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Abstract
Chemical, physical and biological soil attributes can facilitate soybean root growth

in greater volume and depth in the soil, which can minimize yield reduction caused

by water deficit. Soil management can contribute positively or negatively to these soil

attributes. The aim of this work was to evaluate the root growth and crop performance

of soybean, in response to chemical, physical and biological changes after subsoiling

at different depths. At the R5 phenological stage, trenches were made for sampling

and soil collection for chemical, physical and biological analysis and root growth was

carried out. At V5, V7, R2 and R5 stages, plants were collected to evaluate height,

leaf area and dry mass. At V5, stage number and dry mass of the nodules were evalu-

ated. Subsoiling increased pH and Ca, and decreased Al in the soil, resulted in higher

relative density and did not affect in mechanical penetration resistance compared to

non-subsoiled soil. Basal respiration and soybean nodulation were higher in the sub-

soiled soil. Up to 15 cm depth, there were 87.91% of the total root dry mass and 78.79%

of the total root volume. Initial and final plant growth were the same in subsoiled and

non-subsoiled soil. Number of nodules in the subsoiled soil was 28% higher than in

the non-subsoiled soil. Under these study conditions, subsoiling provides lower root

growth but benefits grain yield.

1 INTRODUCTION

Soybean [Glycine max (L.) Merril] yield has been constantly
increasing due to research and genetic improvement advances.
With this knowledge about this crop, it is possible to guaran-
tee vigorous plants with high productive potential. However,
although techniques and information have improved, unfavor-
able environmental conditions may limit yield.

Abbreviations: FC, field capacity; OM, organic matter; PR, penetration

resistance; PWP, permanent wilting point; RD, relative density; TP, total

porosity.
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Yield is sensitive to environmental conditions, especially
temperature and availability of light and water (Mundstock &
Thomas, 2005). Among these conditions, water deficit is the
most limiting, with the greatest negative impact on produc-
tion (Casagrande et al., 2001). Under stress conditions, plants
trigger various changes in biochemistry, physiology and mor-
phology (Souza, Catuchi, Bertolli, & Soratto, 2013). One
reaction of the plant to water deficit is the stomatal closure,
which results in a lower rate of CO2 assimilation (Pirasteh-
Anosheh, Saed-Moucheshi, Pakniyat, & Pessarakli, 2016),
due to the water potential reduction in the cells (Silva, Magal-
hães Filho, Sales, Pires, & Machado, 2018). Water deficit can
modify photosynthetic pigments and gas exchange, impair-
ing the plant growth and productive potential (Anjum et al.,
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2011). Negative impacts on yield of up to 50% can be achieved
on soybean plants under stress conditions (Lisar, Motafakker-
azad, Hossain, & Rahman, 2012).

Roots absorb the water required for plants full functioning
(Lazarovitch, Vanderborght, Jin, & Van Genuchten, 2018).
Therefore providing adequate conditions for root growth in
volume and depth in the soil can be an alternative to reduce
stress caused by water deficit (Gewin, 2010). This is because
having a higher amount of roots means higher soil volume
exploited, that is, more roots in contact to the soil solu-
tion (Balbinot et al., 2018), increasing nutrient uptake (Goss,
Miller, Bailey, & Grant, 1993).

The root phenotype plasticity study in the growing envi-
ronment is important because this characteristic can have
a great impact on crop yield (Postma, Schurr, & Fiorani,
2014). The soil-plant-atmosphere interaction can be under-
stood when assessing the plants root system, and may con-
tribute to higher yield by improving management practices
that aimed to increase soil exploration by roots for water
and nutrients (Bordin et al., 2008; Fan, McConkey, Wang, &
Janzen, 2016).

Soil chemical, physical and biological attributes can neg-
atively affect root growth. Chemical constraints are due to
the lack of essential elements and/or presence of toxic ele-
ments, while physical restraint is mainly due to higher soil
density, which increases penetration resistance and modi-
fies soil porosity (Doussan, Pagès, & Pierret, 2003). In the
absence of soil microbiological organisms, the process of
organic waste decomposition and nutrient cycling may be
compromised (Hungria, Franchini, Brandão-Junior, Kaschuk,
& Souza, 2009).

In addition to the interference in root growth, pH can
change the nutrient absorption capacity, which may lead to
mineral deficiency or toxicity by metals such as aluminum
(Brown, Koenig, Huggins, Harsh, & Rossi, 2008; Gentili,
Ambrosini, Montagnani, Caronni, & Citterio, 2018). Cal-
cium may favor cell elongation and expansion, increasing root
growth (Fageria & Moreira, 2011). Soil organic matter is a
natural fertilizer with biological properties not found in inor-
ganic fertilizers (Zandonadi & Busato, 2012) that affect root
architecture and nutrient uptake (Herder, Isterdael, Beeck-
man, & Smet, 2010). Phosphorus provides plant energy, sig-
naling and stimulating root hairs development (Sousa, Gomes,
Souza, & Vasconcelos, 2010). Soil physical components are
usually a consequence of soil density, because higher soil den-
sity results in compacted soil, which increases root penetration
resistance (Bengough, Mckenzie, Hallett, & Valentine, 2011),
reduces the soil volume explored by the roots, and the contact
with the soil solution (Valentine et al., 2012). It also reduces
the soil porosity, which consequently increases cryptopores
and decreases soil macropores and micropores (Veiga, Rein-
ert, Reichert, & Kaiser, 2008).

