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ABSTRACT: 

One of the main applications of satellite images is the characterization of terrestrial coverage, that from the use of classification 
techniques, allows the monitoring of spatial transformations of the terrestrial surface, this process being directly associated with the 
potential of classifiers to differentiate the most diverse data present in the images, a fundamental aspect for the use of remote sensing 
data. This article evaluates the performance of different classification algorithms in the mapping classes of land use and land cover in 
medium resolution images from the Landsat 8 program, the test area of this test corresponds to the Municipality of Tasso Fragoso 
(State Maranhão - Brazil), stands out for a typical vegetation cover of the Cerrado Biome, presents similar spectral patterns that induce 
high difficulty of class differentiation automatically. In this paper, were analyzed the machine learning algorithms C5.0 and Random 
Forest in comparison to traditional classification algorithms being the Minimum Distance and the Spectral Angle Mapper. The best 
results were generated by Random Forest with 90% accuracy and Kappa of 0.861, followed by the C5.0 algorithm. Traditional 
algorithms, on the other hand, presented a lower precision rate with global accuracy, not exceeding 75% of accuracy and Kappa varying 
between 0.507 and 0.627. The accuracy of the producer showed that all the algorithms, in major or minor tendency presented difficulties 
in to differentiate the areas, with rates of mistakes varying between 25 and 75%, being the main, the confusion with pastoral areas. 

1. INTRODUCTION

The data associated to the covering and land use enables the 
detailed comprehension of the spatial organization, and are 
considered basilar information to many environmental and 
social economical applications, being it a thematic of relevant 
interest in the most diversified areas (Azzari, Lobell, 2017; Jin 
et al. 2017). The panoramic vision and the repeatability of the 
orbital images enables the obtaining of historical and current 
information and represent an important resource to the 
monitoring and natural resources, mainly in the regions of great 
extension, obtaining results with bigger quickness in relation to 
the field analysis with a cost relatively low (Li et al. 2016; 
Espinosa, Schröder, 2019). 

The information extraction represents a challenge, many factors, 
such as the complexity of landscape, scale of information, image 
processing and approaches of classification may affect the 
success of a classification (Lu, Weng, 2007). And its analysis is 
directly associated to the development image classification 
techniques (Phriri et al. 2018; Noi, Kappas, 2018; Mishra et al., 
2020). 

The classification of an image consists into attribute meaning to 
a pixel set depending on its characteristics numerical, that is, 
giving the pixel a thematic class, solo, water, vegetation, from 
similar spectral properties, and represent them in map, table, or 
graphics (Mastella, Vieira, 2018). The automatic image 
classification is a complex process that can be affected by many 
factors. It is directly associated with the ability of the algorithms 
in the distinction of different patterns present in the image, 
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which represents a challenge, especially in environments with 
high spectral homogeneity, which directly interferes in the 
result. 

With the increase of the availability of satellite images, with 
better temporal, radiometric and spatial resolution, caused the 
development of algorithms that overcame rudimentary 
classifiers, based only on the spectral characteristics of the 
images. During the last decade, the mapping of land covering 
using data resulting from orbital sensors was driven by a change 
of paradigm in the processes of classification, pointing out the 
appearance of machine learning algorithms (Maxwell et al. 
2018), which present as alternatives to the traditional parametric 
algorithms (Crowson et al. 2020). 

These groups of algorithms enable digital classification as of use 
of great volumes of data in a time relatively low and excellent 
performance in differentiation of classes with elevated similarity 
in remote sensing (Foody, 2002; Li et al. 2014). Methods such 
as decision and regression trees, vectors of changing, random 
forests are among the most used for the classification of remote 
sensing data and have been spreading mainly due to its capacity 
of processing time which allows automating the spatial analysis 
(Deng et al. 2019; Duro et al. 2012). 

