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Abstract: MicroRNAs (miRNAs) are key regulators of gene expression, potentially affecting several
biological processes, whose function can be altered by sequence variation. Hence, the integration of
single nucleotide polymorphisms (SNP) and miRNAs can explain individual differences in economic
traits. To provide new insights into the effects of SNPs on miRNAs and their related target genes, we
carried out a multi-omic analysis to identify SNPs in miRNA mature sequences (miR-SNPs) associ-
ated with fatty acid (FA) composition in the Nelore cattle. As a result, we identified 3 miR-SNPs in
different miRNAs (bta-miR-2419-3p, bta-miR-193a-2, and bta-miR-1291) significantly associated with
FA traits (p-value < 0.02, Bonferroni corrected). Among these, the rs110817643C>T, located in the seed
sequence of the bta-miR-1291, was associated with differentω6 FAs, polyunsaturated FA, and polyun-
saturated:saturated FA ratios. Concerning the other two miR-SNPs, the rs43400521T>C (located in
the bta-miR-2419-3p) was associated with C12:0 and C18:1 cis-11 FA, whereas the rs516857374A>G
(located in the bta-miR-193a-2) was associated with C18:3ω6 and ratio ofω6/ω3 traits. Additionally,
to identify potential biomarkers for FA composition, we described target genes affected by these
miR-SNPs at the mRNA or protein level. Our multi-omics analysis outlines the effects of genetic
polymorphism on miRNA, and it highlights miR-SNPs and target candidate genes that control beef
fatty acid composition.

Keywords: polymorphism; association analysis; miRNAs; Bos indicus; beef quality

1. Introduction

Fatty acid (FA) composition is an important trait that is largely related to beef’s senso-
rial and nutritional properties. FA biosynthesis processes are complex and dependent on
several regulatory mechanisms, such as post-transcriptional gene expression regulation [1].
However, limited knowledge of the genetic mechanisms controlling FA content and the
difficulties associated with determining FA composition are restricting genetic progress
related to this trait. In this context, Guo et al. [2] and De Oliveira et al. [3] have provided ev-
idence in support of a key regulatory role of miRNAs on adipogenesis and FA composition
in cattle.
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MiRNAs play a pivotal role in the post-transcriptional regulation of gene expres-
sion, driving either the degradation or the inhibition of mRNA translation [4]. Since the
first description of miRNAs in cattle [5], several studies have been carried out showing
the impact of miRNAs on different traits such as embryonic development and implanta-
tion [6,7], prolificacy [8], growth and meat quality traits [9], feed efficiency [10,11], and beef
tenderness [12].

Single nucleotide polymorphisms (SNP) can potentially disrupt miRNA expression
and interaction with a target sequence. SNPs are the most common type of genetic variation,
being able to explain individual differences in phenotypes [13]. The impact of a miR-
SNP (SNP within a miRNA sequence) on miRNA function depends on the SNP position.
For instance, miR-SNPs located in the first 14 nucleotides of the mature sequence, and
mainly those located in the seed region (mostly situated at positions 2–7 from the miRNA
5’-end) may lead to novel target sites that potentially affect canonical wild-type miRNA-
mRNA interactions [14–16]. These changes may lead to an extensive rewiring of the
miRNA-mediated regulatory network and, in some instances, substantially modify a
phenotype [17].

A previous report with three dairy cattle breeds has shown that miRNA genes were
enriched in a genome-wide association study (GWAS) encompassing milk production
traits and mastitis [18]. These findings suggest that the phenotypic variation observed
may be associated with differential miRNA regulation/action. Jiang et al. [19] reported a
candidate functional miR-SNP located in the seed region of the bta-miR-2899. According to
the authors, this miR-SNP impairs the regulatory role of the bta-miR-2899 on the SPI1 gene,
likely contributing to predisposition of Chinese Holstein cows to mastitis. Finally, other
studies have shown that cattle have more miR-SNPs than other species [20,21]. Therefore,
miR-SNPs are thought to be an important tool for animal selection, potentially contributing
to improving livestock traits of economic relevance. Despite this interesting scenario, both
the identification of miR-SNPs and their potential role in cattle are still at an early stage.
Hence, this study aimed to identify miR-SNPs in the Nelore beef cattle, their potential
impact on FA composition, and functional effects on predicted target genes by taking
advantage of a multi-omics approach.

2. Materials and Methods
2.1. Animals and Phenotypic Data

Experimental procedures were carried out following the guidelines provided by the
Institutional Animal Care and Use Ethical Committee of the Embrapa Pecuária Sudeste—
CEUA, who approved all experimental protocols (CEUA Process 01/2013). A total of
374 Nelore steers from the Brazilian Agricultural Research Corporation (EMBRAPA) experi-
mental breeding herd, raised between 2009 and 2011, were used. These steers were sired by
26 unrelated sires, and were selected to represent the main commercialized Nelore genetic
lines in Brazil. Animals were raised in pasture and finished in feedlots under identical
nutritional and handling conditions until slaughter, at an average age of 25 months, as
previously described [22]. Samples from Longissimus thoracis (LT) muscle, between the 12th
and 13th ribs, were collected at two moments: (i) At slaughter, immediately snap-frozen in
liquid nitrogen, and stored at−80 ◦C for RNA sequencing and proteomics analysis; (ii) 24 h
after slaughter, vacuum packaged and stored at −20 ◦C for FA composition measurement.

