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A B S T R A C T   

Aerial images taken with a camera onboard a remotely piloted aircraft (ARP) at 4-cm resolution were used for 
rainfed corn water productivity (WP) assessments by applying the Simple Algorithm for Evapotranspiration 
Retrieving (SAFER) and the radiation use efficiency (RUE) Monteith’s model in Northeast Brazil. We present a 
methodology based on the use of the visible and near infrared images from a Sequoia camera together with 
weather and actual yield data (Ya), to model actual evapotranspiration (ET) and biomass production (BIO), 
retrieving water productivity based on both BIO (WPBIO) and actual yield (WPYa ). Different nitrogen (N) fertil-
izing cover levels (0–250 kg ha− 1) and sources (nitrate – Nt and urea – Ur) were analyzed for supporting pre-
cision agriculture, aiming a fertilizing recommendation for good corn yield while reducing water use and N 
leaching problems. According to our statistical analyzes, there were no significant difference on ET values for the 
N treatments inside the analyzed phenological stages (PS) due to the proportional partition into soil evaporation 
and transpiration from seeding to harvest stages, but as BIO values is related to transpiration which in turn varied 
with PS until a certain limit, they affected WP till N cover fertilizing level of 150 kg ha− 1 for both Nt and Ur N 
sources. Regarding the growing season (GS) WP components, no significant differences were verified between Nt 
and Ur N sources, being the average values for ET, BIO, and Ya, of 394 mm GS− 1, 17.3 t GS− 1, and 8.8 t GS− 1, 
which yielded mean WPBIO andWPYa of 4.4 kg m− 3 and 2.2 kg m− 3, corresponding to a harvest index (HI) around 
0.50 considering all N cover fertilizing treatments. The most important finding of the current research is that the 
SAFER algorithm can be applied to estimate ET with high resolution aerial cameras without the thermal bands, 
and together with modelled BIO or Ya data, WP assessments can be carried out following the principles of 
precision agriculture. The slightly lower WP values for Ur N source and the advantage of its lower both price and 
N leaching problems, Ur applications at 150 kg ha− 1 is recommended to save money while avoiding N leaching to 
the ground water, when compared with Nt source. For replication of the tested methods in other regions, simple 
calibrations of the modelling equations may be done with field or/and remote sensing measurements, to infer the 
specific environmental conditions.   

1. Introduction 

Effective crop fertilizing is one of the pathways to sustain precision 
agriculture with high yield levels while minimizing environmental 
problems, i.e. maximizing water productivity (WP). For WP assessments, 
it is important to make distinctions between the concepts of reference 

(ET0), actual (ET), and potential (ETp) evapotranspiration. ET0 is 
considered as the water flux from a grassed reference surface, with 
specific characteristics, while ET is the water flux involving all envi-
ronmental conditions, while ETp happens when the crop is under opti-
mum root-zone moisture conditions (Allen et al., 1998). ET can be 
partitioned into transpiration and soil evaporation, and the magnitude 

* Corresponding author., 
E-mail addresses: heriberto@pq.cnpq.br, heriberto@academico.ufs.br, heribert@globomail.com (A. Teixeira), edson.patto@embrapa.br (E. Pacheco), 

cesaroliveira.f.silva@gmail.com (C. Silva), marcia.dompieri@embrapa.br (M. Dompieri), janice.leivas@embrapa.br (J. Leivas).  

Contents lists available at ScienceDirect 

Remote Sensing Applications: Society and Environment 

journal homepage: www.elsevier.com/locate/rsase 

https://doi.org/10.1016/j.rsase.2021.100514 
Received 16 September 2020; Received in revised form 2 April 2021; Accepted 6 April 2021   

mailto:heriberto@pq.cnpq.br
mailto:heriberto@academico.ufs.br
mailto:heribert@globomail.com
mailto:edson.patto@embrapa.br
mailto:cesaroliveira.f.silva@gmail.com
mailto:marcia.dompieri@embrapa.br
mailto:janice.leivas@embrapa.br
www.sciencedirect.com/science/journal/23529385
https://www.elsevier.com/locate/rsase
https://doi.org/10.1016/j.rsase.2021.100514
https://doi.org/10.1016/j.rsase.2021.100514
https://doi.org/10.1016/j.rsase.2021.100514
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rsase.2021.100514&domain=pdf


Remote Sensing Applications: Society and Environment 22 (2021) 100514

2

of these components depend on the root-zone moisture and crop stages 
(Fandiño et al., 2012; Consoli and Vanella, 2014; Rosa et al., 2016; 
Longo-Minnolo et al., 2020). The ratio ET/ET0, under optimum 
root-zone moisture conditions is known as the crop coefficient - Kc and 
can be used to estimate ETp (Mateos et al., 2013; Venancio et al., 2021), 
while under non-optimum root-zone moisture conditions, this ratio can 
characterize crop water stress (Lu et al., 2011). 

High WP levels in precision agriculture require maximizing farm 
inputs by using the best practices at good both spatial and temporal 
scales, but field measurements of relevant biophysical parameters 
through destructive sampling are time and cost intensive. Remote 
sensing methods offer rapid and cost-effective ways to support farmer 
decisions to optimize the WP components, offering a range of possibil-
ities their assessments at suitable scales, when aiming to insure good 
yields minimizing negative environmental effects (Mulla, 2013; Marino 
et al., 2015; McShane et al., 2017; Campos et al., 2018; Silva et al., 2019; 
Teixeira et al., 2020a,b; Venancio et al., 2021). 

In Northeast Brazil, one of the most important agricultural crops is 
corn (Zea mays L.), seeded at the start of the rainy season, under irri-
gation or rainfed conditions, for both human and animal feeding. Ac-
cording to Teixeira et al. (2014a,b), besides fertilizing managements, 
weather conditions drive ET and biomass production (BIO), and then the 
crop water productivity (WP), here considered as the ratio of BIO and 
actual yield (Ya) to ET, being these biophysical indices also affected by 
the degree of the root-zone water stress (Ko and Piccini, 2009; Liu et al., 
2010; Zhang et al., 2019; Nyolei et al., 2019). 

Crop yield and plant responses to nitrogen (N) cover fertilizing varies 
significantly with the time of the year in response to root-zone moisture 
conditions (Bakhsh et al., 2000). Quantifying corn WP under different N 
cover fertilizing levels and sources is important for adaptations to 
climate and land-use changes, and mitigations of the negative effects of 
these changes. When biophysical parameters can be quantified by field 
measurements, site-specific knowledge can assist farmers for better 
water and crop managements. However, for in-depth monitoring of 
these parameters during each phenological stage (PS), high spatial res-
olution remote sensing data taken with aerial cameras without influence 
of cloudiness are more suitable, when aiming to meet the principles of 
precision agriculture (Tunca et al., 2018; Manfreda et al., 2018; Maes 
and Steppe, 2019). 

In the current paper, WP assessments were done during four rainfed 
corn crop PS and for the growing season (GS) in the Sergipe state, 
Northeast Brazil. Under water scarcity conditions in this region, one of 
the biggest challenges for optimizing crop and water managements is 
through WP improvements. For good corn yields, N cover fertilizing is 
needed in expressive amounts being this nutrient highlighted as the 
most dynamic one in the plant root-zones. Nitrate (Nt) and Urea (Ur) are 
common N sources used for N cover fertilizing, however, besides being 
more expensive, Nt cause more environmental problems because of high 
N leaching rates to the ground water when comparing to Ur (Pacheco 
et al., 2018). The physical and chemical properties of the soil, as well as 
root-zone moisture status, will affect N dynamics. Thus, crop manage-
ment systems for optimizing N cover fertilizing are important to increase 
corn WP (Colaço and Bramley, 2018). 

Currently, precision agriculture research using remotely sensed data 
can help N fertilizing strategies (Sharma and Bali, 2018; Colaço and 
Bramley, 2018), plant protection managements (Mahlein et al., 2012; 
Sedina et al., 2017), biomass estimations (Teixeira et al., 2019; Togeiro 
de Alckmin et al., 2020); and to retrieve physical (Ballabio et al., 2016), 
biological (Yigini and Panagos, 2016), and chemical (Ballabio et al., 
2019) properties of soils. However, there are still lacks of remote sensing 
studies for corn WP modelling at the level of precision agriculture in 
Brazil, with few ones done at irrigation pivot parcels with Landsat 8 
images at spatial resolutions ranging from 30 to 120 m (Teixeira et al., 
2014b; Venancio et al., 2021). 

Remote sensing algorithms to quantify the WP components have 
been developed, presenting advantages and shortcomings among them. 

The Penman-Monteith (PM) equation has been suggested by applying 
remotely sensed vegetation indices, together with agrometeorological 
data (Nagler et al., 2013; Senay et al., 2017; Vanino et al., 2018). The PM 
equation is also used in the well-known METRIC - Mapping Evapo-
transpiration with High Resolution and Internalized Calibration algo-
rithm (Allen et al., 2007), which has the advantage of up scaling the 
instantaneous ET value to daily timescale. The SAFER algorithm, based 
on the PM equation, was developed (Teixeira, 2010) and validated for its 
application with and without the thermal spectral radiances in several 
agroecosystems of Northeast Brazil (Araujo et al., 2019; Silva et al., 
2019; Teixeira et al., 2020a,b; Venancio et al., 2021). 