In this way, the general objective of this paper is to evaluate and 
compare the performance of classification algorithms: Minimal 
Distance (MD); Spectral Angle Mapper (SAM), Random Forest 
(RF), C5.0 Decision Tree for the mapping of classes of land 
covering to the cerrado biome as of Landsat 8 images. 
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2. MATERIAL AND METHODS 

The municipality of Tasso Fragoso (Figure 1) owns a territorial 
extension of 4.382 Km², belonging to Micro region of Gerais de 
Balsas, is located in the south portion of the Maranhão state, 
having the coordinates 43°0'19.18"W; 42°40'7.96"W and 
3°53'14.07"S, 03°18’22”S, and limited in the North with the 
municipality of Sambaíba; in South with municipality of Alto 
Parnaíba and in the West with the municipality of Balsas 
(Maranhão State) in the East with Piauí state (IBGE, 2017). 
 

 
 

Figure 1. Localization of Tasso Fragoso municipality – MA 
(Brazil). 

 
 
With a predominantly agricultural economy, the municipality 
owns a gross domestic product per capita of R$ 116.445,6, 
highlighting in state scenario with the second major grains 
producer, predominating the growing of cotton and soybean. In 
the of 2019 the soybean growing represented 70% of all the area 
destined to tillage of the municipality, which represented 19% of 
all produced in Maranhão state, with more than 10 million tons 
(IBGE, 2019). 
 
For this study, it was used two scenes from the Landsat - 8 
satellite, OLI sensor point/orbit 221/65 and 221/66, bands 2, 3 
and 4 (visible) are used; 5 (near infrared); 6 and 7 (medium 
infrared); from August 22nd, 2020, percentage of clouds below 
5% per scene and with up to 1% in the area of interest, freely 
available in the American Geological Survey-USGS. 
 
2.1 Methodological Procedures 

The methodology was based in techniques of digital application 
treatment of images as described by Florenzano (2011) which 
corresponds to: i) atmospheric correction; ii) merge; iii) contrast 
enhancement, iv) combined images; v) extraction of attributes, 
vi) collection of samples, vii) classification and validation. 

2.1.1 Atmospheric correction 

It was used the Dark Object Subtraction - DOS (Chaves Jr et al. 
1988), to reduce the effect of atmospheric scattering, using only 
parameters related to the digital number of the image. At DOS it 
is assumed the existence of pixels with null values, such as 
shadows caused by topography or clouds, which present values 
higher than expected, because of the effect of atmospheric 
scattering, and that reference for the correction of atmospheric 
scattering from the subtraction of these values by the image, and 
the results obtained in the atmospheric attenuation process in 
different targets, mainly in the blue and green bands, as defined 
by Maia (2017).  
 

2.1.2 Contrast enhancement 

This process aims to reduce the effects of pixel grouping in 
delaminated regions of the histogram, which cause low variance 
and generate low contrast problems between the present features 
and has as objective to improve the visual information present in 
the images but changes the gray scale and changes the pixel 
grouping limits within the histogram (Meneses and Almeida, 
2012). It was applied linear enhancement filter was applied in 
which it offers a distribution of the gray level values according to 
a linear function of 1st following equation 1. 
 

Y = (x − minor) ∗ ቀ
ଶିଵ

୫ୟ୨୭୰ି୫୧୬୭୰
ቁ  (1) 

 

Where,  The Y value represents the pixel value in the new 
histogram. 
x corresponds to the gray level value of the original 
image. 
n represents a radiometric resolution of the sensor. 
larger and smaller are the original limits of the values 
in the histogram. 

 

2.1.3 Segmentation 

The segmentation of images constitutes a process of subdivision 
into discrete regions, from the grouping of pixels that have 
similar spectral and spatial characteristics. It was used the 
technique for growing regions (Baatz, Shape, 2000) that starts 
from a “seed” pixel and groups pixels with similar characteristics, 
defined using similarity criteria that correspond to the Euclidean 
distance of the pixel values that will compose each segment, and 
area that consists of the minimum size that each segment 
presents. For this test, 0.30 similarity and an area of 10 pixels 
were established, which corresponds to a minimum 90 hectares 
for the composition of a segment. 
 