Core Ideas
• The highest volume and mass of soybean roots are

in the first centimeters of the soil.
• The growth of soybean roots presents a positive

correlation with soil porosity and respiration.
• Subsoiling improved soil chemical attributes.

When soil compaction is observed, management operations
to break the compacted layer are necessary. This interference
commonly occurs through scarifiers or subsoilers provided
with cutting discs in front of the stems to prevent straw incor-
poration into the soil (Seki, Seki, Jasper, Silva, & Benez,
2015). Subsoiling is indicated for mechanical soil decom-
paction in the sub-surface layer (Macedo, Monteiro, & Santos,
2016), which generates cracks and provides surface rough-
ness, reducing superficial water runoff (Secco & Reinert,
1997) without soil revolving, considering the minimum culti-
vation principle (Macedo et al., 2016).

In southern Brazil, there is a common presence of Latosols
that are generally correlated with Oxisols (American soil tax-
onomy) and Ferralsols (WRB system). Latosols comprise
soils at advanced weathering stages, with consequent con-
centration of 1:1 clay minerals and oxides (Schaefer, Fab-
ris, & Ker, 2016). The soil compaction is a common and
constant problem on most farms that use no-till system and
have this type of soil. In no-tillage, there is absence of soil
tillage and heavy machine traffic over time, favoring the natu-
ral reconsolidation of soil particles (Reichert, Suzuki, Rein-
ert, Horn, & Hakansson, 2009). Thus, subsoiling could be
required to decrease soil density (Marasca, Lemos, Silva,
Guerra, & Lanças, 2015; Souza, Souza, Cooper, & Tormena,
2015). In Red Latosol, with clayey texture the subsoiling
positively affected rice yield (Pinheiro, Stone, & Barrigossi,
2016), in red-yellow latosol with sandy texture, there was a
decrease in PR values caused by the subsoiling equipment’s
rod action (Gonçalves, Lopes, Cavalieri-Polizeli, Fiedler, &
Stahl, 2019). The subsoiling in clay soil, improves the physi-
cal properties of soil, reduces root density in surface soil, and
increases deep root growth, which alleviates root crowding in
the upper soil layer and enhances water and nutrient absorp-
tion in the deeper soil layer of maize plants (Sun et al., 2017).

The hypothesis is that subsoiling improves soil physical
structure and consequently modifies soil chemical and bio-
logical aspects, benefiting root growth in greater soil volume
and depth. Thus, in order to understand root growth in soil
alterations, the objective of this work was to evaluate the root
growth and crop performance of soybean in response to soil
chemical, physical and biological changes at different depths
under subsoiling.
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2 MATERIALS AND METHODS

2.1 Site description

The soybean cultivar used was 53i54. The experiment was
conducted on a farm in the 2017/2018 harvest, in Coxilha,
Rio Grande do Sul, Brazil (28◦07´ S, 52◦17´ W; 721 m alti-
tude). The soil was classified as humid dystrophic Red Latosol
(Streck et al., 2008), with 11% sand, 21% silt and 68% clay,
more than 2 meters depth. The climate is temperate, with
harsh winter and high summer temperatures. The average
annual temperature is 17.5◦C and the average annual rainfall
is 1,787.8 mm.

2.2 Experimental design

The experimental design was in randomized blocks with five
replications, with different depths and presence of subsoiling.
Each plot was 15 meters long for 15 seeding lines, with the
plots following the seeding line one after the other.

The sowing was performed on 17 Oct. 2017. Seeds were
inoculated with Bradyrhizobium japonicum, treated with
insecticides and fungicides. The base fertilization was 15 kg
ha−1 of N, 87 kg ha−1 of P2O5 and 21 kg ha−1 of K2O.
Due to the high solubility of KCl and possible damage to
seed or seedling development, most of the potassium was
applied before sowing soybean in an amount of 200 kg
ha−1 KCl. During the soybean cycle, rainfall was 360.8 mm
(Figure 1A).

The subsoiling was carried out in 2016 with the Terrus sub-
soiler. The subsoiler had 4 stems that reached 40 cm depth
in the ground and were spaced 60 cm apart. At the time of
subsoiling, the soil was in conditions of adequate humidity,
and 15 days before subsoiling there were no precipitations
(Figure 1B). In this area, there was a perception of physical
problems, due to constant traffic of big machinery. As it is a
tillage with no-tillage system, only at sowing the cutting disc
can reach up to 15 cm depth, so it was observed that the roots
concentrated in the first 15 cm depth, with an angle close to
90◦ due to the soil physical impediment to roots penetrate,
that is why it was subsoiled up to 40 cm depth trying create
conditions for the roots to deepen.

Due to soil characteristics in the experiment region, pro-
viding adequate conditions for root growth up to 40 cm
depth is already considered ideal, since it is a clay soil that
presents great impediment to root growth and deeper subsoil-
ing demands a lot of tractor power and does not portray the
region reality.