Description of phenotypic data and FA composition measurement were previously
reported [23]. Briefly, approximately 4 g of LT muscle were lyophilized and used for
FA composition determinations. Lipids were extracted for FA composition, according
to the Hara and Radin [24] methodology, except for the hexane to propanol ratio being
increased to 3:2. The extracted lipids were hydrolyzed and methylated according to the
method described by Christie [25], except that hexane and methyl acetate were used instead
of hexane:diethyl ether:formic acid (90:10:1). Fatty acids were identified by comparison
of retention time of methyl esters of the samples with standards of FA butter reference
BCR-CRM 164, Anhydrous Milk Fat-Producer (BCR Institute for Materials and Reference
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Measurements) and also with the commercial standard for 37 fatty acids Supelco TM Com-
ponent FAME Mix (cat 18919, Supelco, Bellefonte, PA, USA). Fatty acids were quantified
by normalizing the area under the curve of methyl esters using Chromquest 4.1 software
(Thermo Electron, Milan, Italy), and expressed as a weight percentage (mg/mg). These
analyses were performed at the Animal Nutrition and Growth Laboratory at ESALQ
(Piracicaba, São Paulo, Brazil). The descriptive statistics of all phenotypes related to FA
composition are reported in Supplementary Table S1. Variance components and genomic
heritability of these traits in our population were estimated and previously reported by
Cesar et al. [23].

2.2. DNA Extraction and Genotypic Data

For sires, straws of frozen semen obtained from Brazilian artificial insemination centers
were used to extract DNA by a standard phenol-chloroform method. DNA concentration
was measured by spectrophotometry. The quality was verified by the 260:280 ratio, fol-
lowed by inspection of integrity through agarose gel electrophoresis, as described in detail
by Tizioto et al. [26]. Whole-genome sequence data of 26 progenitors of the population were
obtained with the Illumina HiSeq 2500 System (Illumina Inc., San Diego, CA, USA) at 8-21x
of coverage. Alignment, variant calling, and quality controls were performed according to
the 1000 Bulls Genomes Project (http://www.1000bullgenomes.com/) recommendations
and used as reference data for SNP imputation. Briefly, reads were trimmed and filtered
using the Trimmomatic v.0.38 program [27] and then mapped to the ARS-UCD1.2 Bovine
reference genome using the Burrows–Wheeler Aligner (BWA) v.0.7.17 [28]. The Samtools
v.1.8 [29] was used to sort the mapped reads by sequence coordinates. Base quality recali-
bration (BQSR) was performed with the Genome Analysis Tool Kit (GATK version v3.8).
Finally, SNPs were called using the GATK ‘HaplotypeCaller’.

For the progeny, 5 mL of blood samples were collected and used for DNA extraction,
as described in Tizioto et al. [26]. All sires and steers were genotyped using the Illumina
BovineHD BeadChip 770k (Illumina, San Diego, CA, USA). Genotypes were called in the
Illumina GenomeStudio software and were reported in a previous study [22,26]. BovineHD
genotypes were phased using Eagle [30], and imputed using the Minimac3 program [31]. A
leave-one-out cross-validation scheme was performed among the 26 sequenced individuals
to assess imputation accuracy. Each sequenced animal was deleted at a time from the
reference set and included as a target individual with only HD data information to be
subsequently imputed with the progeny individuals. Finally, imputation efficiency was
computed by comparing the imputed alleles with the alleles observed on DNA-seq data for
each sire. The allelic imputation error rate was estimated as the ratio between the number
of incorrect imputed alleles and the total of alleles imputed. The accuracy of imputation
was considered as the correlation between the actual and imputed genotype. SNPs whose
imputation accuracy in the validation was less than 0.98 and/or the allelic imputation
error rate was greater than 2% were filtered out from the imputed file. Furthermore,
non-informative, sexual, and SNPs with a minor allele frequency lower than 0.01 were
removed from the dataset using the PLINK software [32]. After these filtering steps, a total
of 4,813,664 SNPs was available for the genetic analyses.

2.3. Transcriptomic Data

Total RNA from muscle samples of 192 and 180 animals was used to perform the
mRNA and miRNA sequencing, respectively. To extract total RNA, approximately 100 mg
of frozen tissue was grounded, and the RNA was isolated using Trizol® in a standard
protocol (Life Technologies, Carlsbad, CA, USA). The RNA concentration and quality were
evaluated in the Bioanalyzer 2100® (Agilent, Santa Clara, CA, USA).