Considering the operationality and no requirements of thermal 
bands the SAFER algorithm was choose for the current research. Even 
that the algorithm has been successfully applied for corn WP de-
terminations, by coupling satellite images and weather data, for both 
rainfed (Teixeira et al., 2014a) and irrigation Brazilian conditions 
(Teixeira et al., 2014b; Venancio et al., 2021), the development of aerial 
cameras to be used onboard remotely piloted aircrafts (RPA) without 
cloud cover interference demand tests for applications with high reso-
lution images to subsidize precision agriculture (Gago et al., 2015; 
Pádua et al., 2017). This issue increases in importance, when aiming 
water and crop managements under the actual water scarcity conditions 
experienced by several agroecosystems. 

The objective of the current research was to test the application of 
the SAFER algorithm coupled with the Monteith’s radiation use effi-
ciency (RUE) model (Monteith, 1977), to assess the WP components by 
using the visible and infrared bands of aerial images onboard at a RPA, 
in rainfed corn crop in Northeast Brazil, analyzing the effects of different 
N cover fertilizing levels and sources in the magnitude of these com-
ponents. The results are useful for recommendation of N fertilizing 
management when aiming to improve WP under water scarcity condi-
tions. With the success of the tests with the corn reference crop, the 
models can be used in other regions and crops applying simple correc-
tions for calibration coefficients of the modelling equations to infer 
specific environmental conditions. 

2. Materials and methods 

2.1. Characteristics of the study area, phenological stages and fertilizing 
management 

Fig. 1 shows the location of the experimental area with corn plots 
cover fertilized under different nitrogen (N) levels and sources, in the 
municipality of Nossa Senhora das Dores, Sergipe state, Northeast Brazil. 

The experimental area, latitude 10◦27′44′′ S, longitude 37◦11′38′′ W, 
and altitude of 200 m, is in a region ranging from sub-humid to dry 
climates, with a mean annual air temperature (Ta) of 24.6 ◦C, and total 
precipitation (P) of 1150 mm yr− 1, being rainfalls concentrated from 
March to August. The natural ecosystems may be considered as a tran-
sition between coastal tablelands and semi-arid, however the natural 
species are being replaced by rainfed and irrigated crops in several 
areas. The soil is classified as red-yellow clay with clayish texture, 
dystrophic, and wavy relief. Table 1 presents the chemical and physical 
properties of the soil at 0.00–0.20 m depth according to Pacheco et al. 
(2018). 

According to Table 1, the soil is characterized by a poor fertility for 
corn crop. The value for potential of hydrogen (pH) together with high 
sum of aluminum (Al) and hydrogen (H), representing 47% of the Ex-
change Capacity of Cations (ECC) defined an average acidity condition, 
what required application of 1.2 t ha− 1 of dolomitic limestone before 
corn seeding. The low contents of organic matter (OM), phosphorus (P), 
and potassium (K) required the foundation fertilizing of NPK at the 
proportion of 40–100-80 (kg ha− 1), for all plots. Besides correcting the 
acidity conditions, the dolomitic limestones also increased the levels 
Calcium (Ca) and Magnesium (Mg), previously representing only 32% 
and 19% of the ECC. According to the clay content, the soil presents 
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good drainage conditions. 
The general corn seeding time is from the second half of May to the 

first half of June, with harvest occurring from the second half of October 
to the first half of November, depending on the cultivar (Pacheco et al., 
2018). Following Fancelli and Dourado Neto (2000) the corn pheno-
logical stages (PS) considered in the current research are described in 
Table 2. 

The experimental design was of randomly blocks with four repeti-
tions, in a factorial scheme5 (N cover levels) x 2 (N cover sources), and a 
witness (0 N cover fertilizing). Sowing (S) time was in Jun 06, 2017, over 
10-m six-lines plots, with the plants spaced 0.50 m between lines of the 
Syngenta cultivar, totaling 44 experimental plots of 30 m2, in a corn 
cropped area of 1320 m2 (see Fig. 1). Regarding the experimental 
treatments, it was considered six N cover fertilizing levels: 0, 50, 100, 
150, 200, and 250 kg ha− 1, via nitrate (Nt) – 27% of N and urea (Ur) – 
46% of N, when the corn plants presented four leaves (June 22, 2017), at 
the V4 vegetative PS (see Table 2). 

The effect of the cover fertilizing under different N levels and sources 
on water productivity (WP) dynamics in terms of BIO were assessed for 

the RPA flights at V6, V10, PF, and FF stages. The harvest was done with 
a mechanical harvester, by weighting the grains in an automatic balance 
and with up-scaling techniques, it was also possible to quantify WP in 
terms of both BIO and actual yield (Ya) at the growing season (GS) 
timescale. The average values and standard deviations (SD) of the WP 
components involving 6000 pixels, at a 4-cm spatial resolution, in the 
center of the plots for each N treatment were considered during the 
analyzed PS and for GS. 

2.2. Agrometeorological and remote sensing data processing 

One agrometeorological station was installed at 300 m from the 
experimental area and the weather data used together with remote 
sensing parameters for modelling the WP components. The weather data 
were daily values of incident global solar radiation – RG; air temperature 
– Ta (maximum, mean, and minimum values) and relative humidity – 
RH; and wind speed at a height of 2 m – u2, inputted for the reference 
evapotranspiration (ET0) calculations by the Penman-Monteith method 
(Allen et al., 1998). However, besides being used for ET0 calculations, RG 
and mean Ta were also input data for the radiation balance components, 
which together surface albedo – α0 and the Normalized Difference 
Vegetation Index – NDVI, allowed the surface temperature (T0) esti-
mations at daily timescale (Leivas et al., 2017; Araujo et al., 2019; Silva 
et al., 2019; Teixeira et al., 2020a,b). The agrometeorological station 
was programmed to collect data at each minute and storage half-hour 
averages and then 24-h mean values were considered for the SAFER 
and RUE coupled applications. 

The aerial images were taken at around local time of 13 UTC (GMT- 
3) in July 11 (PS V6), July 21 (PS V10), August 04 (PS PF), and August 
11 (PS FF) of 2017, with a multispectral camera Parrot Sequoia-Mica 
Sense, onboard a remotely piloted aircraft (RPA), Tarot 650 Iron Man, 
navigator “Pixhawk”, by using an interface software “Mission Planner”. 
The mosaic building software was the Agisoft Photoscan (version 1.6.6, 

Fig. 1. Location of the experimental area, corn plots cover fertilized with different nitrogen (N) levels from nitrate – Nt (27% of N) and urea – Ur (46% of N) sources, 
at 0, 50, 100, 150, 200 e 250 kg ha− 1, in the municipality of Nossa Senhora das Dores, Sergipe state, Northeast Brazil. 

Table 1 
Chemical and physical properties for the soil at depths from 0.00 to 0.20 m for 
the experimental area, in the municipality of Nossa Senhora das Dores, Sergipe 
state, Northeast Brazil.  

pH (− ) OM (dag 
kg− 1) 

P (mg dm− 3) K (cmole 
dm− 3) 

Ca (cmole 
dm− 3) 

5.49 2.34 6.35 65.33 2.10  

Mg (cmole 
dm¡3) 

Al (cmole 
dm¡3) 

H þ Al (cmole 
dm¡3) 

ECC (cmole 
dm¡3) 

Clay Content 
g kg¡1 

1.25 <0.10 3.13 6.65 290 

*pH – potential of hydrogen in water; OM – Organic matter; ECC – Exchange 
Capacity of Cations. 
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http://www.agisoft.com/downloads/installer/), considering longitudi-
nal and lateral overlaps of 80% and 60%, respectively. 

Table 3 shows the specifications of the multispectral camera Parrot 
Sequoia-Mica Sense. 

With the flights at a 40-m height, the images were at a 4-cm spatial 
resolution. The total RPA overflown area was 1.8 ha, covering the 
studied corn crop, natural vegetation, and bare soil from which the corn 
plots were cut for WP assessments. For calibrations of the remote sensing 
parameters from Sequoia (Sq) measurements, reflectance values from 
Landsat 8 (L8) images (bands 1 to 7, spatial resolution of 30 m), for the 
days June 28, July 14, July 30, August 15, and August 31 of 2017, 
orbital/pointer 215/067, were used considering the total RPA overflown 
area. In this area covering mixed surface types, one L8 pixel involved an 
average for 750 Sq pixel values. The modelling equations for Landsat 
had been previously calibrated with field energy balance experiments 
involving hydrological contrasting vegetation types in Northeast Brazil 
(Teixeira, 2010). 

Fig. 2 presents the flowchart for the corn WP modelling by applying 
the SAFER algorithm and the RUE model starting from the Sq digital 
numbers from bands 1 to 4 (DNB1, DNB2, DN.B3, and DNB4). 