Before subsoiling, a dose of calcitic lime 2,000 kg ha−1

with a total neutralizing power (PRNT) of 88%, was applied.
Before subsoiling, this area was cultivated with corn (Zea

mays L.), and after was sown black oats (Avena strigosa
Schreb.), and for the summer crop, soybean. In 2017 black
oats were sown again, and then the soybean evaluated in this
experiment. The subsoiled and non-subsoiled areas received
the same management and were located side by side.

Soybean phenological stages was determined by Fehr and
Caviness (1977) scale. Five and seven nodes on the main
stem with fully developed leaves beginning with the unifo-
liolate nodes, comprises V5 and V7 stages, respectively. The
R2 stage is when there is an open flower at one of the two
uppermost nodes on the main stem with a fully developed leaf.
The R5 stage is when the seed is 3 mm long in a pod at one
of the four uppermost nodes on the main stem with a fully
developed leaf.

2.3 Soil chemical attributes

At the R5 phenological stage, trenches were made for sam-
pling and soil collection for chemical, physical and biological
analysis and root growth, with one trench per repetition, total-
ing 10 trenches. To evaluate the chemical attributes, soil in
the sowing line up to 60 cm depth, in layers of 5 cm, was col-
lected, totaling 12 samples per trench. Hydrogenionic poten-
tial (pH, H2O), aluminum (Al, cmolc dm−3), calcium (Ca,
cmolc dm−3), organic matter (OM, %) and phosphorus (P, mg
dm−3) were determined. Considering that root growth starts
in the sowing line, all the samples were performed in this site.
The pH was determined in water 1: 1, P by the Mehlich I
method, OM by wet digestion, and exchangeable Ca and Al
with KCl 1 mol L−1.

2.4 Soil physical attributes

Soil samples with preserved structure were collected, using
cylinders with 5 cm of diameter and height. Division of the
soil density by the maximum soil density determined rela-
tive soil density. Relative soil density was evaluated because
it considers the maximum soil density that is dependent on
soil texture. The maximum soil density was determined as
the function of the clay content (Marcolin & Klein, 2011),
and soil clay content was determined by the pipette method
(Embrapa, 1997). Total porosity was determined by the equa-
tion proposed by Embrapa (1997). The pores were classified
into macropores (> 0.05 mm), micropores (0.05–0.0002 mm)
and cryptopores (< 0.0002 mm) and were determined by
increasing tensions in porous plate funnels. At 6 kPa (60 cm)
tension the macropores were determined (Embrapa, 1997),
and the cryptopores (1500 kPa) were determined by the
equation that considers the soil clay content (Klein, Baseg-
gio, Madalosso, & Marcolin, 2010). The micropores were
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F I G U R E 1 Rainfall during soybean cycle, corresponded from 1 Oct. 2017 to 28 Feb. 2018 (a) and near the moment of subsoiling,

corresponded from 1 May 2016 to 30 June 2016 (b). Data collected on the experiment site

determined by the difference between the 6 and 1500 kPa
tensions. The penetrometers used in the field presented oper-
ational problems related to the difficulty of maintaining
a constant penetration rate (Moraes, Silva, Zwirtes, Ander-
son, & Carlesso, 2014) and the variation of soil water con-
tent in the various layers (Chancellor, 1977). Due to the diffi-
culties encountered in determining soil mechanical resistance
to field penetration, this should preferably be determined in
the laboratory using an electronic penetrometer. Soil mechan-
ical penetration resistance was determined in the laboratory
using an electronic penetrometer (Marconi MA-933) with a
constant velocity of 0.17 mm s−1, equipped with a 200-N cell
and a cone with 4 mm of base diameter and half-angle of 30◦,
and the data were collected in every second of penetration.
Soil moisture at the moment of penetration was determined
soon after the penetration resistance evaluation, with variation
among the samples. The cylinder with the soil was weighed at
the moment of penetration and after the dry soil. The moisture
under tension of 6 kPa corresponds to the field capacity and
the humidity under 1500 kPa corresponds to the permanent
wilting point, so the difference between both is the amount of
water available to the plants.

2.5 Soil biological attributes

Microbial biomass and soil basal respiration were evaluated as
soil biological indicators, using the colorimetry methodology
developed by Bartlett and Ross (1988). Microbial biomass
analysis consists of fumigated and non-fumigated samples in
the chloroform presence and potassium permanganate as an
oxidizing agent. For basal respiration, 50 g of sieved soil was
used, incubated in glass flasks sealed to absorb CO2 that the
soil released, and had inside it a beaker with 10 ml of NaOH
solution (1 mol L−1). Five days after incubation in dark and
under 25 ± 2◦C of temperature, the beaker was removed and

CO2 contained in the NaOH was precipitated with addition
of 2 ml barium chloride (BaCl2), and excess of NaOH was
titled with HCl solution (0.5 mol L−1), and phenolphthalein
as indicator.