2.3.1. mRNA Expression Data

The processing and analysis of mRNA expression data were previously described [33,34].
In brief, Illumina TruSeq® RNA Sample Preparation Kit v2 Guide (San Diego, CA, USA)

http://www.1000bullgenomes.com/
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protocol was used to generate cDNA libraries for each sample. Paired-end (PE) sequencing
was performed on Illumina Hiseq 2500® (San Diego, CA, USA) platform following the
standard protocols. Samples were multiplexed and run in eight lanes belonging to eight
sequencing flow cells to obtain 2 × 100 bp reads. Library preparation and sequencing were
conducted by the ESALQ Genomics Center (Piracicaba, São Paulo, Brazil). These mRNA
samples were archived on the European Nucleotide Archive (ENA) under accessions:
PRJEB13188, PRJEB10898, and PRJEB19421.

Seqyclean package v.1.4.13 [35] was used to filter PE reads, which removed all reads
with a mean quality under 24 and length under 65 bp, as well as the adapter sequences.
Quality control (QC) of raw RNA-Seq reads was carried out with FastQC v.0.11.2 (https:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/). The remaining sequence reads
were aligned to the ARS-UCD1.2 Bovine reference genome, identified and quantified in
raw counts with the STAR v.2.5.4 software [36] by using the default parameters. The
alignment was performed with the—twopassMode Basic option, and the gene counts were
generated using the—quantMode GeneCounts option. Gene annotation file was obtained
from Ensembl database (https://www.ensembl.org/Bos_taurus/Info/Index). Considering
the mRNA count reads, those that were not expressed (reads = 0) or present in less than
80% of the animals were filtered out using the cpm function of the edgeR package [37].
Read counts of 14,219 genes were maintained for further analysis. Potential biases due
to technical variation in gene expression among samples were evaluated by applying a
Principal Component Analysis (PCA) using NOISeq v.2.22.1 [38].

2.3.2. miRNA Expression Data

The miRNA sequencing, QC, alignment, and quantification were previously per-
formed as described elsewhere [39,40]. In summary, the single-end sequencing of 42 bp
was carried out in the MiSeq sequencer (Illumina®), in 17 different lanes using MiSeq
Reagent Kit v3 (150 cycles) at the Laboratory Multiuser ESALQ (Piracicaba, São Paulo,
Brazil), according to the protocol described by Illumina. The miRNA samples were archived
on the ENA under accession: PRJEB42280.

The FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and FASTX
(http://hannon-lab.cshl.edu/fastx-toolkit) were used to check was used to check the qual-
ity of reads. Reads with a Phred quality score lower than 28 and shorter than 18 nt were
discarded. The remaining reads were subjected to the miRDeep2 software [41] as queries
for sequence alignment against the ARS-UCD1.2 Bovine reference genome, with default
parameters. The bovine and human mature miRNA sequences were retrieved from miR-
Base v. 22 [42]. The raw counts generated by miRDeep2 were processed to filter out low or
not expressed miRNAs using the cpm function from edgeR package [37]. MiRNAs with a
cpm value lower than 0.5 and/or present in less than 50% of the samples were removed.
Read counts of 450 miRNAs were maintained for further analysis.

2.4. Protein Data

The processing and analysis of LT muscle’s protein data from 105 of the animals used
in this study were previously performed by Poleti [43], using an integrated transcriptome-
assisted label-free quantitative proteomic approach by High Definition Mass Spectrometry.
In summary, peptide samples were separated using the nanoACQUITY UPLC 2D Technol-
ogy system [44] and identified by Synapt G2-S High Definition mass spectrometer (Waters,
Manchester, UK). For protein identification and quantification, the raw data were searched
against a Nelore transcriptome database built from the RNA-sequencing data of LT muscle.
Label-free protein quantification values were generated based on the Hi3 method [45].
Only proteins identified with at least two peptides present in at least 80% of the animals
were considered. Raw data of 938 proteins were used for genetic analysis.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.ensembl.org/Bos_taurus/Info/Index
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://hannon-lab.cshl.edu/fastx-toolkit
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2.5. Retrieval of SNPs in miRNA-Related Regions

Genomic location annotation of the imputed genotypes was performed by using
SNPeff software [46], considering the ARS-UCD1.2 Bovine reference genome coordinates.
After that, a total of 25 miR-SNPs located in the mature and seed regions of 22 known
miRNAs were extracted by using the SNPsift software [46]. A second filter was performed
to obtain only miR-SNPs in sequences of miRNAs expressed in LT muscle in our population.
A total of five miR-SNPs in five miRNA sequences were considered for association analysis
(Supplementary Table S2).