Note: DNB1 ...B4 - Digital numbers from bands 1 to 4; RefB1 ...B4 - 
Reflectance values from bands 1 to 4; α0 – Surface albedo; NDVI – 
Normalized Difference Vegetation Index; T0 – Surface temperature; RG – 
Incident global solar radiation; Ra – Top-atmosphere radiation; Ta – Air 
temperature; RH – Relative humidity; u2 – Wind speed at a height of 2 m; 
ETr – Ratio of actual to reference evapotranspiration; ET – Actual 
evapotranspiration; ET0 – Reference evapotranspiration; ε0 – Surface 
emissivity; εa – Atmospheric emissivity; Rn – Net radiation; PARinc – 
Incident photosynthetically active radiation; PARabs – Absorbed 

photosynthetically active radiation; εmax – Maximum radiation use ef-
ficiency; BIO – Biomass production; WP – Water productivity; Ya – 
Actual yield. 

As we had digital numbers (DN) available from the Sq measure-
ments, instead calibrated reflectance values by using control ground 
targets, to retrieve α0, we considered the reflectance (Ref) values from its 
bands (RefB1 ...B4

) being proportional to the ratios of DN images (DNB1 ...B4
) 

to the maximum DN value (65,535): 

α0 = aSL
DNB1

DNMax
+ bSL

DNB2

DNMax
+ cSL

DNB3

DNMax
+ dSL

DNB4

DNMax
(1)  

where the aSL, bSL, cSL, and dSL are the regression coefficients for the 
bands 1 (Green), 2 (Red), 3 (Red Edge), and 4 (Near Infrared) resulted 
from the relation between digital numbers from Sq and surface albedo 
values from L8 images covering the total RPA overflown area, including 
the studied corn crop, natural vegetation, and bare soil. This means that 

Table 2 
Phenological stages (PS) for the rainfed corn crop, in the municipality of Nossa Senhora das Dores, Sergipe 
state, Northeast Brazil. 

1S – Sowing; E − Emergency; V4, V6, and V10 – Vegetative stages with four, six, and ten leaves, respectively; 
PF – Pre-flowering; FF – Full flowering; GF – Grain filling; PM- Physiological maturation; H – Harvest. 

Table 3 
Specifications of the multispectral camera Parrot Sequoia-Mica Sense.  

Band Bands/Image Characteristics 

Centre 
Wavelength 
(nm) 

Band 
Width 
(nm) 

Focal 
Length 
(mm) 

Image 
Size 
(pixels) 

Field of View 

Green 
(B1) 

550 40 3.98 1280 ×
960 

Horizontal: 
61.9◦

Vertical: 
48.5◦

Diagonal: 
73.7◦

Red (B2) 660 40 
Red Edge 

(B3) 
735 10 

NIR (B4) 790 40  

Fig. 2. Flowchart for the corn water productivity (WP) assessments, by 
coupling the SAFER algorithm and the RUE model starting from the Sequoia 
digital numbers (DN) from bands 1 to 4 together with weather data. The star- 
dashed forms mean data from the weather station close to the experi-
mental area. 

A. Teixeira et al.                                                                                                                                                                                                                                

http://www.agisoft.com/downloads/installer/


Remote Sensing Applications: Society and Environment 22 (2021) 100514

5

one Landsat DN pixel value represents an average of 750 Sq DN pixel 
values for hydrologically contrasting surfaces. 

To obtain the regression coefficients of Eq. (1), the L8 Ref values 
from bands B1 to B7 for the total RPA overflown area were downloaded 
from the United States Geological Survey (USGS) site (https://eart 
hexplorer.usgs.gov/), and the weights for each band applied to the L8 
albedo values (α0_L8) according to Teixeira et al. (2019). Although the L8 
images being acquired at different days regarding the Sq image dates, 
the α0_L8 relation with the accumulated degree-days (DDac), allowed to 
obtain the Sq α0 counterpart values for the RPA flight days. 

Corn crop DDac, from sowing (S) to harvest (H) stages, were calcu-
lated considering a basal temperature of 10 ◦C, according to Teixeira 
et al. (2014b). 

DDac =
∑H

S
(Ta − 10) (2)  

where Ta is the mean air temperature. 
The α0_L8 values for the four RPA flight dates were estimated by the 

relation depicted in Fig. 3a and the regression coefficients of Eq. (1) 
obtained (Fig. 3b): 

It is emphasized that if one has already the band reflectance values 
available from the RPA onboard camera, through control ground targets, 
the weights for α0 calculations may be directly applied to Ref values 
(Teixeira et al., 2019). On the other hand, the coefficients from Eq. (1) 
can be recalibrated with field measurements of incident and reflected 
solar radiation for specific hydrologically contrasting areas. 

The Normalized Difference Vegetation Index (NDVI) was calculated 
from the digital numbers of NIR (DNB4) and RED (DNB2) Sq bands: 

NDVI=
DNB4 − DNB2

DNB4 + DNB2

(3) 

As the Sq camera does not have a thermal band, T0 was retrieved by 
the residual method, applying the Stefan-Boltzmann equation to esti-
mate the long-wave radiation components (Ramírez-Cuesta et al., 2018): 

T0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

RG(1 − α0) + σεaTa4 − Rn
σε0

4

√

(4)  

where RG is the incident global solar radiation; ϵa is the surface emis-
sivity, Rn is the net radiation, σ is the Stefan-Boltzmann constant (5.67 ×
10− 8 W m− 2 K− 4), and ϵ0 is the surface emissivity. 

The residual method to estimate T0 has been successfully tested in 
distinct Brazilian agroecosystems (Teixeira et al., 2019, 2020a,b; Araujo 
et al., 2019; Silva et al., 2019; Rampazo et al., 2020). The suitability of 
retrieving the WP components, without the satellite thermal bands, has 
been also demonstrated in other recent studies around the word (Castelli 
et al., 2018; Rozenstein et al., 2018; Vanino et al., 2018; Mokhtari et al., 
2019; Longo-Minnolo et al., 2020). In this way, it is possible to capture 

the water stress effects without the need of the thermal portion of the 
electromagnetic spectrum (Consoli and Vanella, 2014). 

The ϵa term from Eq. (4) was acquired as a function of the short-wave 
atmospheric transmissivity (τsw), which in turn was taken as the ratio of 
RG to the solar radiation at the top of the atmosphere (Ra). 

εa= aA(ln τsw)bA (5)  

with aA and bA being the regression coefficients, aA = 0.94 and bA =

0.10, resulted from field radiation balance measurements in a range of 
contrasting environmental conditions over irrigated crops and natural 
vegetation in Northeast Brazil (Teixeira, 2010). 

The daily Rn values were estimated throughout the Slob equation 
(Teixeira et al., 2020a,b): 

Rn=(1 − α0)RG − aLτsw (6)  

with the regression coefficient aL determined through its relationship 
with Ta. 

The surface emissivity (ϵ0) was estimated according to Silva et al. 
(2019), Araujo et al. (2019), and Santos et al. (2020): 

ε0 = a0 ln(NDVI) + b0 (7)  

where a0 and b0 being the regression coefficients, a0 = 0.06 and a0 =

1.00, resulted from field measurements of the emitted surface radiation 
and T0, together with remote sensing calculations of NDVI in Northeast 
Brazil (Teixeira, 2010). 

The evapotranspiration ratio (ETr = ET/ET0), was estimated from the 
remote sensing parameters (Dehziari and Sanaienejad, 2019; Santos 
et al., 2020; Venancio et al. (2021): 

ETr = exp
[

asf + bsf
(

T0

α0NDVI

)]

(8)  

where asf and bsf are regression coefficients, respectively 1.8 and 
− 0.008, for the semi-arid conditions of Northeast Brazil, resulted from 
simultaneous field and Landsat measurements of ET and ET0, together 
with α0, T0, and NDVI, respectively (Teixeira, 2010). However, in the 
current paper, these regression coefficients were calibrated considered 
the ETr_L8 values as reference. 

To calibrate the asf and bsf regression coefficients from Eq. (8), ETr 
values from L8 images were also related to DDac (Fig. 4a), and the 
estimated ETr_L8 values for the RPA flight dates were related to α0, NDVI, 
and T0 (oC) values from Sq camera measurements (Fig. 4b): 

The images covered the total RPA overflown area, including the 
studied corn crop, natural vegetation, and bare soil, meaning that one 
Landsat ETr pixel value involved an average of 750 Sq α0, NDVI, and T0 
pixel values. The calibrated regression coefficients asf and bsf of 1.6 and 
− 0.007 were then used in Eq. (8) and the daily ET0 values (Allen et al., 
1998) multiplied by the ETr Sq pixel values, giving the corn daily ET 

Fig. 3. Relationships between the Landsat 8 (L8) surface albedo values (α0_L8) and the corn accumulated degree-days - DDac (a); and between α0_L8 with DN 
measurements from Sequoia (Sq) camera (b). 
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rates: 

ET =ETrET0 (9) 

The incident photosynthetically active radiation (PARinc) was esti-
mated by: 

PARinc= apRG (10)  

where ap is a regression coefficient found to be 0.44 for the Northeast 
Brazil (Teixeira et al., 2019). 

The absorbed PAR (PARabs) was calculated as: 

PARabs= fpPAR (11)  

being the fraction of the absorbed PAR (fp) estimated from NDVI: 

fp= apNDVI + bp (12)  

where ap and bp are regression coefficients which in previous study for 
mixed agroecosystems were estimated respectively as 1.26 and − 0.16 
(Bastiaanssen and Ali, 2003). 