2.6 Root growth

Roots were collected with an iron structure with dimensions of
45 cm by 9.25 cm by 5 cm in length, width and depth, respec-
tively. These dimensions were determined according to row
spacing (45 cm) and plant density of 240,000 plants, which
represents 9.25 cm spacing between plants. The roots were
collected up to 45 cm depth, in 5 cm layers, totaling nine
samples per trench. From 45 cm depth, the roots presence
was practically nonexistent. Trenches were made transversal
of the sowing line, so root collections were made from half
of one interline to half of the other interline (45 cm). Soil
separation from the roots was done by washing with running
water using a 0.7 mm mesh sieve. In the washing some soil
remained in the sieve and then the roots were removed from
the sieve, with tweezers. After this, roots were analyzed in
WinRhizo Software, determining volume, surface area, diam-
eter and root length. These roots were dried at 65◦C for dry
mass determination. Root volume and dry mass were trans-
formed to hectare, considering soil volume collected from
0.00208 m2.

2.7 Vegetative growth and grain yield

In V5, V7, R2 e R5 stages, 10 plants were collected, total-
ing 50 plants per treatment. Plant height, leaf area and dry
mass per plant were evaluated. In V5 stage plants were col-
lected with roots to determine the number and dry mass of
the nodules per plant. Eight lines of 5 m per replicate were
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harvested and determined mass of thousand grains (g) and
grain yield (kg ha−1), with the moisture content corrected to
13%.

2.8 Statistical analysis

Shoot growth, nodulation and yield means were compared
by the Tukey test, and root growth, chemical, physical
and biological attributes were compared by the Scott-Knott
test.

After normality test of means, data were submitted to
analysis of variance (ANOVA). Due to the number of treat-
ments, the shoot growth, nodulation and yield means were
compared by the Tukey test for subsoiled and non-subsoiled
soil, and root growth, chemical, physical and biological
attributes were compared by the Scott-Knott test for different
depths, subsoiled and non-subsoiled soil. The purpose of the
Scott-Knott method is to separate treatment averages into
homogeneous groups, thus minimizing sum of squares within,
and maximizing it among groups without overlapping them.
And when the number of treatments is small, there is no need
to separate by groups, as there is an ease in interpreting the
results.

For both tests, .05 of error probability were considered.
Variables that presented differences between subsoiling treat-
ments were analyzed using Pearson’s correlation coefficient
between soil attributes and root growth variables, at p ≤ .05
and a principal component analysis was performed to identify
which soil attributes influenced root growth.

3 RESULTS

3.1 Chemical attributes

Subsoiling improved soil chemical attributes (Figure 2),
increased hydrogenionic potential (pH) and calcium (Ca) and
decreased aluminum (Al). In the 12 layers evaluated, pH was
equal in 11 to 60 cm of depth, presenting 4.86 of mean, while
the layers 0–5 and 6–10 cm differed from each other, and from
the others, with the highest soil pH values (Figure 2A).

Al content increased with increasing soil depth (Figure 2B).
The lowest amount of Al was found in the 0–5 cm (0.13 cmolc
dm−3) layer, followed by 6–15 cm, with an average 0.44
cmolc dm−3, and from 16 cm depth the Al stabilized with
an average of 0.80 cmolc dm−3. The amount of Al decreased
approximately 40% in subsoiled compared to non-subsoiled
soil.

Calcium decreased with increasing soil depth, stabilizing
from 31 cm depth (Figure 2C). From 0–10 cm depth, the aver-
age Ca was 7.42 cmolc dm−3, from 11–30 cm deep the aver-

age was 4.49 cmolc dm−3 and in the other depths the average
Ca was 2.85 cmolc dm−3. The subsoiled soil presented higher
amount of calcium, with the difference 0.67 cmolc dm−3 com-
pared to the non-subsoiled soil.

The OM behavior was similar to Ca at different depths,
decreasing with increasing soil depth, and the subsoiled soil
presented lower OM than non-subsoiled soil (Figure 2D).
From 0–5 cm depth the amount of OM was 4.24%, while
in the last layer evaluated, the concentration of OM was
1.59%. Thus, a gradient of OM is observed in the soil
profile, and 34.66% of OM was in the 0–15 cm depth
layer.

Phosphorus was the only chemical attribute that showed
interaction between soil management and layers (Figure 2E).
In the 0–15 cm similar P amounts was observed, with an aver-
age of 13.05 mg dm−3, while in the other layers the aver-
age was 2.70 mg dm−3. In subsoiled soil, the 0–5 cm layer
was higher than the 6–10 cm, which was higher from the oth-
ers. Subsoiled soil showed approximately 38% of P amount in
the 0–5 cm layer. However, subsoiled soil presented a lower
amount of P in the 0–5 cm, but increased the amount of this
attribute in the 10–15 cm layer.

3.2 Physical attributes

Subsoiling resulted in a higher relative soil density, which
decreased the soil pore space (Figure 3A, B). Layer of 0–
5 cm had the lowest density, with 0.67 of mean, followed
by the 6–15 cm one, with 0.79 of mean. Relative density
was stabilized from 16 cm of depth, with 0.91 of mean for
the layers.

Soil porosity presented a negative relation with subsoiled
soil, presenting lower mean in comparison to the non-
subsoiled soil (Figure 3B). Total porosity was the inverse of
the relative density, and the 0–5 cm layer presented the high-
est porosity, with 0.63 cm3 cm−3 of mean, followed by the
6–15 cm, with 0.58 cm3 cm−3 of mean. From 16 cm of depth,
total porosity stabilized, with 0.54 cm3 cm−3 of mean for
the layers.