2.1.4 Attribute extraction 

Extracting attributes from Remote Sensing images is an 
important step in the classification process, and its function is 
to identify aspects about the structure arrangement of surfaces 
and their relations with their neighbors, because they show the 
differences and similarities between the segments or objects, 
which go beyond the values of digital numbers. It was extracted 
of 26 attributes for each image band, being 13 spatial attributes 
and 5 spectral and 8 textural, which generated 156 attributes. 
Aiming to minimize the effects of high existent correlation 
among generated attributes, it was used the technique of Main 
Analysis Components, in order to reduce the total level of 
information which generated a total of 15 main non correlated 
components.  
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2.1.5 Classification  

It was evaluated four supervised algorithms of classification, 
being two of the type of decision tree: Random Forest (Breiman, 
2001) C5.0 (Quinlan, 1992); and two of traditional approaching: 
Minimal Distance and Spectral Angle Mapper. The choose of 
algorithms was associated to the availability and usability, bearing 
in mind that these ones already are implemented in packages of 
algorithms of a diversity of geographical information. The C5. is 
a nonparametric binary classifier of decision tree, considered 
simple and intuitive (Maxwell et al. 2018), which has as principle 
of classification a sequential classification of attributes of samples 
using data of gaining to determinate the best attribute to define 
classes, forming only a decision tree, that will be the base to the 
classification (Quinlan, 1992). 
 
Random Forest –RF is part from a set of algorithms of classifier 
per conjunct (Li et al. 2014) uses as intelligent strategies of 
classification considering different samples randomly selected in 
order to train various distinct decision trees which combined, 
supply elevated accuracy (Zhang, Yang, 2020; Melville et al. 
2018). The MD corresponds to a supervised parametric classifier 
which uses the Euclidian distance to associate a segment to a class, 
considering only the medium of the attributes of the used samples, 
which may present elevated error rate in environments of elevated 
homogeneity. Whereas the SAM is a supervised algorithm which 
seeks to analyze spectral similarities of image that must be 
classified to a one spectral library of reference created from the 
images, and in areas with similar spectrally aims may cause 
significant reduction of matching (Lenzi, Nunes, 2016). 
 
2.1.6 Collection of samples 

To train the classification algorithms used in this test, 801 
samples were used, coming from a set of 1000 points created 
randomly using the radom points tool present in TerraView 5.5.1 
and distributed at the municipal limit. All points belonging to the 
same segment were excluded, thus seeking to avoid repetition of 
the data. The identification of the class to which each sample 
belongs was subsidized by the image Landsat false composition 
color RGB-453 (Infrared, medium infrared and red), as shown in 
Sano et al. (2009). The randomness of the sample data caused a 
difference in the total of samples per class, with 163 samples 
being used for forest formations; 179 samples for country 
formations; 399 samples for temporary cultures; and 60 samples 
for hydraulic bodies, this difference in the sample quantity by 
class was caused by the spatial distribution that each class 
presented in the area. 
 
The choice of the class that each sample would represent was 
guided by an interpretation key adapted from Sano et al. (2009), 
according to criteria of spatial and phytophysiognomics 
variability, these being: i) Forest formations presented a reddish 
color, varying from dark red to medium red, a heterogeneous 
pattern with a rough texture and without defined shape. It 
represents dense to medium sized vegetation areas corresponding 
to riparian forest in the area's river channels; ii) Country 
formations showed coloration ranging from green to bluish green 
and brown, heterogeneous pattern and rough texture without a 
defined shape, and may also present reddish spot pigmentation, 
composed of low-density grasses and shrubs, mixing small 
vegetation; iii) Temporary crops have homogeneous patterns, 
well-defined regular shape, and smooth texture, presented 
coloration ranging from blue to brown, and may also have 
reddish, magenta, or white tones, depending on the vegetative 
stage of the culture; iv)Water bodies it presented a color ranging 
from bluish, greenish to black, with a sinuous shape (channels) 
or not, smooth texture and very uniform pattern. 

2.1.7 Evaluation of performance 

The accuracy of the classifications and the level of performance 
of the classifiers were analyzed from the elaboration of the 
confusion matrix (Congalton, Green, 1991), which corresponds 
to a classic and binary model of performance evaluation in 
validating the classification of satellite images (Andrade et al. 
2014). 891 points were used chosen from a universe of 1000 
points created at random and spatially distributed to cover more 
than 85% of the area, 212 points for forest formations, 258 points 
for rural formations, 324 points for temporary crops and 38 points 
for the water bodies. As a methodological criterion, all points 
belonging to the same segment were excluded, thus avoiding 
repetition of the data, and influencing the result. 
 