The respective ap and bp original coefficients of 1.26 and − 0.16 have 
been successfully validated with L8 images in some Brazilian Northeast 
agroecosystems (Araujo et al., 2019; Teixeira et al., 2019, 2020a), and 
by using them with the L8 images, the relation between PARabs and corn 
DDac values were used for Sq calibrations considering the Sq NDVI 
values for the RPA flight dates: 

The images covered the total RPA overflown area, including the 
studied corn crop, natural vegetation, and bare soil, meaning that one 
Landsat fp pixel value involved an average of 750 Sq NDVI pixel values. 
The coefficients ap (1.29) and bp (− 0.10) from Fig. 5b were used in Eq. 
(12) for BIO estimations, introducing the root-zone moisture effect 
through ETr (Araujo et al., 2019; Teixeira et al., 2019, 2020a,b): 

BIO=
∑

(εmaxETrPARabs0.864) (13)  

where εmax is the maximum radiation efficiency use, considered as 2.45 
MJ g MJ− 1 for corn crop (Teixeira et al., 2014a), and 0.864 is the unit 
conversion factor. 

Having Ya data available, and up scaling both ETr and fp for the corn 
GS, WP at this timescale was assessed based on both, BIO and Ya: 

WPBIO,Ya =
BIOorYa
ET

(14) 

To upscale ETr, its relationship with GDac for Sq measurements was 
used for each N cover fertilizing treatment considering the sowing (S) 
and harvest (H) time value of 0.30 and 0.50, respectively, for all N cover 
fertilizing treatments (Allen et al., 1998; Teixeira et al., 2014b). For fp, 
the relationship bellow was applied to GS ETr averages and used 
together with the RG and ET0 average GS data. According to Mateos et al. 
(2013), interpolated vegetation indices are subject to less uncertainty 
than interpolated ET values. 

fp = aprETr + bpr (15)  

where the regression coefficients apr and bpr were 0.60 and 0.30, with a 
R2 around 0.80. 

For some water productivity (WP) components, differences between 
the average pixel values among N cover treatments were not clear, 
therefore a more robust statistical tool was used to assess these differ-
ences. Analyses of variance (ANOVA) were performed using 2-way 
ANOVA in R (ver. 3.5.1) with a pairwise comparison by applying the 
Tuckey honestly significant difference (HSD) post-hoc test, to assess 
their differences at 5% significance level, regarding the two N sources 
(nitrate- Nt and urea - Ur), the six N levels (0, 50, 100, 150, 200, and 250 
kg ha− 1), and the four analyzed phenological stages - PS (V6, V10, PF, 

Fig. 4. Relationships between the Landsat 8 (L8) ratio of actual - ET to reference - ET0 evapotranspiration (ETr_L8) values and the corn accumulated degree-days - 
DDac (a); and between the estimated ETr_L8 and the remote sensing parameters surface albedo – α0, Normalized Difference Vegetation Index – NDVI, and surface 
temperature – T0 (oC) acquired with the Sequoia (Sq) camera for the Remotely Piloted Aircraft (RPA) flight dates. 

Fig. 5. Relationships between the fraction of absorbed photosynthetically active radiation fraction (fp) from Landsat 8 (L8) measurements and the corn accumulated 
degree-days (DDac) (a); and the L8 estimated fp with the Normalized Difference Vegetation Index (NDVI) from Sequoia (Sq) measurements for the Remotely Piloted 
Aircraft (RPA) flight dates. 

A. Teixeira et al.                                                                                                                                                                                                                                



Remote Sensing Applications: Society and Environment 22 (2021) 100514

7

and FF). 
Before each ANOVA test the data were previously analyzed to 

confirm that it matched the basic assumptions: a) the responses for each 
N cover treatment presented normal population distributions with the 
very high spatial resolution; b) the normal distributions presented 
similar variances in statistically terms (for this reason the standard de-
viations are shown in all tables), and c) the data are independent, as that 
the samples were taken randomly). HSD is an integral part of ANOVA to 
test the equality of at least three group means. Statistically significant 
results indicate that not all the group means are equal, exploring dif-
ferences between them while controlling the experiment-wise error rate. 

3. Results and discussion 

3.1. Weather conditions 

As the corn WP components depend on the root-zone moisture 
conditions, which in turn are related to rainfall amounts and atmo-
spheric demands, the weather parameters related to the climatic water 
balance were firstly analyzed. Fig. 6 presents the daily values, during the 
year 2017, for totals of precipitation (P) and reference evapotranspira-
tion (ET0); and for the averages of daily global solar radiation (RG) and 
air temperature (Ta), in terms of Day of the Year (DOY). 

From Fig. 6a, rainfalls were concentrated from the end of April (DOY 
118) to September (DOY 267), with top P values above 10 mm d− 1, 
however, occurring week periods without rains. The annual P of 1153 
mm yr− 1 coincided with the long-term value for the study region 

reported in Pacheco et al. (2018). Considering the atmospheric de-
mands, ET0 values higher than 5.0 mm d− 1 happened at the beginning of 
the year (from January to the first half of April, DOY 001 to 102), and 
during the last quarter of the year (from the end of October to December, 
DOY 301 to 365). 

The RG and Ta tendencies followed those for ET0, with respective 
mean daily values above 24.0 MJ m− 2 d− 1 and 26.0 ◦C in the beginning 
and in the end of the year; while the corresponding lowest ones, bellow 
18.0 MJ m− 2 d− 1 and 22.0 ◦C occurred in the middle of the year 
(Fig. 6b). 

Thus, the best corn root-zone moisture conditions happened in the 
middle of the year, but under the lowest atmospheric demands, which 
limited somewhat both ET and BIO rates, even under good rainfall-water 
availability. 

3.2. Actual evapotranspiration 

Fig. 7 shows the spatial distribution, average pixel values, and 
standard deviations (SD), for the daily rates of corn actual evapotrans-
piration (ET), considering the four analyzed phenological stages (PS), 
during the year 2017. 

According to Fig. 7, there was a strong increase on ET rates along the 
four analyzed PS for all N cover fertilizing levels and sources, with mean 
pixel values ranging from 2.17 to 4.44 mm d− 1 and standard deviations 
(SD) representing 59% and 33% of the averages, for the V6 (July 11, 
DOY 192) and PF (August 04, DOY 202) stages, respectively. However, 
besides PS, the average and SD values are also related to corn root-zone 
moisture, which in turn depend on the climatic water balance. Consid-
ering the ETr pixel values (Eq. (8)) as a root-zone moisture indicator, 
with ET0 from Fig. 6a, and the mean ET values from Fig. 7 for the V6, 
V10, FF, and FF, respectively, this indicator ranged from 0.59 (V6) to 
1.03 (FF). 

To assess the ET rates for each of the eleven N treatments (Nt and Ur 
sources at 0–250 kg ha− 1 N levels, with four repetitions) in each of the 
four analyzed PS, the centers of the individual corn plots were cut (see 
also the right side of Fig. 1), and the averages and SD values for around 
6000 pixels in each plot considered. 

Table 4 presents ET average and SD values, considering the N cover 
fertilizing levels and sources for each of the N treatment, together with 
the results of the pairwise comparison by group, using the Tuckey HSD 
post-hoc test performed for each PS, while Table 5 shows detailed results 
of the ANOVA test for ET. 

As the ET pixel values represented by the images in Fig. 7 depended 
on the root-zone moisture levels, which in turn are related to the cli-
matic water balance involving previous and actual conditions, the 
following analyses considered the magnitudes of P and ET0 ten days 
before the image acquisitions, with weather data depicted in Fig. 6a. 

In the V6 stage (July 11, DOY 192), with ET pixel average values 
lower than 2.00 mm d− 1, the highest rates were for N cover fertilizing 
treatment 200NtUr, 20% above of those from the control one (0NrUr). 
For all corn plots, ET for the Ur source was only 8% higher than those for 
the Nt one. The previous 10-day P and ET0 values were respectively, 
66.0 and 30.0 mm, resulting in a climatic water excess (P – ET0 > 0) of 
36.0 mm. Thus, all treatments were well rainfall-water supplied in this 
PS, with ETr values above 0.52 for both N cover fertilizing sources at low 
soil cover, but averaging 0.56 and 0.60 for Nt and Ur, respectively. 

During the V10 stage (July 21, DOY 202), the plots with N cover 
applications at 100 kg ha− 1 from Nt (100Nt) and 200 kg ha− 1 from Ur 
(200Ur), presented the highest ET rates, above 7% of those for 0NtUr, 
but lower than 3.00 mm d− 1. Considering all corn plots, ET rates for Ur 
were only 2% higher than those for Nt. The previous 10-day P and ET0 
values (Fig. 6a) were respectively of 23.0 and 34.0 mm, resulting in a 
climatic water deficit (P – ET0 < 0) of 11.0 mm. However, the ETr values 
were above 0.94 for both N cover fertilizing sources, but averaging 0.97 
and 0.99 for Nt and Ur, respectively, indicating good water storage in 
the root-zone from the previous rainier period, at increasing soil cover 

Fig. 6. Daily totals for precipitation (P) and reference evapotranspiration 
(ET0); and daily mean values for global solar radiation (RG) and air temperature 
(Ta), according to the Day of the Year (DOY), during 2017 in the municipality of 
Nossa Senhora das Dores, Sergipe (SE) state, Northeast Brazil. 
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conditions. 
In the PF stage (August 04, DOY 216), the highest ET rates happened 

with N cover fertilizing at 50 kg ha− 1 for Ur (50Ur) and 100 kg ha− 1 for 
Nt (100Nt), but respectively only 2% and 3% higher than those for the 
control treatment (0NtUr). Considering all corn plots, the average ET 

rates for Ur source were only 4% higher than those for Nt one. The 
previous 10-day P and ET0 values were respectively of 55.0 and 34.0 
mm, resulting in a climatic water excess of 21.0 mm. The ETr values 
were above 0.98 for both N cover fertilizing sources, but averaging 1.00 
and 1.04 for Nt and Ur, respectively. 