More soil macropores and micropores were found in
the non-subsoiled soil, while the cryptopores did not differ
between subsoiled and non-subsoiled soil (Figure 3C, D, E).
The amount of macropores was higher in the first soil layers
and from 21 cm depth they stabilized (Figure 3C). The micro-
pores were superior in the non-subsoiled soil, but did not dif-
fer between the layers (Figure 3D). Since water available to
plants is the amount of water stored in the micropores, it can
be observed that no difference was found between the layers
for the amount of water available to plants, with an average
of 0.14 m3 m−3 (Figure 3D). Subsoiling impaired the avail-
able water storage to the plants, reducing 0.01 m3 m−3, which
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F I G U R E 2 Chemical attributes in subsoiled and non-subsoiled soils, in the different soil layers.

Hydrogenionic potential (a), aluminum (b), calcium (c), organic matter (d) and phosphorus (e) of subsoiled and non-subsoiled soil, in different

layers, in the soybean R5 stage. Means compared by the Scott-Knott test (p ≤ .05). Horizontal bars represent ± standard error of the mean. Means

followed by the same lowercase letter in the column did not differ from each other in soil layers and means followed by the same capital letter in the

row did not differ from each other for subsoiled and non-subsoiled soils

represents 10 L less water per cubic meter of soil. Cryptopores
was the inverse from the macropores, with higher amounts in
the deeper soil layers. Layer of 0–5 cm presented 0.19 m3

m−3 of mean, while the 6–15 cm layer did not differ and
had 0.225 m3 m−3of mean, while the 16–40 cm layer had
0.264 m3 m−3 of mean and the others had 0.287 m3 m−3

of mean (Figure 3E). The mean of all layers for each pore
class was 0.16, 0.14 and 0.26 m3 m−3 for macropores, micro-
pores and cryptopores, respectively, and the cryptopores cor-
responded to approximately 46% of the total soil pores.

The permanent wilting point was different between the
soils, presenting means of 0.25 and 0.26 m3 m−3 for subsoiled
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F I G U R E 3 Physical attributes in subsoiled and non-subsoiled soils, in the different soil layers. Relative density (a), total porosity (b),

macropores (c), micropores (d) and cryptopores (e) of subsoiled and non-subsoiled soils, in different layers, in the soybean R5 stage. Means

compared by the Scott-Knott test (p ≤ .05). Horizontal bars represent ± standard error of the mean

and non-subsoiled soil, respectively, while field capacity did
not differ between the managements (Figure 4). Subsoiled soil
did not differ from the non-subsoiled soil in the mechanical
penetration resistance (Figure 5). But differed between the
layers, where in 21–60 cm the resistance was the same, with
mean of 3.33 MPa, which represents approximately twice of
the resistance in the first 20 cm of depth.

3.3 Biological attributes

Microbial biomass did not differ between the subsoiling and
non-subsoiling managements; however it was different among
the layers (Figure 6A). It was observed that the upper lay-
ers concentrate the greater microbial biomass. In the first
5 cm depth it concentrated 23.65%, 6–10 cm concentrated



8 MÜLLER ET AL.

F I G U R E 4 Volumetric moisture of permanent wilting point and of field capacity in subsoiled and non-subsoiled soils, in the different soil

layers. Volumetric moisture of subsoiled soil (a) and non-subsoiled soil (b) in different layers, in the soybean R5 stage. Means compared by the

Scott-Knott test (p ≤ .05)

F I G U R E 5 Mechanical penetration resistance in subsoiled and

non-subsoiled soils, in the different soil layers. The table to the right of

the graph corresponds to the mean of the subsoiled and non-subsoiled

soil, in the different layers for penetration resistance (PR) and

volumetric moisture at the moment of the penetration. Means compared

by the Scott-Knott test (p ≤ .05). Horizontal bars represent ± standard

error of the mean. Means followed by the same lowercase letter in the

column did not differ from each other

16.41% and 11–20 cm concentrated 22.18%, totaling in the
first 20 cm depth 62.25% of microbial biomass. Basal respira-
tion of microorganisms decreases with increasing soil depth,
showing approximately 55% of total respiration in the first
20 cm depth (Figure 6B). Subsoiling increased the basal res-
piration in 5.88 mg kg−1.

3.4 Root growth
Subsoiling did not modify root dry mass (Figure 7A).
The sum of the all layers totaled 921.37 kg ha−1, and

619.65 kg ha−1 of this total corresponds to the 0–5 cm of
depth, that means that 67% of the total root dry mass is in the
soil superficial layer. Root volume was similar to the dry mass,
with approximately 48% in the 0–5 cm layer (Figure 7B).
When added, up to 15 cm of depth, 87.91% of total dry mass
and 78.79% of total volume were found. Subsoiling reduced
root volume by 0.19 m3 ha−1, which represents 41% less root
volume. Root surface area per plant was lower in subsoiled
soil, with 35.67 cm−2 of difference (Figure 7C). In the first
15 cm of depth, roots presented approximately 62% of the
surface area. Root diameter per plant showed no difference
between subsoiled and non-subsoiled soil (Figure 7D). With
the soil depth increase, the root diameter decreased. Root
mean diameter from 11 cm was smaller in 2.25 times com-
pared to the 0–5 cm layer. Root length from 11 to 25 cm
depth was higher in non-subsoiled compared to subsoiled soil
(Figure 7E). The total roots length in the sum of depths was
69.28 m in non-subsoiled soil and 51.40 m in subsoiled soil.