The identification of the classes in which the validation points 
represent was performed manually based on a set of CBERS 4A 
images (INPE, 2020) that has a spatial resolution of 8 meters, 
these were subjected to a fusion process to present a spatial 
resolution of 2 meters using the pan sharpening image fusion 
algorithm. The validation samples were cross tabulated with the 
results of the classifications and supported the creation of the 
confusion matrix, the correctly classified data were classified 
positioned on the main diagonal, and the incorrectly classified 
data were inserted at the top and bottom of the matrix and made 
it possible to evaluate the kappa performance indices (2), Global 
Accuracy (3), producer precision (4) and user (5). 
 

𝑘 =
 ∑ ௫

ೝ
సభ ି∑ ௫శ௫శ


సభ

మି∑ (௫శ∗ೝ
సభ ௫శ)

  (2) 

 

𝐸 = ቀ
∑సభ

ೝ ௫


ቁ    (3) 

 

𝐾 = ቀ
∗ି∗శ

∗శିశ∗శ
ቁ  (4) 

 

𝐾௨ = ቀ
∗ିశ∗శ

∗శିశ∗శ
ቁ  (5) 

 
Where  n is the total number of used samples 

k is the value of kappa index 
𝐸 is the global index of classification 
𝐾 represents the accuracy of producer by class 
𝐾௨ is the accuracy of user per class 
∑ୀଵ

 𝑥 is the sum of main diagonal 
∑ (𝑥𝑥)

ୀଵ  represents the product of the sum of the line 
by the column of each representative class  
𝑛 is the total number of samples correctly classified of 
the class 
k; 𝑛ା is the total of classified samples of the class  
k; 𝑛ା is the total number of collected samples of the class k 

 
The global accuracy indicates the percentage of successes 
relating the total of samples correctly classified and with total 
number of used samples (Mao et al. 2020; Zhang, Yang, 2020). 
Foody (2002) highlights that a classification must reach elevated 
success rate, with indexes superior to 85% to be considered 
acceptable, indicating that smaller rates indicate levels of 
confusion by producer and user inconsistent. Whereas the Kappa 
coefficient shows the statistic differences between the 
classifications and the map of reference. According to Silva 
Júnior et al. (2014), the kappa index presents vantages about the 
global accuracy due to incorporate all the elements of the 
confusion matrix, being sensible to the variations of errors of 
consumer and producer. The results were compared to the values 
of performance established by Landis and Koch (1997), in which 
attributes qualitative features to the levels of classification 
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performance, that indicate the quality of the thematic map to the 
obtained kappa value, being: Very bad (<0.000); Bad (0.00 – 
0.200); Regular (0.201-0.400); Good (0.401-0.600); Very Good 
(0.601-0.800); and, Excellent (>0.801). 
 
It was analyzed if the performance of the classification generated 
in relation to the reference data are significant, using the Z test 
(6) with a confidence rate of 95%, as shown by Congalton, Green 
(1991).  

𝑍 =


ටఙ(ೖ)
మ

  (6) 

 
Where k is correspondent to the value of the kappa index 

generated for the classification 
𝜎()

ଶ  is the sampling of the generated kappa coefficient 
 
The A 𝜎()

ଶ  is calculated following the equation 7 as described by 
Amaral et al. (2009). 
 