2.6. Association Analysis

The Genome-Wide Efficient Mixed-Model Association (GEMMA) software [47] was
used to implement the association analyses between genotyped miR-SNPs and each of
the following “phenotypic” observations: FA composition profiles, mRNA abundance,
and protein abundance. GEMMA uses a mixed model approach to account for population
stratification and relatedness, by calculating a genomic kinship matrix with SNP genotypes
as random effects, and provides an exact test of significance. For the genomic kinship
matrix generation, we used SNP markers from the Illumina BovineHD BeadChip 770k
(Illumina, San Diego, CA, USA), which were not in linkage disequilibrium with the selected
miR-SNPs. The following univariate mixed model was used:

y = Wα + xβ + u + ε, u ∼MVNn(0, λτ−1K), ε ∼MVNn(0, τ−1 In),

where y is an n-vector of “phenotypic” observations (FA composition, mRNA sequencing
or protein abundance data) for n individuals; W = (w1, · · ·, wc) is an n × c matrix of
covariates (fixed effects) including a column of 1s; α is a c-vector of the corresponding
coefficients including the intercept; x is the vector of the genotypes corresponding to the
set of miRNA-related SNPs; β is the effect size of the marker (allele substitution effect); u is
an n-vector of random effects; ε is an n-vector of errors; τ−1 is the variance of the residual
errors; λ is the ratio between the two variance components; K is a known n × n relatedness
matrix and In is an n × n identity matrix. MVNn denotes the n-dimensional multivariate
normal distribution.

Statistical models included different batch effects for the different “phenotypic” ob-
servations (FA composition, mRNA sequencing, and protein abundance data) that were
included as fixed effects in the models. Association analysis between miR-SNPs and FA
composition included contemporary group classes as fixed effects (origin, birth year, and
slaughter date) with 19 levels. In the association analysis considering mRNA expression
data, the batch effect correction for the combination of sequencing flow cell and sequencing
lane (with 22 levels) was included. Regarding the proteome data, different runs and equip-
ment (with 5 levels) were included as fixed effects. Association analyses were assessed on
the basis of the estimated allele substitution effects (β), where the alternative hypothesis
H1: β 6= 0 was contrasted against the null hypothesis H0: β = 0 with a likelihood ratio
test. Bonferroni correction was applied to adjust for multiple testing, and a significance
threshold was set at maximum 10% error probability.

2.7. Pre-miRNA Secondary Stem–Loop Structures

SNPs in miRNA sequences may also play important roles in miRNA biogenesis,
impairing or enhancing miRNA processing [48]. To determine if the miR-SNP affects the
pre-miRNA structure, we retrieved the pre-miRNA sequences from miRBase database
v.22 [49] and analyzed the secondary stem–loop structures using the default parameters of
the RNAfold web server (http://rna.tbi.univie.ac.at/).

http://rna.tbi.univie.ac.at/
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2.8. miRNA-mRNA Interaction Analysis

To this end, the current annotation of the 3′UTR of bovine mRNA transcripts from En-
sembl repository (http://www.ensembl.org/info/data/ftp/index.html) was downloaded
and miRNA sequences were retrieved from miRBase database v.22 [49].

The analysis of loss or gain binding sites to miRNA targets was performed by the
RNAhybrid [50] software to predict the target sites for the major allele-type miRNAs and
miR-SNP minor allele. The RNAhybrid [50] was adopted to calculate the minimum free
energy (MFE) of the miRNA–mRNA interaction setting the energy value ≤ −15 kcal/mol
and p-value < 0.05. Approximate p-values were calculated considering the 3utr_human
option. For each miR-SNP, the reference and mutant allele of the mature sequence were
contrasted to the 3′UTR of bovine mRNA transcripts.

RNAhybrid predicts potential miRNA targets using an estimated MFE [50]. Mathe-
matically, ∆MFE in kcal/mol of miRNA-mRNA interaction introducing both alleles of the
miR-SNPs were calculated considering ∆MFE = MFEmajor −MFEminor, where MFEmajor
is the MFE of the major allele of the miR-SNP, and MFEminor is the MFE of the minor
allele (effect allele associated) of the miR-SNP. ∆MFE represents the degree of miRNA
regulation change from major allele-type to the minor-type. The positive value of ∆MFE
demonstrates increased miRNA-mRNA stability, whereas the negative value of ∆MFE
indicates the reduction of the miRNA-mRNA stability for the miR-SNP associated allele.
Using the RNAhybrid predictions, gain or loss of miR-SNPs were classified to one of the
four classes: (i) “Complete gain-of-function”, when the miRNA acquires a new target
site with the miR-SNP minor allele; (ii) “complete loss-of-function”, when miRNA loses
a predicted target site with miR-SNP minor allele; (iii) “partial gain-of-function”, when
miRNA acquires more stable target site with the miR-SNP minor allele; and (iv) “partial
loss-of-function”, when miRNA target site turns into unstable target site with the miR-SNP
minor allele. Only genes the were significantly associated at mRNA or protein levels and
whose expression change (effect size) was consistent with the hypothesis of miRNA inter-
action based on the estimated ∆MFE values, i.e., increased expression at mRNA or protein
levels in the presence of the minor allele and negative ∆MFE, or decreased expression
at mRNA or protein levels in the presence of the minor allele and positive ∆MFE were
considered as target genes.

2.9. Pathway Analysis

The STRING network database [51] was used to generate protein–protein interac-
tion networks for genes associated with the rs516857374A>G, to perform the functional
annotation as well as to retrieve pathways and Gene Ontology (GO) functions. For that,
we provided a list of gene names associated with this miR-SNP. Pathways and GO terms
presenting an FDR < 0.05 were considered significantly over-represented. We did not
perform pathway and GO enrichment analysis, as a low number of significantly associated
genes was found for the bta-miR-2419-3p and bta-miR-1291 miRNAs.

