
six months (CAT4); pups aged six months to one year (CAT5); 
and adult males (CAT6).
  Sex, birth season, age class, year of birth (ANON/YB), and 
CAT were considered to form the contemporary groups (CG). 
The effects considered in the CG were tested to be significant 
(p<0.05). Groups with less than 3 animals were excluded. 
After consistency analysis, a file containing information about 
animal, father, mother, CG, collection year and station, FEC, 
HCT, BCS, FS, and body weight (BW) was edited. After for-
matting, the file contained 2,753 observations and 427 animals 
in the numerator matrix for the Wright’s kinship coefficients.
  The variance components and genetic parameters for the 
WR, FEC, HCT, BCS, and FS traits were estimated using 
Bayesian inference under the linear and threshold animal 
model, using the THRGIBBSF190 application [18] in uni- 
and multiple-trait analyses. This last analysis was performed 
combining four traits: LFEC and HCT were used as anchor 
characteristics, and resistance, FS, and BCS were varied. For 
every analysis, a Gibbs chain of 4,000,000 samples (with burn-
in of the first 2,000,000 samples and sampling interval for 
every 200 samples) was generated, resulting in an a-posterio-
ri distribution with 10,000 samples, from which inferences 
were made.
  The values for burn-in and sampling interval were defined 
based on preliminary analyses, in which convergence and 
distribution of samples were evaluated using the POST-
GIBBS1F90 program [18]. In this program, the Geweke’s 
[19] diagnostic test was used, taking the Z test (for equality 
of means of the logarithm of the conditional data distribu-
tion) as the basis.
  The animal model can be represented in matrix notation 
as follows: y = Xβ+Zα+Wγ+ε (1); where: y is the observation 
vector of the study traits; X is the n×f incidence matrix (n 
is the total number of observations, and f is the number of 
systematic effect classes), relating observations to systemic 
effects; β is the vector for systemic effects of contemporary 
groups (formed by sex, CI, EN, year of data collection, and 
CAT); Z is the n×N incidence matrix, relating direct additive 
genetic effects, where n is the total number of observations 
and N is the number of individuals in the numerator ma-
trix for Wright’s kinship coefficients (427); α is the vector 
of direct additive effects in each animal (genetic value); W 
is the n×N matrix of mean permanent environment effects; 

γ is the mean permanent environment effect vector; and ε 
is the residual random error vector associated with each 
observation.
  In the Bayesian analysis, the systemic and random effects 
included in the model are considered random variables. Un-
der the Bayesian approach, the information (y) and data (β, 
α, γ, e, 
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data analyses. Flat (non-informative a priori distribution) was 
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defined for all initial variances.

RESULTS AND DISCUSSION 

The coproculture analyses showed that the genus Haemonchus 
was predominant in all collections (mean, 83%; variation, 
72% to 95%). Trichostrongylus was the second most preva-
lent genus (12%) followed by Oesophagostomum (5%), and 
other trichostrongylids were not found. Prevalence of the 
genus Haemonchus was confirmatory to the study because 
anemia indicator-parameters were evaluated, and this parasite 
is the main causative agent of anemia in sheep [7]. In addi-
tion, it is the main parasite of small ruminants in tropical 
and subtropical regions [2]. It is worth highlighting the life 
cycle characteristics of Haemonchus sp., which can survive 
to high temperatures with high fecundity and may resist to 
antiparasitic drugs. These characters indicate that this spe-
cies has a large potential for incidence in the edaphoclimatic 
conditions of the region where this study was carried out.
  The mean values for all these variables are presented in 
Table 1 and are considered normal for the study traits. In the 
FEC and HCT variables, the mean value was within the nor-
mal values for the traits but with a large (middle-to-high) 
dispersion in the variation coefficients. Given the existence 
of the phenotypic variation, this is a necessary condition to 
include these variables in a breeding program.
  The mode value for the BCS trait (Table 1) indicates good 
food availability for the animals evaluated and, consequently, 
a good muscle and fat composition in the lumbar region.
  The mode values were normal and even higher than the 
mean values for each variable, indicating that variation oc-
curred in the results as a function of a small number of animals 
(Table 1). According to Pereira [21], the qualitative charac-