𝜎ଶ =
ଵ


ቂ

ఏభ(ଵିఏభ)

(ଵିఏమ)²
+

ଶ(ଵିఏభ)(ଶఏభఏమିఏయ)

(ଵିఏమ)³
+

(ଵିఏభ)²൫ఏరିସఏమ
మ൯

(ଵିఏమ)⁴
ቃ (7) 

 
Where: 

𝜃ଵ =
∑ x୧୧

୰
୧ୀଵ

𝑋ଶ
   

 

    𝜃ଷ =
∑ 𝑋ଵା𝑋ାଵ


ୀଵ

𝑋ଶ
     

 

𝜃ଷ =
∑ x୧୧( 𝑋ା

୰
୧ୀଵ + 𝑋ା)

𝑋ଶ
       

 

𝜃ସ =
∑ ∑ 𝑋


ୀଵ


ୀ (𝑋ା + 𝑋ା)²

𝑋³
 

 
According to Landis and Kock (1977) IF Z≥ 𝑍ఈ/ଶ the 
classification is significantly better than a random distribution 
where α/2 is the level of confidence of 1,96 in the two sides of 
the curve. In the Z test is the number of liberty grades is assumed 
to be infinite. 
 
In order to evaluate if there are statistical differences of obtained 
the kappa indexes, was used the Z test (Congalton, Green 1991), 
that evaluate the level of static significance between the 
performance of the classifications (8). 
 

𝑍 =
మିభ

ටఙೖమ
మ ାఙ಼భ

మ
  (8) 

Where   𝐾ଵis the value of kappa of the classification 1 
𝐾ଶ represents the value of the index kappa 
𝜎ଶ is the variance of the kappa index referent to the 
clarifications 1 and 2 

 
 

3. RESULTS AND DISCUSSION 
 
3.1 Visual Analysis and Patterns of Land Covering 

The classifications generated by the used algorithms (figure 2), 
showed differences visually perceptible in the spatial pattern of 
distribution of classes. The resulting classifications of the 
algorithm’s RF and C.5.0 present representations visually near to 
the covering of the real land present in the area. Whereas the 
resulting classifications of the algorithms SAM and MD showed 
visual confusions, with elevated overestimation of the classes 
forest covering and hydrous bodies, which is also evidenced when 
patterns of distribution are observed by class, as shown in table 1. 

 Area in Km² 

 RF C5.0 MD SAM 
FF 1240.06 1067.21 2111.73 1163.35 
FC 1857.9 1868.47 1386.11 1781.27 
CT 1242.43 1362.46 829.81 845.78 
CH 46.52 82.4 55.31 590.31 

Table 1. Spatial dsitribtion of use and land covering according 
to the tested algorithms. 

 
The country formations presented patterns of spatial distribution 
relatively near in the classifiers C5.0, RF and SAM, covering 
approximately 42%, 42% and 40% of the municipality area. This 
class presented significant reduction when is observed the 
resulting classification of the MD algorithm where it covered 
only 31% of the area. Similar pattern is noted with the forest 
formations, SAM, C5.0 and RF that cover respectively 26%, 
24% and 28%, whilst the classification by MD represents 18% 
of the entire area. The temporary crops represent 28% and 31% 
in the classifications by RF and C5.0. Whereas the 
classifications SAM and MD represented only 18% and 19% of 
the total covering. 
 
Whereas the hideous bodies presented constant area to the 
classifiers RF, C5.0 and MD were corresponded to little more 
than 1% of the area. Only the classifier SAM presented 
overestimation with covering rates superior to 13% of the area, 
indicating elevated rates of mistakes by the producer and 
consumer mainly for the algorithms SAM and MD. 
 

 
 

Figure 2. Use and land covering generated from the algorithms 
of classification algorithms C5.0, RF, SAM and MD. 
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3.2 Analysis of Performance 

All the classifications presented acceptable values of kappa 
varying between 0.50 and 0.870, and the global accuracy 
presented fluctuations from 66 to 90% (table 2). The tests of 
hypothesis in function of the results of the kappa indexes and 
kappa variance (table 2), showed that all the classifiers are 
significantly bigger than zero, with a level of confidence of 
95%. The algorithm RF is significantly better than the other 
ones (59.56), followed by C5.0 (49.3780), this result 
corroborates with the values of kappa index and smaller 
variance, which also showed the superiority of these algorithms 
before the others. 

 

 
Kappa 

Global 
Accuracy 

Var. Kappa Quality 

RF 0.8617 90.68 0.000209272 Excellent 
C5.0 0.7832 85.52 0.000304507 Very good 
SAM 0.6276 74.64 0.000455307 Very good 
MD 0.5057 66.33 0.000470549 Good 

Table 2. Performance of the algorithms of classification. 
Source: data from research, 2020. 