3.5 Vegetative growth and grain yield

An equal initial and final plant development was observed in
subsoiled and non-subsoiled soil (Figure 8). In R2 stage, plant
height was 3.92 cm (8.46%) higher, and leaf area per plant was
164.76 cm2 higher in the area of the subsoiled soil (Figure 8A,
B). In V7 stage, plants of the subsoiled soil presented 17.4%
higher plant dry mass (Figure 8C).

Subsoiling benefited the nodules number per plant, and
consequently the nodules dry mass per plant (Figure 9).
Nodules number in the subsoiled soil was 28% higher than
in the non-subsoiled soil (Figure 9A) and this resulted in
an increase of approximately 23% in the nodules mass per
plant (Figure 9B). Subsoiling did not change the mass of a
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F I G U R E 6 Biological attributes in subsoiled and non-subsoiled soils, in the different soil layers. Microbial biomass (a) and basal respiration

(b) of the subsoiled and non-subsoiled soil, in the different layers, in the R5 soybean stage. Means compared by the Scott-Knott test (p ≤ .05).

Horizontal bars represent ± standard error of the mean

thousand grains (Figure 10A), but altered grain yield (Fig-
ure 10B). Grain production was 169 kg ha−1 higher in the
subsoiling area.

3.6 Analysis of Pearson’s correlation and a
principal component

Pearson’s correlation indicates that there was a positive cor-
relation between root growth and phosphorus, organic mat-
ter, calcium, total porosity, macropores and microorganisms
basal respiration (Table 1). That is, the greater presence of
these components in soil depth, greater is the plant’s ability
to present vigorous root growth. Root growth was negatively
correlated with aluminum, relative density and cryptopores.

In the principal component analysis, PC1 explains 73.48%
of the data variance and PC2 explains 19.77% (Figure 11A).
The variables with the highest expression in PC1 are vol-
ume, dry mass, diameter and root surface area, and soil
attributes are basal respiration, carbon mass, phosphorus, cal-
cium and organic matter. In PC2, the root length presented
higher expression among the other variables analyzed. Was
observed that the variables length, volume and roots diameter
are very close to the unit circle, indicating that they are more
representative in relation to the others, which are farther apart.
This analysis also shows the influence of complementary vari-
ables on the root growth variables. The biological attributes,
calcium, phosphorus, organic matter, macropores and soil pH
influenced the root growth. Aluminum, cryptopores, relative
density and soil mechanical penetration resistance influenced
negatively the root growth. We can observe that the depths
from 0 to 15 cm are concentrated in the quadrants with the
highest root growth and the best chemical, physical and bio-
logical attributes of the soil (Figure 11B), while the deepest

layers are in the quadrants that presented physical problems
and aluminum presence. In the subsoil and non-subsoil soil
treatments, the presence of non-subsoil soil in the root growth
quadrants can be more observed, due to the larger number of
samples that presented lower physical problems than the sub-
soil soil (Figure 11C).

4 DISCUSSION

Subsoiling increased relative density, which reflected in lower
total soil porosity. It affects the water availability to the plants
and soil aeration, since macropores are the pores in which
occur the air circulation, micropores are the ones that stor-
age water for plants and the cryptopores retain the water that
is unavailable to the plants (Klein & Libardi, 2002). Soil
physical structure is considered ideal when 50% of its vol-
ume is pore (Schulte & Walsh, 1995), with 1/3 of macrop-
ores and 2/3 of micropores (Kiehl, 1979). However, deter-
mining the amount of pores needed to the fully plant roots
development is complex, because it depends on soil type and
crop. Freddi, Centurion, Beutler, Aratani, and Leonel (2007)
observed that the amount of macropores below 0.10 m3 m−3

allowed root growth of maize (Zea mays L.). In the soils
mean, it is possible to observe that total porosity in all layers
exceeded the 50%, presented at least 0.10 m3 m−3 of macro-
pores, and an amount of micropores below that was consid-
ered ideal by Kiehl (1979), with 0.14 m3 m−3 of mean. Then,
the pores’ class that stores water to plants presented lower
mean for treatments. Relative density presented a difference
between the subsoiled and non-subsoiled soil, and the value
of 0.89 achieved by the subsoiled soil is considered as a con-
dition that may negatively affect plant development in Red
Latosol (Klein, 2006). Root elongation decreases due to lower
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F I G U R E 7 Root growth in subsoiled and non-subsoiled soils, in the different soil layers. Dry root mass per hectare (a), root volume per hectare

(b), surface area per plant (c), root diameter per plant (d) and root length (e) of the subsoiled and non-subsoiled soil, in the different layers, in the R5

soybean stage. Means compared by the Scott-Knott test (p ≤ .05). Horizontal bars represent ± standard error of the mean. Means followed by the

same lowercase letter in the column did not differ from each other in soil layers and means followed by the same capital letter in the row did not differ

from each other for subsoiled and non-subsoiled soils

cell flow and axial cell extension, in the case of mechanical
impedance, giving rise to shorter and fatter cells (Bengough
et al., 2006).