teristics of categorical characters (e.g., FS, BCS, and WR) are 
better represented by the central tendency statistics (median 
and mode).
  In the resistance level classification, which was obtained 
using clustering analysis, two groups showed significant dif-
ferences. Among all parameters analyzed, the animals that 
presented the best results (i.e., lower FEC and higher HCT 
values, higher BCS and lower FS) were classified as resistant. 
The other animals, which presented opposite results, were 
classified as sensitive. The third group presented varying re-
sults: FEC values equal to those of the resistant group, BCS 
values equal to those of the sensitive animals, and HCT and 
FS differing from both groups. Thus, as these animals pre-
sented characteristics common to both groups, they were 
classified as partially resistant (Table 2).
  In the convergence analysis of the chain using the Bayesian 
method, convergence was achieved for all characteristics stud-
ied. The sample chain size used was also sufficient to obtain 
the a-posteriori estimates of marginal distributions since the 
Geweke’s criterion [19]. In addition, the MCE presented low 
values, indicating convergence. According to Van Tassel and 
Van Vleck [20], there is indication that convergence was 
achieved when the error value and average estimate of the a 
posteriori distribution of the heritability coefficient are summed 
and change in the value magnitude of this estimate (up to the 
second decimal place) is not observed (Table 3).
  A change was observed in the values estimated for the 
(co)variance and heritability components of the study traits 
(Table 3) due to the contribution of the multiple-trait analy-
ses to both the increase in the amount of information taken 
into account and influence of correlations between the study 
traits. This indicates a recovery in a portion of the additive 
genetic variance that was incorporated into the residual vari-

Table 1. Descriptive statistics of the traits studied in Santa Inês sheep

Traits n Mean Mode CV Minimum Maximum Range

FEC 2,753 1,217.4 0.0 189.9 0.0 24,500.0 24,500.0
HCT 2,753 29.7 30.0 15.3 10.0 43.0 33.0
BCS 2,753 2.4 2.0 39.2 1.0 5.0 4.0
FS 2,753 2.4 3.0 38.1 1.0 5.0 4.0
BW 2,753 43.6 50.0 24.4 13.0 72.5 72.5

CV, coefficient of variation; FEC, number of eggs per gram of feces; HCT, hematocrit; BCS, body condition score; FS, Famacha score; BW, body weight.

Table 2. Classification of animals according to criteria for resistance to worms

Classification FEC (LFEC) HCT (%) BCS FS BW (kg)

Resistant 873.2 (2.1B) 31.3A 2.7A 2.0C 39.4C

Partially resistant 1,059.5 (2.2B) 28.3C 2.2B 2.7A 45.9A

Sensitive 2,906.6 (2.8A) 28.8B 2.1B 2.4B 44.2B

FEC, number of eggs per gram of feces; LFEC, logarithm-transformed FEC; HCT, hematocrit; BCS, body condition score; FS, Famacha score; BW, body 
weight.
A-C In the columns, mean values followed by the same letter do not differ by the Student’s t (5% probability; for FEC, HCT, and BW) and Kruskal-Wallis (for 
BCS and FS) tests.
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ance in the uni-traits analyses (Table 3), thus confirming 
what was observed by Sarmento et al [22]. Therefore, the 
multiple-trait model may be the best choice, since it allows 
removing the bias caused by sequential selection [22] and 
obtaining best estimates of genetic components from the 
phenotype [23].
  The repeatability coefficients observed in the genetic pa-
rameter estimates of the study traits using multiple-trait 
analysis (Table 3) varied in the range of low-to-high (0.12 to 
0.59) magnitude. Values of low-to-moderate magnitude have 
also been reported by Prince et al [24] for the FEC trait. 
These results indicate that the probability of a single measure 
of the animal phenotype to represent its genotype is low since 
these traits undergo environmental temporary changes. The 
lowest repeatability (0.12) was observed in the FEC variable, 
although this trait undergoes great changes in the life of ani-
mals [5]. This variance is mainly related to the environment, 
as found in this study, in which 82.4% of the phenotypic vari-
ance is of environmental origin.
  By using the values estimated by multiple-trait analysis, 
heritability values with low-to-high (0.10 to 0.88) magnitude 
were observed. The FEC, HCT, BCS, FS, and BW presented 
low heritability values (Table 3), whereas the resistance trait 
presented a high (0.85) heritability value. This result indi-
cates that in this herd the genetic gain for selection of the 
WR trait obtained in the group (FEC, HCT, BCS, and FS) is 
greater than that obtained with the individual variables.
  Different heritability values were obtained due to various 
(either genetic or environmental) factors. Greater control 
over the environmental factors can reduce the environmen-
tal variance, increasing the percentage of phenotypic variance 
explained by the additive genetic variance [25].
  The low heritability estimated for HCT, as obtained in this 