 
The Z test also showed that all classifications have statistical 
differences, with the biggest differences between the RF and MD 
classifiers, which showed the highest level of significance. 
Among RF over C5.0, there is a slight superiority (table 3). 
 

Classifier Z p-value 
RFxC5.0 3.4629 0.0002672* 
RFxDM 13.6537 0.0000000* 

RFxSAM 9.0774 0.0000000* 
C5.0xDM 9.9679 0.0000000* 

C5.0xSAM 5.6419 0.0000000* 
DMxSAM 4.0091 0.0000305* 

Table 3. Test de significance of the kappa coefficient, 
Significant to 0.05 of probability, in other words, if H0: Kappa1- 

Kappa2 = 0; H1: Kappa1 - Kappa2< 0. Source: data from 
research, 2020. 

 
The RF classifier presented the best rates for both global 
accuracy (90.68%); and kappa index (0.861) and lower 
statistical variance, evidencing also when analyzing the levels 
of statistical significance presented by Z Test. Similar results 
were found by, Li et al. (2014), when supervised and 
unsupervised algorithms were compared with Landsat 5 and 8 
data, where Random Forest presented the best performance 
parameters, with emphasis on the segmentation addressing, 
with an accuracy greater than 0.800. Ge et al. (2020) when 
comparing only algorithms for machine learning and deep 
learning also showed a high consistency of classification from 
the use of RF with a rate of 96.20% accuracy with a rate lower 
than neural networks. 
 
According to Andrade et al. (2014) the superiority of the 
classifiers by machine learning, as shown by Kappa and E.G, is 
directly associated with the model of class identification and 
separation. Whilst the MD and SAM, define fixed rules for class 
differentiation, requiring sample data that have relatively 
homogeneous information with normal distribution of attributes 
(Zanotta et al. 2019); C5.0 and RF do not depend on normal 
distribution, focusing on the structure of the training data it is 
assumed pre-established hypotheses. Even though with 
acceptable kappa index and global accuracy, classifications 
showed high rates of confusion when were analyzed conditional 
kappa values, producer, and user accuracy, as shown in the 
confusion matrices in tables 4, 5, 6, 7. 

  Reference  
  FF FC CT CH Σ 

C
la

ss
if

ic
at

io
n  FF 217 5   222 

FC 3 191 3  197 

CT  72 359  431 

CH  0 0 41 41 

Σ 220 268 362 41  

Table 4. Matrix of confusion of the algorithm Random Forest. 
 

  Reference  

  FF FC CT CH Σ 

C
la

ss
if

ic
at

io
n  FF 210 4   214 

FC 9 149   158 

CT  115 362  477 

CH 1   41 42 

Σ 220 268 362 41  
Table 5. Matrix of confusion of the C5.0 algorithm. 

 

  Reference  

  FF FC CT CH Σ 

C
la

ss
if

ic
at

io
n  FF 203 118 1 2 324 

FC 16 42 54  112 

CT  108 307  415 

CH 1  39  40 

Σ 220 268 362 41  
Table 6. Matrix of confusion of the MD algorithm. 

 

  Reference  

  FF FC CT CH Σ 

C
la

ss
if

ic
at

io
n  FF 198 29   227 

FC 17 119 55  191 

CT  106 307  413 

CH 5 14 0 41 60 

Σ 220 268 362 41  
Table 7. Matrix of confusion of the SAM algorithm. 

 
When is analyzed the errors of commission and omission (table 
8 and 9), it is noted that, to a greater or lesser extent, all the 
algorithms showed relatively high performance for three of the 
four classes analyzed with rates above 85% of accuracy. As with 
the Kappa indices and global accuracy, the RF and C5.0 
classifications achieved better results with lower error rates for 
both producer and user (consumer). 
 

 Classifiers 
Class RF C5.0 MD SAM 

FF 0.99 0.95 0.92 0.90 
FC 0.71 0.56 0.16 0.44 
CT 0.99 1.00 0.85 0.85 
CH 1.00 1.00 0.95 1.00 

Table 8. Level of accuracy of the producer. 
 