In this study, after 18 months of subsoiling, it was observed
that the evaluated physical attributes did not present positive

alterations in the soil and these alterations are observed in the
superficial layers and not in the subsoil. The positive effects
of subsoiling may be temporary and depend on soil type and
management, and physical attributes may return to their orig-
inal condition (Busscher, Bauer, & Frederick, 2002). One and
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F I G U R E 8 Soybean shoot growth in different phenological stages. Plant height, leaf area per plant dry mass per plant at V5, V7, R2 and R5

stages. Means compared at same phonological stage by the Tukey test (p ≤ .05). Vertical bars represent ± standard error of the mean

F I G U R E 9 Nodulation in soybean at V5 stage.

Number of nodules per plant and dry mass of nodules

per plant. Means compared by Tukey test

(p ≤ .05). Vertical bars represent ± standard error of

the mean

F I G U R E 10 Grain yield of soybean in subsoiled and non-subsoiled soils. Mass of one thousand grains and grain yield per hectare. Means

compared by the Tukey test (p ≤ .05). Vertical bars represent ± standard error of the mean

a half years after subsoiling with conventional tine or winged
tine, little difference was observed in hydraulic conductivity
and air permeability in Pallic Soil in Southland, New Zealand
(Drewry, Lowe, & Paton, 2000). However, there is contra-
dictory information as to the duration of subsoiling effects.
Hénin, Gras, and Monnier (1976) followed the effects of sub-
soiling on 22 types of soils. After a period of 2 to 3 years,
only eight soils presented the operation effects, and in the
other 14 soils, the researcher observed only the presence of
a channel with smooth walls where the subsoiler stem passed.
In soil loam, two-year results indicated that subsoiling broke
up dense soil layers and improved soil properties in the tilled
layer (Wang et al., 2019), while in a sandy clay loam Typical
Haplustox, no positive influences of subsoiling were observed

after one year of this mechanical practice (Minatel, Andrioli,
Centurion, & Natale, 2006).

Subsoiled soil presented lower total porosity, and alter
the pores that store water. This is explained by observa-
tion of the means of permanent wilting point (PWP) and
field capacity (FC) are observed. Permanent wilting point
was higher in the non-subsoiled soil, and this difference was
reflected in the water available to plants. Moisture below
PWP is the unavailable water to plants, because it is strongly
retained by the soil matrix, and roots cannot absorb it,
whereas FC is considered the amount of water after the excess
drains, generally observed two days after rainfall or irriga-
tion, when water remains almost constant at a soil depth
(Kirkham, 2014).
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T A B L E 1 Pearson correlations between root growth and soil chemical, physical and biological attributes that presented difference between

subsoiled and non-subsoiled soils

Variables pH (H2O) P
Organic
matter Al Ca

Total
porosity

Relative
density Macropores Cryptopores

Basal
respiration

Root
volume

ns 0.68* 0.68* −0.34* 0.54* 0.49* −0.54* 0.53* −0.57* 0.67*

Root dry
mass

0.35* 0.73* 0.74* −0.45* 0.69* 0.49* −0.55* 0.57* −0.58* 0.80*

Root
surface

area

ns 0.67* 0.77* −0.30* 0.62* 0.57* −0.57* 0.63* −0.69* 0.73*

Root
diameter

ns 0.62* 0.61* −0.30* 0.51* 0.43* −0.49* 0.62* −0.52* 0.63*

Root length ns 0.38* 0.53* ns 0.36* 0.50* −0.57* 0.53* −0.59* 0.40*

Units: P (mg dm−3); Organic matter (%); Aluminum (cmolc dm−3); Calcium (cmolc dm−3); Total porosity (m3 m−3); Macropores (m3 m−3); Cryptopores (m3 m−3); Basal

respiration (mg kg−1); Root volume (m3 ha−1); Root dry mass (kg ha−1); Root surface area (mm); Root diameter (mm); and Root length (m).
*Significant at the .05 probability level; ns, not significant

F I G U R E 11 Distribution of variables and treatments by principal components. Distribution of variables (a), depths (b) and subsoiled and

non-subsoiled soil (c). In (A): PR, penetration resistance (MPa); RD, relative density; Crypto, Cryptopores (m3 m−3); PWP, permanent wilting point

(m3 m−3); FC, field capacity (m3 m−3); Al, aluminum (cmolc dm−3); pH, hydrogenionic potential (H2O); Micro, micropores (m3 m−3); RL, root

length (m); Macro, macropores (m3 m−3); TP, total porosity (m3 m−3); AS, root surface area (mm); OM, organic matter (%); MB, microbial biomass

(mg kg−1); Ca, calcium (cmolc dm−3); P, phosphorus (mg dm−3); BR, basal respiration (mg kg−1); RV, root volume (m3 ha−1); DR, root dry mass (kg

ha−1); RDia, root diameter (mm). In (B): 0–5 cm (1); 6–10 cm (2); 11–15 cm (3); 16–20 cm (4); 21–25 cm (5); 26–30 cm (6); 31–35 cm (7);

36–40 cm (8) and 41–45 cm (9). In (C): subsoiled soil (1) and non-subsoiled soil (2)
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Soil water reduces contact between particles, reducing pen-
etration resistance (Lomeling & Lasu, 2015). However, this
was not observed in this experiment. The layers that presented
higher relative density and penetration resistance contained
higher clay content (data not shown) and an amount of cryp-
topores, which resulted in more compacted soil. Considering
that from 2 MPa, the root growth may be restricted (Lomeling
& Lasu, 2015; Taylor, Roberson, & Parker, 1966), subsoiled
and non-subsoiled soil presented adverse physical conditions
for root growth in 11–60 cm layer.