study, was also reported by Gauly et al [3]. These low-mag-
nitude values for the heritability estimates can be attributed 
to the variation among breeds [3]. The heritability values for 
the FS found in this study are similar to those (0.06 to 0.24) 
estimated by Ryley and Van Wyk [6].
  Regarding the WR trait, the value for heritability obtained 
in the multiple-trait analysis (0.88) was higher than that ob-
tained in the uni-trait analysis (0.44) (Table 3). The variables 
FEC, HCT, BCS, and FS also showed a slight increase in the 
heritability values with the use of the multiple-trait method 
(Table 3). However, their magnitude remained low, indicat-
ing that the models for these variables have close efficiencies. 
The increase in the values estimated for heritability of the 
FEC and HCT variables, as observed in multiple-trait analysis, 
is due to the decrease in values for permanent-effect variance 
and increase in those for additive genetic variance. Thus, the 
model allowed to recover part of the additive genetic effect 
that was considered as a non-additive genetic effect.
  On the other hand, an increase in values for permanent-
effect variance occurred in the BCS and FS variables. This 
occurred because all information about the study trait is used 
in the multiple-trait model, but the BCS and FS are strongly 
influenced by the parasitic load [8,26]. This result indicates 
that part of the variation in animal response to the parasitic 
load, as expressed by BCS and FS, has a genetic but non-ad-
ditive nature.
  The genetic correlations between the study traits are shown 
in Table 4. The WR trait showed a high and favorable corre-
lation with the FEC, FS, HCT, and BCS variables, indicating 
the possible use of any of the traits via correlated response to 
improve WR in Santa Inês sheep.
  The FEC values showed low genetic correlations with the 
HCT, FS, BCS, and BW variables, in agreement with Lôbo et 
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FS 0.05 0.04 0.26 0.36 0.27 0.15 (0.07) –0.05 0.0004 
BW 8.72 31.02 33.11 72.85 0.55 0.12 (0.09) 0.04 0.1100 

Multiple-trait 
WR 0.76 - 0.38 1.14 - 0.88 (0.03) 0.00 0.0043 
FEC 0.07 0.02 0.67 0.75 0.12 0.10 (0.01) –0.01 0.0171 
HCT 2.56 0.96 15.85 19.37 0.18 0.13 (0.03) –0.01 0.0003 
BCS 0.09 0.03 0.42 0.34 0.23 0.17 (0.03) 0.00 0.0003 
FS 0.08 0.05 0.23 0.34 0.33 0.23 (0.04) –0.05 0.0004 
BW 19.03 28.00 32.62 79.65 0.59 0.22 (0.06) 0.04 0.1100 

𝜎𝜎�� , additive genetics; 𝜎𝜎���  , permanent environment; 𝜎𝜎��  , residual variances; 𝜎𝜎�� , phenotypic variances; r, 433 
repeatability; h2, heritability, SD, standard deviation; MCE, Monte Carlo error; WR, worm resistance; FEC, 434 
number of eggs per gram of feces; HCT, hematocrit; BCS, body condition score; FS, Famacha score; BW, body 435 
weight. 436 
 437 
 438 
 439 
 440 
  441 

, residual variances; 

17 
 

Tabela 3. Estimates of variance components and genetic parameters of traits linked to resistance to worms in uni- 431 
and multiple-trait analyses 432 

Traits 𝜎𝜎�� 𝜎𝜎���  𝜎𝜎�� 𝜎𝜎�� 𝑟𝑟 ℎ�(SD) Geweke MCE 

Uni-trait 
WR 0.37 - 0.47 0.83 - 0.44 (0.23) 0.00 0.0043 
FEC 0.18 0.15 3.44 3.76 0.09 0.05 (0.03) –0.01 0.0171 
HCT 1.49 1.87 15.74 19.10 0.18 0.08 (0.05) –0.01 0.0003 
BCS 0.06 0.02 0.41 0.50 0.17 0.12 (0.05)  0.00 0.0003 
FS 0.05 0.04 0.26 0.36 0.27 0.15 (0.07) –0.05 0.0004 
BW 8.72 31.02 33.11 72.85 0.55 0.12 (0.09) 0.04 0.1100 