Fig. 7. Spatial distribution, average pixel values, and standard deviations (SD), for the daily corn actual evapotranspiration (ET), during four analyzed phenological 
stages (PS) in 2017. V6 – Vegetative stage with six leaves per plant (July 11, DOY 192), V10 – vegetative stage with ten leaves per plant (July 21, DOY 202), PF – 
reproductive stage pre flowering (August 04, DOY 216), and reproductive stage FF - full flowering (August 11, DOY 223). 

Table 4 
Average pixel values and standard deviations (SD) of actual evapotranspiration (ET), considering the N cover fertilizing levels (0–250 kg ha− 1) and sources (nitrate and 
urea) for the analyzed phenological stages (V6, V10, PF, and FF), in the municipality of Nossa Senhora das Dores, state of Sergipe, Northeast Brazil.   

Actual evapotranspiration – ET (mm d− 1) 

N levels 
Date 

PSa 0Ntb 50Nt 100Nt 150Nt 200Nt 250Nt Mean 

July 11 V6 1.96 ± 1.23a 1.97 ± 1.24a 2.08 ± 1.28a 1.98 ± 1.31a 2.33 ± 1.30a 2.12 ± 1.31a 2.07 ± 1.28 
July 21 V10 2.88 ± 1.21a 2.90 ± 1.20a 3.06 ± 1.10a 2.92 ± 1.15a 2.88 ± 1.06a 2.90 ± 1.05a 2.92 ± 1.13 
August 04 PF 4.26 ± 1.21a 4.10 ± 1.48a 4.12 ± 1.45a 4.10 ± 1.37a 4.07 ± 1.31a 4.04 ± 1.32a 4.12 ± 1.46 
August 11 FF 4.54 ± 1.76a 4.39 ± 1.58a 4.35 ± 1.63a 4.44 ± 1.57a 4.37 ± 1.39a 4.35 ± 1.51a 4.41 ± 1.57 

Mean – 3.41 ± 1.35a 3.34 ± 1.38a 3.40 ± 1.37a 3.36 ± 1.35a 3.41 ± 1.27a 3.35 ± 1.30a 3.38 ± 1.36   

Actual evapotranspiration - ET (mm d− 1)  
N levels 

Date 
PS 0Urc 50Ur 100Ur 150Ur 200Ur 250Ur Mean 

July 11 V6 1.96 ± 1.23a 2.19 ± 1.28a 2.33 ± 1.30a 2.27 ± 1.26a 2.32 ± 1.32a 2.30 ± 1.32a 2.23 ± 1.28 
July 21 V10 2.88 ± 1.21a 2.86 ± 1.19a 3.00 ± 1.13a 3.07 ± 1.13a 3.08 ± 1.10a 2.91 ± 1.00a 2.97 ± 1.13 
August 04 PF 4.26 ± 1.21a 4.35 ± 1.51a 4.29 ± 1.44a 4.32 ± 1.33a 4.27 ± 1.33a 4.13 ± 1.38a 4.27 ± 1.47 
August 11 FF 4.54 ± 1.76a 4.44 ± 1.61a 4.41 ± 1.74a 4.53 ± 1.58a 4.51 ± 1.62a 4.46 ± 1.36a 4.48 ± 1.61 

Mean – 3.41 ± 1.35a 3.46 ± 1.40a 3.51 ± 1.40a 3.55 ± 1.33a 3.55 ± 1.34a 3.45 ± 1.27a 3.49 ± 1.37  

a PS: Phenological stages. 
b Nt: Nitrate. 
c Ur: Urea. V6 – Vegetative stage with six leaves per plant, V10 – Vegetative stage with ten leaves per plant, PF – Reproductive pre flowering, and FF – Reproductive 

full flowering. ET rates with the same letter in each line indicate no significant differences from each other at 5% (pairwise comparisons using the Tuckey HSD post-hoc 
test performed by group with four repetitions for each PS). 

A. Teixeira et al.                                                                                                                                                                                                                                



Remote Sensing Applications: Society and Environment 22 (2021) 100514

9

During the FF stage (August 11, DOY 223), the highest ET rates were 
for the treatment with no N cover fertilizing (0NtUr) and for 150Ur. 
Regarding all corn plots, the average pixel values for Ur were only 2% 
higher than those for Nt. The previous 10-day P and ET0 values were 
respectively of 12.0 and 36.0 mm, resulted in a climatic water deficit of 
24.0 mm, which was not so strong to drop the ET rates, due to the still 
high root-zone moisture levels. The ETr values were above 1.00 for both 
N cover fertilizing sources, but averaging 1.03 and 1.04 for Nt and Ur, 
respectively, again indicating good water storage in the root-zone from 
the previous rainier period at the highest soil cover conditions. 

ET rates were affected by crop development but according to the 
Tukey’s HSD post-hoc test, by the same letter in each line, there were no 
significant differences among N cover fertilizing levels and sources in-
side each specific PS. Their magnitudes were most affected by variations 
on root-zone moisture levels, which in turn depend on the weather 
conditions and the ET partitions into transpiration (T) and soil evapo-
ration (E), making difficult to distingue the effects of N treatments inside 
a PS, because of the alternated magnitudes of T and E according to soil 

cover (Fandiño et al., 2012; Consoli and Vanella, 2014; Rosa et al., 2016; 
Longo-Minnolo et al., 2020). 

The high ET SD values indicated variabilities in the root-zone 
moisture and soil cover conditions, which affected the ET partitions, 
as the pixel sizes are of only 4 cm in a large amount of 6000 pixels 
involving mixed drier and moistier conditions favoring T or soil E from 
corn canopies or bare soil, respectively. Teixeira et al. (2014a) applying 
the SAFER algorithm in rainfed corn crop from Central West Brazil with 
MODIS images, found annual ET SD value of 0.80 mm d− 1, 58% of our 
average one, because of the low-resolution images (250 m) not sepa-
rating very well corn plants and bare soil as in case of the 4-cm reso-
lution of the Sq images. 

Under well corn root-zone moisture levels, the ET at potential rates 
(ETp) can be obtained by selecting the pixel values under these condi-
tions, and the crop coefficients (Kc) estimated as the ratio of ETp to ET0 
(Teixeira et al., 2014b). Then, by doing this selection, and considering 
all N cover fertilizing treatments, Kc ranged from 0.75 to 1.35, inside the 
standard tabulated values reported by Allen et al. (1998) and the ones 
found by Dejonge et al. (2012) for corn crop. In North western China, 
modelling and field measurements in corn crop retrieved average daily 
ET of 3.5 mm d− 1 (Ding et al., 2013), close to our averaged value. These 
Kc and ET similar values among the current results and those from 
literature bring confidence for estimating ET from SAFER applications 
with aerial camera onboard a RPA. 

3.3. Biomass production 

Fig. 8 shows the spatial distribution, average pixel values, and 
standard deviations (SD), for the daily values of corn biomass produc-
tion (BIO), considering the analyzed phenological stages (PS) during the 
year 2017. 

As for ET, it is also clearly perceived spatial and temporal variations 

Table 5 
Two-way ANOVA considering interactions between 2 nitrogen (N) sources (ni-
trate – Nt and urea – Ur), 11 N levels (0–250 kg ha− 1), and 4 phenological stages 
– PS (vegetative with six leaves – V6, vegetative with ten leaves – V10, pre- 
flowering – PF, and Full Flowering – FF), for actual evapotranspiration – ET.  

Actual Evapotranspiration - ET (mm d− 1)  

df F Value Pr > F Significance 

N sources and levels 1 2.271 0.134 ns 
Phenological Stages 3 403.124 <2e-16 *** 
Interaction 3 1.028 0.382 ns 
Residuals 168    

Note: Pr < 0.05 is statistically significant at 5 percent significant level; ns = not 
significant; * Pr ≤ 0.05, ** Pr ≤ 0.01, *** Pr ≤ 0.001. 

Fig. 8. Spatial distribution, average pixel values, and standard deviations (SD), for the daily pixel rates of corn biomass production (BIO), during four analyzed 
phenological stages (PS) in 2017. V6 – Vegetative stage with six leaves per plant (July 11, DOY 192), V10 – vegetative stage with ten leaves per plant (July 21, DOY 
202), PF – reproductive stage pre flowering (August 04, DOY 216), and FF – reproductive full flowering (August 11, DOY 223). 
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on BIO pixel values in the images from Fig. 8, but in this case more 
noticeable the effects of canopy development, for all N cover fertilizing 
treatments. Comparing the representative images of the V6 and FF 
stages, BIO rates raised 4.4 folds. However, differently from ET, which 
rates are also influenced by soil evaporation at good soil moisture con-
ditions, the spatial variations rapidly decreased as the canopies devel-
oped, with SD values dropping from 97% in V6 to 40% of the average 
BIO pixel values already in the V10 stage. 