An overview of the methodological approach and miR-SNP prioritization is summa-
rized in Figure 1.

http://www.ensembl.org/info/data/ftp/index.html
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Figure 1. Overview of the multi-omics analysis approach for identification of polymorphisms in
miRNA mature sequence associated to fatty acid composition in the Nelore cattle.

3. Results

Following SNP imputation, we identified a total of 25 miR-SNPs in the Nelore pop-
ulation. These SNPs were filtered considering only miRNAs expressed in LT muscle,
which resulted in selecting five miR-SNPs (Supplementary Table S2). Among these, three
miR-SNPs showed significant associations with FA composition traits (Table 1).

Table 1. miR-SNPs located in mature sequences of miRNAs associated with fatty-acid composition in Nelore cattle muscle.

miR-SNP Bp * miRNA MAF Phenotype β SE p-Value

rs43400521T>C 13 bta-miR-2419-3p 0.07
C12:0 8.16 × 10−3 3.41 × 10−3 1.68 × 10−2

C18:1 cis-11 −4.13 × 10−1 1.72 × 10−1 1.72 × 10−2

rs516857374A>G 10 bta-miR-193a-2 0.41

C18:3ω6
(G-LNA) 7.28 × 10−3 2.03 × 10−3 5.27 × 10−4

ω6/ω3 1.94 × 10−1 7.13 × 10−2 7.26 × 10−3

rs110817643C>T 6 bta-miR-1291 0.04

C18:2 cis-9
cis-12ω6 −2.81 × 10−1 1.03 × 10−1 6.24 × 10−3

C20:3ω6 −2.88 × 10−2 1.13 × 10−2 1.12 × 10−2

C20:4ω6 −9.44 × 10−2 3.18 × 10−2 3.10 × 10−3

PUFA −5.05 × 10−1 1.67 × 10−1 2.61 × 10−3

PUFA:SFA −1.25 × 10−2 3.97 × 10−3 1.79 × 10−3

* Position in the mature sequence. The minor allele (in bold) is the effect allele. MAF = minor allele frequency; β = allelic effect; SE = standard
errors for β; C12:0 = Lauric acid; C18:1 cis-11= cis-11-Octadecenoic acid (cis-vaccenic acid); C18:1 cis-12 = Cis-12 Octadecenoic; C18:2
cis-9 cis-12ω6= Linoleic acid; C18:3ω6 (G-LNA) = γ-Linolenic acid; C20:3ω6 = Dihomo-γ-linolenic acid; C20:4ω6 = Arachidonic acid;
ω6/ω3 = Ratio of omega-6 to omega-3; PUFA = Sum of polyunsaturated FA; PUFA:SFA = Ratio of PUFA to saturated FA.
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SNPs in miRNA genes-including those that will be located in the mature region after
pri- and pre-miRNA processing, could affect the stability of the secondary structure of the
pre-miRNA, affecting the miRNA production. Therefore, we examined the pre-miRNA
secondary structures of the three miRNAs associated with FA composition. This analysis
demonstrated that the miR-SNPs were predicted to change the secondary structures of
the bta-miR-2419-3p, bta-miR-193a-2, and bta-miR-1291, with the MFE of the pre-miRNA
sequence ranging from -50.37 to −44.83 kcal/mol, −19.77 to −20.92 kcal/mol, and −28.76
to −27.65 kcal/mol, respectively (Figure 2).