Multiple-trait 
WR 0.76 - 0.38 1.14 - 0.88 (0.03) 0.00 0.0043 
FEC 0.07 0.02 0.67 0.75 0.12 0.10 (0.01) –0.01 0.0171 
HCT 2.56 0.96 15.85 19.37 0.18 0.13 (0.03) –0.01 0.0003 
BCS 0.09 0.03 0.42 0.34 0.23 0.17 (0.03) 0.00 0.0003 
FS 0.08 0.05 0.23 0.34 0.33 0.23 (0.04) –0.05 0.0004 
BW 19.03 28.00 32.62 79.65 0.59 0.22 (0.06) 0.04 0.1100 

𝜎𝜎�� , additive genetics; 𝜎𝜎���  , permanent environment; 𝜎𝜎��  , residual variances; 𝜎𝜎�� , phenotypic variances; r, 433 
repeatability; h2, heritability, SD, standard deviation; MCE, Monte Carlo error; WR, worm resistance; FEC, 434 
number of eggs per gram of feces; HCT, hematocrit; BCS, body condition score; FS, Famacha score; BW, body 435 
weight. 436 
 437 
 438 
 439 
 440 
  441 

, phenotypic variances; r, repeatability; h2, heritability, SD, standard devi-
ation; MCE, Monte Carlo error; WR, worm resistance; FEC, number of eggs per gram of feces; HCT, hematocrit; BCS, body condition score; FS, Famacha 
score; BW, body weight.
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al [27] who evaluated Santa Inês sheep in the Sergipe State 
(Brazil) and found genetic correlation values close to zero. 
Low correlations between these variables may be related to 
the fact that they are responses to the FEC values, but the 
observed changes are not usually immediate but late, making 
association difficult. In addition, the HCT, FS, and BCS traits 
are highly influenced by other factors, which are different 
from the parasitic load. These are mainly linked to food and 
sanitary management, which may help explain these low ge-
netic correlations. 
  The genetic correlations between BW and the other variables 
were unfavorable. These results indicate that improvement 
for WR in this herd will cause few changes in the BW of 
adult animals. The inverse situation also occurs, i.e., genetic 
progress for WR will not be observed if selection for BW is 
performed. This may explain the frequent occurrence of 
sanitary problems with verminosis in herds of Santa Inês 
sheep, since for a long time the objective of cattle breeders 
was to select animals by their ponderal performance and 
body size, and these traits contributed very little to the genetic 
improvement of resistance to gastrointestinal parasites.
  On the other hand, FS showed favorable correlation with 
all variables, and the correlation with the WR trait was the 
largest of them. Thus, as FS is highly correlated with the 
WR and HCT traits and a mean correlation with BCS, it 
becomes an interesting variable to be included in genetic 
improvement programs with a view to select worm-resistant 
sheep. In addition, this trait is still of easy and inexpensive 
measurement. 
  The high correlation (–0.87) between FS and HCT indi-
cates that genes related to mucosal color and globular volume 
are strongly associated, and the Famacha method represents 
well the clinical anemia in sheep. The FS and BCS presented 
a mean genetic correlation (–0.54). Values for genetic corre-
lation between these variables were not found in the literature, 
and some authors have reported the existence of a negative 
(low-to-middle) sample correlation between these variables 
[28-30]. This result indicates that the best body condition 
(higher BCS), exhibited by animals with the most colored 
mucosa (lower FS), is not due only to environmental causes 
(e.g., nutrition), but also to an additive genetic effect. 
  The moderate genetic correlation (0.54) between BCS and 
WR character indicates that genetic gain for WR will occur 

in the sheep herd when BCS, which is commonly included 
as a criterion for animal selection for carcass quality, is used 
in selection programs.

IMPLICATIONS 

The worm resistance trait was determined by multivariate 
clustering analysis and showed a high estimated heritability, 
which can be improved by selection. The Famacha score is 
recommended for inclusion as a criterion for genetic selection 
of sheep in order to improve their resistance to endopara-
sites, since its measurement is easy and inexpensive, presents 
greater heritability and repeatability, and a high genetic cor-
relation with the worm resistance trait.
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