To assess BIO differences for each of the eleven N cover fertilizing 
treatments inside the analyzed PS, the 6000-pixel averages and SD 
values in the center of each corn plot were also considered. Besides corn 
BIO rates being related to the climatic water balance they also depend on 
solar radiation interception by plants for photosynthetic activities. Thus, 
to assess BIO we considered P, ET0, and RG ten-day period values prior 
the RPA flight dates. 

Table 6 presents average BIO and SD values, according to the N cover 
fertilizing levels and sources with four repetitions for the rainfed corn 
crop, together with the results of the pairwise comparison by group, 
using the Tuckey HSD post-hoc test performed for each PS, while Table 7 
shows detailed results of the ANOVA test for BIO. 

In the V6 stage (July 11, DOY 192), the highest BIO values were for N 
cover fertilizing level of 100 kg ha− 1 for both Nt and Ur N sources, 130% 
of those for the 0NrUr control treatment. However, from the Tuckey 
HSD post-hoc test, there were no significant differences for N levels from 
50 to 200 kg ha− 1. Considering the average values for this PS, BIO rates 
for Ur were only 2% higher than those for Nt. Although the 10-days 
previous climatic water excess of 36.0 mm. The low RG values around 
16.0 MJ m− 2 d− 1 and low canopy development for radiation intercep-
tion reducing transpiration during this PS, were not in favor for high BIO 
rates. 

During the V10 stage, the corn plots with N cover applications at 150 
kg ha− 1 for both sources (150NtUr) presented the highest BIO rates, 
above respectively 28 and 23% of those for the N cover fertilizing con-
trol treatment (0NtUr). According to the Tuckey HSD post-hoc test, the 
highest difference among treatments was for 150Nt. Averaging all plots, 
BIO values with Nt cover applications were only 1% higher than those 
with Ur. In this PS, according to the previous climatic conditions there 
was water deficit (P – ET < 0) of 11.0 mm, but the ETr values above 0.98 
for both N cover fertilizing sources indicated good root-zone moisture 
levels. However, the still low RG average of 18 MJ m− 2 d− 1 limited 
somewhat the BIO rates, even at increasing soil cover conditions. 

In the PF stage, the highest BIO values for Nt source happened 
already with N cover fertilizing at 50 kg ha− 1 (50Nt), while for Ur, this 
was at 250 kg ha− 1 (250Ur), above respectively 20 and 10% of the 0NtUr 
control treatment, the largest differences according to the Tuckey HSD 
post-hoc test. Considering all N cover fertilizing levels, the average BIO 
rate for Nt was 4% above of that for Ur. The previous water excess in the 
10-day climatic water balance of 21.0 mm, maintained the ETr values 
above 1.02 for both N cover fertilizing sources, with RG averaging 19.0 
MJ m− 2 d− 1. The conditions of increasing solar radiation interception by 
the canopies and high root-zone moisture levels promoted high BIO 
pixel values, above 200 kg ha d− 1 for all non-zero N cover fertilizing 
levels. 

During the FF stage, the highest BIO rates were for both 50Nt and 
50Ur treatments, above respectively 22% and 12% of the 0NtUr control 
one, with both treatments presenting the highest statistical differences, 
according to the Tuckey HSD post-hoc test. In average, the Nt source 
promoted BIO rates 3% higher than those for Ur. The previous 10-day P 
and ET0 values promoted a climatic water deficit of 24.0 mm, but the 
good root-zone moisture levels, with ETr values around 1.04 for both N 
cover fertilizing sources, together with a continuously increase on solar 
radiation interception as consequence of crop development, with RG 
averaging 20.0 MJ m− 2 d− 1, increased the BIO values to the highest level 
among the analyzed crop stages. 

The FF stage presenting the maximum BIO values agrees with 
Taghvaeian et al. (2012) and Zhang et al. (2019), who found maximum 
values by using remote sensing vegetation indices in corn crop when the 
canopies were fully covering the soil. On the other hand, the RG 

Table 6 
Average pixel values and standard deviations (SD) for biomass production (BIO), considering the N cover fertilizing levels (0–250 kg ha− 1) and sources (nitrate and 
urea) for the analyzed phenological stages (V6, V10, PF, and FF), in the municipality of Nossa Senhora das Dores, state of Sergipe, Northeast Brazil.  

N levels 
Dates 

Biomass production – BIO (kg ha− 1 d− 1) 

PSa 0Ntb 50Nt 100Nt 150Nt 200Nt 250Nt Mean 

July 07 V6 40 ± 41a 51 ± 45c 52 ± 47c 50 ± 49c 50 ± 52c 44 ± 49b 48 ± 47 
July 21 V10 105 ± 64a 118 ± 67b 115 ± 65b 134 ± 66c 120 ± 61b 121 ± 61b 119 ± 64 
August 04 PF 192 ± 22a 230 ± 102c 221 ± 100b 222 ± 94b 215 ± 92b 217 ± 93b 216 ± 100 
August 11 FF 200 ± 111a 244 ± 101c 206 ± 105b 215 ± 101b 228 ± 88b 222 ± 96b 219 ± 100 

Mean – 134 ± 60a 161 ± 79c 149 ± 79b 155 ± 78b 153 ± 73b 151 ± 75b 151 ± 78 

Biomass production - BIO (kg ha− 1 d− 1) 
N levels 

Dates 
PS 0Urc 50Ur 100Ur 150Ur 200Ur 250Ur Mean 

July 07 V6 40 ± 41a 50 ± 46b 51 ± 49b 50 ± 46b 51 ± 49b 50 ± 51b 49 ± 47 
July 21 V10 105 ± 64a 117 ± 67b 117 ± 65b 129 ± 66b 121 ± 63b 121 ± 58b 118 ± 64 
August 04 PF 192 ± 22a 210 ± 103b 210 ± 98b 218 ± 92c 209 ± 92b 211 ± 95c 208 ± 100 
August 11 FF 200 ± 111a 224 ± 103c 205 ± 110b 215 ± 102b 211 ± 102b 215 ± 87c 212 ± 103 

Mean – 134 ± 60a 150 ± 80b 146 ± 81b 153 ± 77b 148 ± 77b 149 ± 73c 147 ± 79  

a PS: Phenological stage. 
b Nt: Nitrate. 
c Ur: Urea. V6 – Vegetative stage with six leaves per plant, V10 – Vegetative stage with ten leaves per plant, PF – Reproductive stage pre flowering, and FF – 

Reproductive stage full flowering. BIO rates with the same letter in each line are not significantly different from each other at 5% (pairwise comparisons using the 
Tuckey HSD post-hoc test performed by group with four repetitions for each PS). 

Table 7 
Two-way ANOVA considering interactions between 2 nitrogen (N) sources (ni-
trate – Nt and urea – Ur), 11 N levels (0–250 kg ha− 1), and 4 phenological stages 
– PS (vegetative with six leaves – V6, vegetative with ten leaves – V10, pre- 
flowering – PF, and Full Flowering – FF), for biomass production – BIO.  

Biomass Production - BIO (kg ha− 1 d− 1)  

df F Value Pr > F Significance 

N sources and levels 1 10.206 0.00167 ** 
Phenological Stage 3 886.542 <2e-16 *** 
Interaction 3 0.146 0.93219 ns 
Residuals 168    

Note: Pr < 0.05 is statistically significant at 5 percent significant level; ns = not 
significant; * Pr ≤ 0.05, ** Pr ≤ 0.01, *** Pr ≤ 0.001. 
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increases in August in the current study increased the photosynthetic 
activity, which together crop development favoring transpiration 
brought BIO to maximum values (Yang et al., 2019). According to Kang 
et al. (2002) and Driscoll et al. (2006), transpiration promote high levels 
of photosynthetic activities, increasing BIO, under good root-zone 
moisture levels, what agrees with our results. 

From Tables 4 and 6, it is noticed that N cover fertilizing did not 
significantly affect the ET rates, while BIO followed the development of 
leaf areas with increases on transpiration rates, being ET much related 
with its partition into transpiration and soil evaporation (Lon-
go-Minnolo et al., 2020), which in turn are dependent on soil cover and 
PS stage (Rosa et al., 2016). Campos et al. (2018) and Twohey et al. 
(2019), by using remote sensing measurements, confirm high correla-
tions between BIO and transpiration in both irrigated and rainfed corn 
crop, as the soil evaporation does not contribute to BIO. 

As in case of ET, Teixeira et al. (2014a) applying the SAFER algo-
rithm in rainfed corn crop from Central West Brazil with MODIS images, 
found annual BIO SD value of 39 kg ha− 1 d− 1, 50% of our average one, 
because of the 250-m low-resolution images causing pixel contamina-
tions, which are reduced in case of our 4-cm resolution images. For ET 
and BIO, the soil moisture is considered through ETr (Eq. (8)), but for 
BIO, the introduction of fp (Eq. (12)), related to radiation interception by 
canopies, accounts for the effect of plant transpiration. Thus, the dy-
namic effects of the N cover fertilizing levels on water and vegetation 
conditions by using the remote sensing parameters should be better 
understood throughout the WPBIO index along the corn crop stages. 