The T allele of rs43400521T>C, located in the mature region (13th nt) of the bta-miR-
2419-3p, was associated with a lower amount of C18:1 cis-11. Additionally, the same
allele is associated with a higher content of C12:0 saturated FA (Table 1 and Figure 3).
Associations between miR-SNPs in mature regions and gene expression at mRNA and/or
protein levels were assessed to predict the potential effect of miR-SNPs on either disturbing
or creating miRNA-target interaction sites. As a result, we found three putative target
genes that had their mRNA levels affected by the T allele of rs43400521T>C miR-SNP
(Figure 3 and Supplementary Table S3). The T allele of rs43400521T>C can be classi-
fied as a partial gain SNP. This allele was associated with decreased expression of both
the PNMT-phenylethanolamine N-methyltransferase (∆MFE= 1.8 kcal/mol; β = −8.5,
p-value = 1.17 × 10−2) and the RTN4R-reticulon 4 receptor (∆MFE= 0.4 kcal/mol; β =−4.0,
p-value = 3.20E−03) genes. In addition, this allele putatively created a new miRNA-mRNA
interaction site between bta-miR-2419-3p and MFSD3-major facilitator superfamily domain
containing 3 gene, decreasing significantly its expression (β = −8.0, p-value = 1.00 × 10−2)
(Supplementary Table S3).
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Figure 2. In silico analysis of potential impact of miR-SNPs. Secondary structure predicting the impact of the miR-SNPs in
pre-miRNAs sequences: (A) Secondary structure of bta-mir-2419 with the rs43400521:T>C miR-SNP, (B) Secondary structure
of bta-mir-193a-2 with the rs516857374:A>G miR-SNP and (C) Secondary structure of bta-mir-1291 with the rs110817643:C>T
miR-SNP. The secondary structures of the pre-miRNAs were predicted by inputting two transcript sequences, corresponding
to both alleles of the miR-SNPs, i.e., either the major (top) or minor (bottom) allele submitted to RNAfold. Figures and
minimum free energy (MFE) values were generated by RNAfold.
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The rs516857374A>G miR-SNP, located in the 10th nt of the bta-miR-193a-2 mature
sequence, had its G allele associated with an increase of γ-linolenic acid andω6:ω3 ratio
(Table 1 and Figure 4). This allele was found to modify the binding sites of 30 putative
target genes at the mRNA expression level (Supplementary Table S3). The G allele of the
rs516857374A>G was predicted to create a complete gain-of-function binding site, decreas-
ing the expression of 19 genes, e.g., TGFBI, IGFBP6, THBS3, and ITGB5 (Supplementary
Table S3). Partial gain-of-function was also found for other genes, with ∆MFE changes
ranging from 0.4 to 2.0 kcal/mol (Supplementary Table S3). GO, analysis using the STRING
network database showed that genes associated with the rs516857374A>G miR-SNP are
involved in the ECM-receptor interaction and focal adhesion processes (Figure 5 and
Supplementary Table S4).
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Figure 5. String network showing the genes whose expression decreases in response to G allele
of the rs516857374A>G located in the bta-miR-193a-2 mature sequence. The network nodes are
proteins and the edges represent the predicted functional associations. Each colored line represents
different evidence for each interaction (red: fusion; green: neighborhood; blue: co-occurrence; purple:
experimental; yellow: text mining; light blue: database; black: co-expression).

The miR-SNP rs110817643C>T, located in the seed region (6th nt) of the bta-miR-1291,
was associated with different FA composition traits. The T allele of the rs110817643C>T
miR-SNP was associated with decreased levels of C20:3 ω6, C20:4ω6, linoleic acid (C18:2
cis-9 cis-12 ω6), the sum of PUFA, and PUFA: SFA ratio (Table 1 and Figure 6). Protein
abundance data confirmed the potential of the rs110817643C>T to modify miRNA-target
interactions with two mRNA. The T allele was predicted to disrupt the interaction be-
tween bta-miR-1291 with its putative target genes, increasing the protein levels of TCEA2
(transcription elongation factor A) and BCAR1 (breast cancer anti-estrogen resistance 1)
(Figure 7, Supplementary Table S5).
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4. Discussion

In recent years, miR-SNPs and SNPs in target sites have been widely studied for
their association with different diseases and phenotypes in humans [52]. In livestock
species, SNPs in miRNA may alter miRNA processing, leading to functional alterations
associated with production traits [15,19,53]. Thus, identifying functional miR-SNPs is
of interest for complex trait studies. Herein, we identified miR-SNPs associated with
muscle FA composition profile in Nelore cattle and performed different predictions based
on potential effects on miRNA target binding affinity through a multi-omics approach.
Considering the potential impact on miRNA-mediated regulation of associated traits, the
predicted functional miR-SNPs should be further investigated, as they may contribute to
the comprehension of these regulatory mechanisms.
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4.1. A miR-SNP Located in the bta-miR-2419-3p Sequence Was Associated with C12:0 and
18:1-cis 11 FAs Profiles

In this study, we found that the T allele of the rs43400521T>C miR-SNP, located in
the mature sequence of the bta-miR-2419-3p was associated with decreased 18:1-cis 11
and increased C12:0 levels of saturated FA. In silico analysis showed that the T allele of
rs43400521T>C decreased the stability of this pre-miRNA with a +5.5 kcal/mol MFE change.
Pre-miRNA structure can affect its turnover and function [41]. Sun et al. [48] found miR-
SNPs located in the mature region, which destabilized the secondary structure, blocking the
processing of pre-miRNA to mature miRNA of both strands, as well as reducing miRNA-
mediated translational suppression. In this sense, rs43400521T>C miR-SNP is a candidate
to destabilize the secondary structure, altering the processing of bta-miR-2419-3p and
bta-miR-2419-5p. Previously, De Oliveira et al. [3] have reported an association between
increased levels of the bta-miR-2419-5p and a higher content of conjugated linoleic acid
(CLA-c9t11) in this Nelore population. The 18:1-cis 11, also called cis-vaccenic acid, is the
FA precursor of CLA-c9t11 [54]. However, no impact of the rs43400521T>C miR-SNP in
the CLA-c9t11 content could be confirmed in the association analysis.