 Classifiers 
Class RF C5.0 MD SAM 

FF 0.98 0.98 0.63 0.87 
FC 0.97 0.94 0.38 0.62 
CT 0.83 0.76 0.74 0.74 
CH 1.00 0.98 0.98 0.68 

Table 9. Level of accuracy of the producer. 
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The dissipated hydrous bodies presented better performance in 
the RF, C5.0 and MD classifications. Only one classification by 
MD classifier had a production error of 5% from the producer 
and 2% from the user. This rate is not observed for a classification 
by SAM with a user (consumer) error greater than 30%, which 
indicates a high overestimation of this class. 
 
The accuracy of producer in Forest formations was greater than 
90% in all classifications, however this parameter is not observed 
when is analyzed the user (consumer) accuracy, for the 
classification by MD with user error of more than 10%, which 
indicates even overestimation 5%. 
 
The Temporary crops obtained a high producer accuracy in the 
classifications by C5.0 with 100% accuracy, however the user 
error was 24%, indicating that of the classified areas for this 
class, only 76% correspond to reality, which indicates 
overestimation of this class for this classifier. In the 
classifications by MD and SAM, the temporary cultures 
presented a low performance for both producer and user, which 
indicate a high underestimation. 
 
When it is analyzed the incosnsie4stences per class, the lowest 
hit rate was for country formations, with an omission error of 
85%, 56% and 44% in the classifications by MD; SAM and C5.0 
respectively, while the user (consumer) error showed an error of 
63%, 38 and 6%. Only the RF classification showed acceptable 
accuracy rates for this class with a producer and user above 95%. 
 
When the levels of confusion were approached among the 
classes, it is noted that the biggest inconsistencies were for the 
rural formations, which presented a high error rate with the 
temporary cultures, varying between 26 and 42%. With highlight 
to the classifier’s SAM, MD and C5.0. 
 
This factor is associated with the high spectral proximity that 
these classes present. The rural formations of the Cerrado Biome 
are characterized by a vegetation cover space usually composed 
of grasses and shrubs, which do not fully cover the soil, providing 
high reflectance, patterns close to areas destined for cultivation. 
 
 

4. CONCLUSION 
 
Bearing in mind that the objective of this study was to analyze 
the performance between the classification algorithms, for the 
mapping of land cover and use, it can be affirmed that the kappa 
measures had quite similar behavior, which is not evident when 
observing global accuracy measures. 
 
The RF algorithm showed better performance when was 
compared to the algorithms C5.0, MD and SAM, with a value 
considered excellent. C5.0 and MD were classified as very good, 
and SAM qualified as good. However, there was a significant 
inconsistency in the classification, which indicates an 
improvement in the classification parameters. However, high 
visual confusion was observed in three of the four classifiers 
analyzed, given that this was not evidenced by the global 
accuracy and kappa indexes, indicating a need to improve the 
classification parameters. 
 
The Z test showed that all classifiers presented strong 
significance in relation to the reference samples, with significant 
superiority of the RF when compared with the classifications 
resulting from the other tested algorithms. The superiority of the 
RF algorithm also evidenced by the kappa values and global 
accuracy. 

The MD and SAM classifications presented the greatest 
inconsistency both visually and by the indices tested, with a 
significant overestimation of the classes rural formations, forest 
formations and water bodies and underestimation of the 
temporary cultures classes, with a rate higher than 30%, this data 
can be explained by the high spectral proximity between classes, 
in addition to this associated with similarity parameters used to 
differentiate classes at the time of classification. 
 
Despite showing the high potential of the classifiers for machine 
learning such as Random Forest and C5.0, which are generally 
available in open access geographic information systems such as 
the Orfeo toolbox and Geodma, it was evidenced in this study, 
the need for improvement of training and validation sampling 
parameters when used in medium resolution images, such as 
Landsat data, aiming that, despite presenting an accuracy rate 
greater than 85%, significant confusion was observed between 
the classes. This data shows the need for an improvement in the 
classification adjustments of the tested algorithms, also 
considering the representative attributes of the classes. 
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