3.4. Water productivity assessments 

Under water scarcity scenarios, it is desirable good corn yield levels 
but under low water consumption, in such way that should not have no 
significant reductions on BIO at ET bellow ETp. This is the importance of 
WP assessments under different N cover fertilizing levels. Regarding the 
corn PS, we analyzed the WP dynamics in terms of BIO (WPBIO), while 
with the availability of actual yield (Ya) data and up scaling ET and BIO 
remote-sensing parameters, we could also evaluate WP for the growing 
season (GS) based on Ya (WPYa ) for each N cover fertilizing treatment. 

3.4.1. Dynamics on water productivity 
Taking into account the ratio of BIO to ET for the 6000 pixels in the 

center of each corn plots (see Fig. 1), for the eleven N cover fertilizing 
treatments with averages of four repetitions, we carried out the WPBIO 
assessments considering the four analyzed PS. 

Table 8 presents WPBIO average and SD values, considering the N 
cover fertilizing levels and sources with four repetitions in the rainfed 
corn crop, together with the results of the pairwise comparison by group, 
using the Tuckey HSD post-hoc test performed for each PS, while Table 9 
presents detailed results of the ANOVA test for WPBIO. 

In the V6 stage, the highest WPBIO values were for N cover fertilizing 
treatments of 50 kg ha− 1 for both N sources, Nt and Ur, respectively 
above 27% and 12% above the control ones (0NtUr). The reasons for 
these highest values were the lowest ET rates, as BIO ones were high (see 
also Tables 4 and 6). N cover fertilizing with Nt retrieved WPBIO values 
6% higher than those for Ur, because the higher ET rates for Ur source. 
The BIO values for Ur did not differ from those the control (0NtUr), 
according to Tuckey HSD post-hoc test. Due to low RG levels affecting 
BIO together with the lowest soil cover by canopies for radiation 
interception, WPBIO in this PS presented the lowest values comparing 
with the other stages. 

During the V10 stage, the plots N cover fertilizing at 150 kg ha− 1 

presented the highest WPBIO rates for both Nt and Ur source, above 
respectively for 26% and 15% of the 0NtUr control treatment, with 
significant statistical differences according to the Tuckey HSD test. The 
main reason was the highest BIO values, as for ET there were no 

Table 8 
Average pixel values and standard deviations (SD) of water productivity based on biomass production (WPBIO), considering the N cover fertilizing levels (0–250 kg 
ha− 1) and sources (nitrate and urea), for the analyzed phenological stages (V6, V10, PF, and FF), in the municipality of Nossa Senhora das Dores, state of Sergipe, 
Northeast Brazil.  

N levels 
Dates 

Water Productivity based on biomass production – WPBIO (kg m− 3) 

PSa 0Ntb 50Nt 100Nt 150Nt 200Nt 250Nt Mean 

July 07 V6 2.04 ± 0.34a 2.59 ± 0.40b 2.50 ± 0.44b 2.53 ± 0.42b 2.15 ± 0.53a 2.08 ± 0.45a 2.31 ± 0.43 
July 21 V10 3.65 ± 0.42a 4.07 ± 0.51b 3.76 ± 0.55a 4.59 ± 0.53b 4.17 ± 0.52b 4.17 ± 0.52b 4.07 ± 0.51 
August 04 PF 4.51 ± 0.47a 5.61 ± 0.51b 5.36 ± 0.52b 5.41 ± 0.52b 5.28 ± 0.52b 5.37 ± 0.52b 5.26 ± 0.51 
August 11 FF 4.41 ± 0.46a 5.56 ± 0.49b 4.74 ± 0.49a 4.84 ± 0.50a 5.22 ± 0.50b 5.10 ± 0.49b 4.98 ± 0.49 

Mean – 3.94 ± 0.42a 4.46 ± 0.48b 4.09 ± 0.50a 4.34 ± 0.49b 4.20 ± 0.52b 4.18 ± 0.50b 4.15 ± 0.49 

Water Productivity based on biomass production – WPBIO (kg m− 3) 
N levels 

Date 
PS 0Urc 50Ur 100Ur 150Ur 200Ur 250Ur  

July 07 V6 2.04 ± 0.34a 2.28 ± 0.42a 2.19 ± 0.46a 2.20 ± 0.45a 2.20 ± 0.43b 2.17 ± 0.51b 2.18 ± 0.43 
July 21 V10 3.65 ± 0.42a 4.09 ± 0.47b 3.90 ± 0.49b 4.20 ± 053b 3.93 ± 0.49b 4.16 ± 0.53b 3.99 ± 0.49 
August 04 PF 4.51 ± 0.47a 4.83 ± 0.51b 4.90 ± 0.52b 5.05 ± 0.54b 4.89 ± 0.51b 5.11 ± 0.54b 4.88 ± 0.51 
August 11 FF 4.41 ± 0.46a 5.05 ± 0.52b 4.65 ± 0.48b 4.75 ± 0.50b 4.68 ± 0.49b 4.82 ± 0.52b 4.72 ± 0.49 

Mean – 3.94 ± 0.42a 4.06 ± 0.48a 3.91 ± 0.49b 4.05 ± 0.51b 3.92 ± 0.48b 4.07 ± 0.53b 3.94 ± 0.48  

a PS: Phenological stage. 
b Nt: Nitrate. 
c Ur: Urea. V6 – Vegetative stage with six leaves per plant, V10 – Vegetative stage with ten leaves per plant, PF – Reproductive stage pre flowering, and FF – 

Reproductive stage full flowering. WPBIO values with the same letter in each line are not significantly different from each other at 5% (pairwise comparisons using the 
Tuckey HSD post-hoc test performed by group with four repetitions for each PS). 

Table 9 
Two-way ANOVA considering interactions between 2 nitrogen (N) sources (ni-
trate – Nt and urea – Ur), 11 N levels (0–250 kg ha− 1), and 4 phenological stages 
– PS (vegetative with six leaves – V6, vegetative with ten leaves – V10, pre- 
flowering – PF, and Full Flowering – FF), for water productivity based on 
biomass production – WPBIO.  

Water productivity based on BIO - WPBIO (kg m− 3)   

df F Value Pr > F Significance 

N sources and levels 1 52.20 1.67e-11 *** 
Phenological Stage 3 2181.42 <2e-16 *** 
Interaction 3 1.02 0.385 ns 
Residuals 168    

Note: Pr < 0.05 is statistically significant at 5 percent significant level; ns = not 
significant; * Pr ≤ 0.05, ** Pr ≤ 0.01, *** Pr ≤ 0.001. 
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significant differences among treatments. Considering all corn plots, 
WPBIO values for Nt source were only 2% higher than those for Ur. Still 
low both RG levels restricted somewhat the BIO values and then WPBIO in 
this PS, even with increasing soil cover by canopies for radiation 
interception. 

In the PF stage, the highest WPBIO pixel values were for the 50Nt and 
250Ur treatments, respectively 24 and 13% higher than the control N 
treatment (0NtUr), presenting statistical differences according to the 
Tuckey HSD test. The main reason was high BIO rates, highlighting those 
for the Nt source. Considering the averages for all corn plots, Nt source 
promoted WPBIO values 8% higher than those for Ur, mainly due the 
lower Nt ET rates. This PS was characterized as the one of the highest 
WPBIO, because of the coupled effect of the previous climatic water 
excess maintaining high ETr values, together with RG and soil cover 
increases for radiation interception, favoring the BIO rates. 

In the FF stage, the highest WPBIO values were for N cover fertilizing 
level at 50 kg ha− 1 for both Nt and Ur N sources, above 25 and 15% of 
the control treatment (0NtUr). The highest values were again for Nt 
applications (6% higher than those for Ur). The climatic water deficit 
did not drop ET to affect WPBIO values below those of the previous PS, as 
their BIO rates were not significantly different under high both ETr 
values and radiation interception levels. 

According to the WPBIO values from Table 8, there were variations 
among N cover fertilizing treatments due to root-zone moisture, crop 
development, and RG values. These variations together with soil stains 
and germination failures made sometimes difficult to understand the 
effects of N cover fertilizing treatments on ET and BIO pixel variations, 
and then on WPBIO, inside a PS. However, considering the four 

repetitions for each N cover fertilizing treatments, it is clearly noticed 
from the statistical analyses, that the N cover at 150 kg ha− 1 for both, Nt 
and Ur sources, should be the best option for having good corn yields 
while promoting water saving, avoiding N leaching to the ground water. 

3.4.2. Growing season water productivity 
Having actual yield (Ya) data available (weight of grains) for each N 

cover fertilizing treatment, besides WPBIO, it was also possible to carried 
out WPYa assessments for the whole growing season (GS), up scaling the 
ratio of ET to ET0 – ETr (Eq. (8)) and the fraction of the photosyntheti-
cally active radiation that is absorbed by the corn canopy – fp (Eqs. (12) 
and (15)). 