Association analysis suggested that bta-miR-2419-3p-SNP can impact the expression
of PNMT, RTN4R, and MFSD3 genes at mRNA levels. The T allele of the rs43400521T>C
increases the MFE of miRNA-mRNA interaction, creating a new binding site in the 3′UTR
sequence of the PNMT and RTN4R genes. PNMT is a protein-coding gene that catalyzes
the final step in epinephrine biosynthesis-one of the major hormones involved in glucose
counter-regulation and gluconeogenesis [55,56]. Sharara-Chami et al. [56] showed that
PNMT may play an important role in FAs oxidation control. In addition, Gomes et al. [57]
demonstrated that unsaturated FAs affected catecholamines handling through decreased
o PNMT expression level. This finding suggests that the amines might indeed constitute
mediating factors in the relationship between unsaturated FAs and metabolic syndrome.

The RTN4R, known as Nogo receptor 1, may play a role in regulating axonal regen-
eration and plasticity in the adult central nervous system [58]. However, to the best of
our knowledge, no direct effect of RTN4R on FA metabolism has been described so far.
However, RTN4R expression is necessary to the endoplasmic reticulum (ER) formation
and stabilization [59], a known place for FA elongation and biosynthesis [60]. Finally, we
showed that the T allele of the rs43400521T>C creates a complete miRNA-mRNA interac-
tion between the miR-2419-3p and the MFSD3 gene. According to the Kyoto Encyclopedia
of Genes and Genomes [61], the MFSD3 encodes for a putative acetyl-CoA transporter,
which has a relatively high sequence identity with the SLC33A1, a known acetyl-CoA
transporter [62]. SLC33A1 is a key regulator in intracellular acetyl-CoA homeostasis in the
ER and can act as a metabolic regulator, including reprogramming of lipid metabolism and
mitochondria bioenergetics [63]. In addition, Palombo et al. [64] have associated polymor-
phisms in the MFSD3 gene of cows with saturated and monosaturated FA composition in
milk, providing a possible functional implication of the rs43400521T>C.

Saturated medium-chain FAs, such as the lauric acid (C12:0), are more effectively
absorbed and metabolized than saturated long-chain FA. Additionally, C12:0 is the most
potent antimicrobial saturated FA [65,66]. Food enriched with medium-chain FA can
increase the ketone content, positively impacting the ratio between total and high-density
lipoprotein cholesterol [67,68]. Hwang and Joo [69] have shown that high-fat and high-
marbled muscles, such as LT, have a higher proportion of C12:0 that is positively correlated
with sensorial traits. In the present study, we showed that the miR-2419-3p-SNP was
associated with C12:0 profile, which is estimated to have a low heritability in our Nelore
population [21]. Thus, this miR-SNP is a candidate biomarker to be included in dense SNP
chips along with other FA-associated SNPs.

4.2. A bta-miR-193a-2-SNP May Influence γ-Linolenic Acid and ω6/ω3 Ratio Profiles

The rs516857374A>G miR-SNP, harbored in the 10th nt of the bta-mir-193a-2 mature
sequence, had its G allele associated with an increase γ-linolenic acid (G-LNA) content and
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ω6/ω3 ratio. Previous studies have implicated the miR-193a on regulatory networks of
human adipose tissue and obesity [70]. Zhang et al. [71] explored miRNAs and pathways
regulating intramuscular fat (IMF) deposition. They found the bta-miR-193a-3p differen-
tially expressed in IMF tissues and present in molecular networks functionally associated
with adipocyte differentiation and adipose tissues metabolism. G-LNA is found in small
amounts in various common foods, notably organ meats and milk [72]. Numerous in vitro
and in vivo studies have demonstrated that G-LNA-supplemented diets attenuate different
inflammatory responses (reviewed by Sergeant et al. [73]). Furthermore, ω3 PUFAs are
known to have anti-inflammatory properties, and the ratio ω6/ω3 is an important FA
parameter for chronic diseases and inflammatory processes [74].

The CCDC80 (Coiled-Coil Domain Containing 80) was shown as a central core of
the network predicted by STRING, and showed a decrease of its expression at mRNA
level in response to the presence of the G allele of the rs516857374A>G. Recently, Li
et al. [75] showed that CCDC80-knockout could down-regulate PPAR signaling and fatty
acid degradation. Furthermore, we identified that the G allele of the rs516857374A>G
creates binding sites to a total of 30 genes. Overall, our result suggests that this allele can
control genes involved in ECM-receptor interaction and focal adhesion. Both processes
are formed by a complex network of different proteins and proteoglycans that control
cell adhesion and signaling associated with obesity and metabolic diseases [76,77]. Cesar
et al. [34] identified ECM-receptor interaction as a functional enrichment term associated
with IMF content traits in the same population studied here. Likewise, Diniz et al. [33]
reported the ITGB5 as a hub gene present in a network-module associated with IMF.
Altogether, our results provided new insights into the relationship between cell adhesion
genes and FA composition in Nelore cattle.

4.3. Seed SNP in the bta-miR-1291 Controlling the Composition of Many ω6-PUFA FAs

The T allele of the rs110817643C>T, in the bta-miR-1291 seed region, was significantly
associated with decreased content of C18:2 cis-9 cis-12ω6, 20:3ω6, and C20:4ω6, resulting
in a reduction of the sum of PUFA and the ratio of PUFA to SFA. De Oliveira et al. [78] have
investigated regulatory candidate genes and co-expression networks related to IMF content.
These authors identified the bta-miR-1291 as a hub miRNA in the low IMF group, in the
same Nelore population assessed here, demonstrating the impact of the bta-miR-1291 in fat
deposition. Braud [79] investigated polymorphisms in miRNAs in different cattle breeds.
They reported the same SNP identified by us in the bta-miR-1291 as shared by all analyzed
breeds and influencing genes present in QTLs related to many FA traits, such asω6/ω3 FA
ratio, as well as milk linoleic acid percentage. These findings suggest that this candidate
miR-SNP can be relevant for further studies using other experimental populations and
breeds aiming to improve the FAs composition of bovine muscle.

In the presence of the C allele of the rs110817643C>T, there is a putative interaction
between bta-miR-1291 and TCEA2, and between bta-miR-1291 and BCAR1. However,
as the only significant predicted bindings were found for the C allele, the T allele is a
candidate for disrupting the binding site of the bta-miR-1291 with these genes. Both genes,
TCEA2 and BCAR1, showed an increase of protein abundance associated with the T allele
of the rs110817643C>T miR-SNP, corroborating with the in silico binding site prediction.
The TCEA2, also known as TFIIS, is necessary for efficient RNA polymerase II transcription
elongation [80]. Downregulation of the TCEA2 expression was previously related to 20:4
ω6-rich diet compared to a ω3-rich diet [81] in murine liver. Furthermore, TCEA2 was
identified as a candidate gene involved in hypertension (Cao et al., under revision, 2020),
a disease commonly associated with ω6 FA [82]. BCAR1 was previously identified as a
candidate regulatory gene of IMF deposition and FA content in cattle and sheep [33,34,83].
In our Nelore population, Diniz et al. [33] identified the presence of the BCAR1 gene in a
module network negatively associated with IMF. While Cesar et al. [34] found a negative
correlation between the co-expression modules that contain the BCAR1 gene and IMF,
linoleic acid, andω6 sum.
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ω6-PUFA and molecules derived from them, including linoleic acid- and arachidonic
acid-derived lipid mediators, are known to have pro- and anti-inflammatory properties [84].
On the other hand, SFA can promote inflammation by increasing the secretion of pro-
inflammatory cytokines [85]. Meat is an important source of fat, and the ideal balance
of PUFA:SFA is 1:1 for generating the best LDL/HDL ratios in a diet [86]. Additionally,
the beneficial effects of PUFA depend on the ω6/ω3 ratio; when the ideal proportion is
between 2:1 and 1:1 [87]. In our animal population, Cesar et al. [23] described a balance
of 0.06 and 1.44 for PUFA:SFA andω6/ω3 ratios, respectively. If the association between
this miR-SNP in the bta-miR-1291 and FA composition is validated in other populations of
Nelore, this information could be used to improve accuracy of SNP panels applied to FA
traits’ genomic selection.

Our study used different layers of gene regulation (i.e., proteome and transcriptome) to
analyze miR-SNPs’ impact on its miRNA-target genes. These layers are dynamic in nature,
and their cross talk is overwhelmingly complex [88], and measurements taken from mRNA
and protein levels are complementary [89]. Unfortunately, it was impossible to identify
the abundance at protein levels for all candidate genes associated with rs43400521T>C
and rs516857374A>G at the mRNA level. Our proteomics data (938 proteins) compared to
mRNA-sequencing data (14,219 genes) were limited, because we restricted the dataset to
proteins that are safely quantified, i.e., those of greater abundance and present in 80% of
the samples.

Binding of a miRNA to a mRNA either triggers mRNA cleavage and decay or in-
hibits translation, predominantly without degrading the mRNA [90], thus a multi-omic
approach may help indicating the mechanism involved in a specific miRNA-gene interac-
tion. This was the case of TCEA2 and BCAR1 genes, which showed significant reduction
at protein level associated with the C allele of rs110817643C>T miR-SNP, but absence
of significant association at the mRNA level. Thus, our results suggest the translation
inhibition as the probable mechanism of bta-miR-1291 regulation of TCEA2 and BCAR1
expression. It demonstrated that different levels of gene expression data are essential to
explain genotype–phenotype relationships and provide new insights for the understanding
of biological processes.

5. Conclusions

In this study, we systematically examined the association of miR-SNPs with FA profiles
in Nelore cattle muscle by using genetic and genomic information. Based on our approach,
three miR-SNPs, located in the bta-miR-2419-3p, bta-miR-193a-2, and bta-miR-1291 were
shown to be associated with C12:0 and C18:1 cis-11 FA, C18:3 ω6 and ω6/ω3 ratio and,
differentω6 FAs, PUFA and PUFA:SFA ratio, respectively. Furthermore, we showed the
putative impact of these miR-SNPs on the miRNA-mRNA interactions, and evidenced their
consequent effect on gene expression at the mRNA and protein levels. Future experimental
studies are needed, however, to elucidate the mechanisms underlying the link between
these miRNAs and their putative targets in determining phenotypes of economic interest
in Nelore cattle.
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