We considered ETr = 0.30 for the Sowing (S) stage and ETr = 0.50 for 
the harvest (H) stage following Allen et al. (1998) and Teixeira et al. 
(2014b). From the Full Flowering (FF) to Harvest (H) stages we took an 
average to infer a representative value from the Grain Filling (GF) to 
Physiological Maturation (PM) transition stages (see also Table 2). The 
suitability of using interpolated vegetation indices to follow crop stages 
has been demonstrated by Mateos et al. (2013). Thus, curves were built 
relating six ETr values with DDac for each N cover fertilizing treatment 
(Fig. 9): 

The assumption of the same ETr values for the S and H stages for all N 
cover fertilizing treatments is plausible, as in the S stage there was no 
corn plants and in the H stage, they were under senescence conditions. 
Low ETr values indicate the degree of water stress (Lu et al., 2011), and 
as the curves depicted in Fig. 9 shows values bellow the standard corn Kc 
values (Venancio et al., 2021), it is clear some degree of root-zone 
moisture stress along the corn GS, which should have affected 

Fig. 9. Relationships between the ratio of actual (ET) to reference (ET0) evapotranspiration values (ETr = ET/ET0), and the corn accumulated degree-days (DDac), 
considering different nitrogen (N) cover fertilizing treatments. N levels of 0, 50, 100, 150, 200, and 250 kg ha− 1, through nitrate (Nt) and urea (Ur) N sources. 
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somewhat WPYa (Trout et al., 2017; Wang et al., 2017; Liao et al., 2019). 
The resulted ETr values from the equations represented by the curves 

from Fig. 9 were multiplied by ET0 calculated by using the weather data 
close to the experimental area resulting into GS ET rates for each N cover 
fertilizing treatment. After estimating the average ETr values, Eq. (15) 
was used to estimate the GS fp values. Thus, with the GS values of fp, ETr, 
ET0, RG, and Ya, corn WPBIO and WPYa at the GS timescale were assessed 
applying Eq. (14). 

Fig. 10 shows the GS values of ET, BIO, and Ya, considering all N 
cover fertilizing levels and sources for the studied rainfed corn crop. 

The highest GS ET value was for the 250Ur treatment (394.6 mm 
GS− 1), but only 0.4 mm GS− 1 above of that for the control (0NtUr) 
(Fig. 10a). The highest GS Ya and BIO values were for the N cover 
fertilizing level of 150 kg ha− 1 for both N sources (averages of 9.8 and 
17.7 t ha− 1 GS− 1, respectively), but not significantly different from those 
for 200 and 250 kg ha− 1 (only 1–2% above). The mean GS values for Ya 
and BIO were 8.77 and 8.74 t ha− 1 GS− 1, and 17.32 and 17.28 t ha− 1 

GS− 1, respectively for Nt and Ur N sources. 
Considering the harvest index (HI) as the ratio of Ya to BIO, it ranged 

from 0.37 to 0.55 for the respective treatments without N cover fertil-
izing (0NtUr) and those for N cover applications at 150 kg ha− 1 for both 
N sources, averaging 0.50 and 0.51, for Nt and Ur, respectively. This HI 
range agrees with, who found values from 0.20 to 0.56 for corn under 
different growing conditions in South Romania. Nyolei et al. (2019) 
reported average corn ET, Ya and BIO respective values of 331.0 mm, 
3.2 t ha− 1, and 6.8 t ha− 1, yielding an average HI of 0.47, coupling 
Sentinel and Landsat 8 images in the north-eastern part of Tanzania. 
However, this last study involved different corn growth stages and pixel 
contaminations with other crops. 

As we did not have ET and BIO field measurements, to validate the 
modelling equations, the similarity of HI values between our study and 
those from literature bring confidence for the WP results, as we had 
availability of accurate Ya data from mechanical harvester machine. 
These similarities and accurate grain yield measurements, together with 
calibration of the modelling equations taking Landsat measurements as 
reference, compensated somewhat the lack of advance field energy and 
water balance measurements, allowed reliable WP comparisons among 
different N cover fertilizing treatments for the studied rainfed corn crop. 

The GS WPBIO andWPYa average values for nitrate (subscript Nt) and 
urea (subscript Ur) N sources are presented in Table 10: 

The highest BIO and Ya values together with low ET rates for Nt 
source favored slightly higher WP values when comparing with those for 
Ur source. The top WP values were for N cover applications at 150 kg 
ha− 1, however stabilizing after this level for both N sources. 

The average WPYa from Table 10 is higher than that found by Nyolei 
et al. (2019) of 0.97 kg m− 3 in Tanzania, but these last authors attributed 
their lower values to low yields obtained in the mid and lowlands areas 
of their study region. However, Teixeira et al. (2014a), using MODIS 
images, reported an average value of 2.1 kg m− 3 for rainfed corn crop in 

the state of Mato Grosso, Central West Brazil, while for pivot irrigated 
corn, Teixeira et al. (2014b) using Landsat 8 images found WPYa average 
of 2.0 kg m− 3 in the state of São Paulo, Southeast Brazil. 

The stabilization at N cover fertilizing at 150 kg ha− 1, means that 
farmers applying N above this level will lose money and increase the risk 
of more N leaching to the ground water. Considering the WPYa values and 
the corn grain prices in 2017, the monetary counterparts was around U 
$0.50 m-3 for both N sources with the recommended N cover fertilizing 
level at 150 kg ha− 1. However, the advantage of the price of kg of Ur 
being 63% of that for Nt is summed with its lower N leaching rates, 
promoting less environmental problems. 

Corn rainfed WP monetary values in the current study are inside of 
those for irrigated corn in Southeast Brazil (0.34–0.68 US$ m− 3) 
(Teixeira et al., 2014b) and for irrigated dwarf coconut in Northeast 
Brazil (0.23–0.58 US$ m− 3) (Teixeira et al., 2019), but higher than those 
for other arable crops around the world (0.10–0.20 US$ m− 3) (Sakthi-
vadivel et al., 1999), and much lower than for table grapes (3.4–8.8 US$ 
m− 3, respectively) and mangos (2.2–5.1 US$ m− 3) in Northeast Brazil 
(Teixeira et al., 2009). However, besides these differences, other issues 
are important to consider in the rainfed corn WP assessments, as for 
example, the overall production costs and environmental impacts. 

4. Conclusions 

The joint applications of the SAFER algorithm and the Monteith’ RUE 
model with radiation measurements in the ranges of visible and near 
infra-red bands of images from a camera onboard a remotely piloted 
aircraft (RPA) together with weather and yield data, allowed the rainfed 

Fig. 10. Growing season (GS) values for the water productivity (WP) components. Actual evapotranspiration – ET (a); biomass production – BIO and actual yield – Ya 
(b), for nitrogen (N) cover fertilizing levels (0–250 kg ha− 1) and sources from nitrate (subscript Nt) and urea (subscript Ur). 

Table 10 
Average pixel values for the water productivity based on biomass production – 
BIO (WPBIO) and based on actual yield – Ya (WPYa ), considering cover fertilizing 
with different nitrogen (N) levels and sources for the rainfed corn growing 
season (GS), in the municipality of Nossa Senhora das Dores, state of Sergipe, 
Northeast Brazil.  

Water Productivity based on biomass production – WPBIO(kg m− 3)  

N levels 
N sources 

0 50 100 150 200 250 Mean 

Nitrate – Nt 4.14 4.39 4.43 4.51 4.47 4.48 4.40 
Urea – Ur 4.14 4.36 4.40 4.48 4.45 4.46 4.38 

Mean 4.14 4.38 4.42 4.50 4.46 4.47 4.39 

Water Productivity based on actual yield – WPYa (kg m− 3)  
N levels 

N sources 
0 50 100 150 200 250 Mean 

Nitrate – Nt 1.55 2.18 2.25 2.49 2.43 2.45 2.23 
Urea – Ur 1.55 2.16 2.24 2.48 2.41 2.43 2.21 

Mean 1.55 2.17 2.25 2.49 2.42 2.44 2.22  
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corn water productivity assessments at high spatial resolution (4 cm), 
with detections of the effect of N cover fertilizing under different levels 
and sources in Northeast Brazil. 

Although differences on actual evapotranspiration (ET) levels were 
not significant among nitrogen (N) cover applications ranging from 0 to 
250 kg ha− 1, due proportional variations in ET partition into soil 
evaporation and canopy transpiration along the phenological stages, 
differences on biomass production (BIO), promoted different water 
productivity (WP) values, stabilizing at N cover fertilizing levels of 150 
kg ha− 1 for both nitrate (Nt) and urea (Ur) N sources. This means that 
with N cover fertilizing levels above this N level will promote money 
losses and increase risks of negative environmental effects of N leaching 
rates to the ground water. 

Considering the slightly lower WP values for Ur N cover fertilizing 
applications comparing with those for Nt ones, and the advantage of the 
lower price and less leaching problems for Ur, this N source at 150 kg 
ha− 1 is recommended to avoid environmental problems, while saving 
money. 

The successfully applications of the models with the reference crop 
and region encourage the replication of the methods with aerial cameras 
onboard a remotely piloted aircrafts (RPA) in other WP studies, being 
probably necessary only calibrations and validations of the modelling 
equations for specific environmental conditions. 
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