Subsoiled soil presented higher microorganisms basal res-
piration, which may explain the lower OM and higher nodula-
tion. Microorganisms development in the soil is related to soil
and plant conditions. Subsoiling mixes straw with soil, which
improves the metabolic activities of soil microorganisms and
accelerates straw decomposition (Bastian, Bouziri, Nicolar-
dot, & Ranjar, 2009; Govaerts et al., 2007). From 7 to 28% of
the carbon assimilated by soybean plants is made available
to associations with symbiotic organisms, it varies accord-
ing to the growing conditions of the plants and the species of
symbiotic organisms (Kaschuk, Kuyper, Leffelaar, Hungria,
& Giller, 2009), thus soil conditions that allow greater activ-
ity of primary plants metabolism, will benefit the symbiotic
associations. Nodule formation is regulated by plant and can
be inhibited by external factors, such as soil pH (Ferguson,
Lin, & Gresshoff, 2013). Decomposition of organic residues
in soil is performed by soil microbiota through the nutrient
cycling (Jenkinson & Ladd, 1981), however, only quantifying
biomass does not allow to know the actual microorganisms
activity in the soil, being necessary to evaluate the metabolic
functioning of the soil microorganisms community (Bowles,
Acosta-Martínez, Calderón, & Jackson, 2014).

Chemical and physical attributes are involved in soil
microorganisms development (Borowik & Wyszkowska,
2016; Furtak & Gajda, 2018; Wang et al., 2017). Data enable
observe that microorganisms’ activity was more affected pos-
itively by soil chemical, than physical attributes, and therefore
basal respiration and nodulation were higher in the subsoiled
soil that presented improvements in chemical structure.

Approximately 18 months after soil subsoiling, was possi-
ble to observe improvement in soil chemical attributes, how-
ever, even though those were positive changes, it did not guar-
antee higher root growth, probably due to the negative changes
in the soil physical attributes. However, it is necessary to
observe carefully that higher root dry mass, due to thicker
roots is not interesting, because mass and volume of low diam-
eter roots are necessary, since these fine roots are effectively
responsible for water and nutrients absorption. Therefore, no
difference was observed in subsoiled and non-subsoiled soil.

Soil cracking due to subsoiling may have benefited the per-
colation of limestone particles to depth, resulting in increased
pH and decreased Al. The movement of limestone particles
may be important to explain in part the effects on acidity

and Al neutralization in subsurface soil in the subsoiled soil.
Limestone located at the soil surface has reduced reaction
because it presents less contact with the soil particles and less
effectiveness in the deepest soil layers (Ciotta et al., 2002).

Subsoiling improved soil chemical and biological aspects,
but not physical. We believe that subsoiling is an interest-
ing alternative to try softening soil problems, but this isolated
management is not the solution. Other managements need to
be adopted in the field to alleviate problems, such as crop rota-
tion, crops with aggressive root system for biological scari-
fication. In addition, soil preparing with adequate moisture
and using chemical fertilization and liming, when necessary.
Soil needs to be more stratified analyzed, dividing them into
more layers, for more corrected results of chemical and phys-
ical attributes.

The positive correlations between root growth variables
with P, OM, Ca, TP, RD, macropores and basal respira-
tion showed that the set of soil attributes determine the root
growth. Soil microbiology is the secondary response of soil
chemical and physical attributes, being a soil quality indica-
tor. When soil provides better plants growing conditions, the
plants make more photo assimilates available to soil microor-
ganisms. Thus, soil with optimal nutrient content, absence
of toxic elements, low soil density and high porosity will
result in a soil rich in microorganisms and this soil type
favors root growth. The grain yield was higher in the sub-
soiled soil than the non-subsoiled soil, evidencing the impor-
tance of the soil chemical and biological attributes for soybean
grain yield.

It is notorious that soybean root growth is intense in the
soil surface layer compared to deeper layers. That would
not be a problem since there were no water deficit periods.
Soil volume explored in depth is small and when water is
restricted, the upper soil layers dry first, leaving the plants
under water stress in small periods without rainfall. Greater
root growth in depth does not guarantee that plant will not
lose productive potential in water deficit, but ensures the mit-
igation of this loss. Soil chemical, physical and biological
attributes, such as P and Ca content, soil density and poros-
ity, and basal respiration of soil microorganisms affect root
growth. Thus, when thinking about soil attributes to favor
root growth, should be considered soil chemistry, physics
and biology.

5 CONCLUSIONS

Root growth is benefited by soil microorganisms, organic mat-
ter, pH, porosity and calcium in the soil, whereas aluminum,
cryptopores volume and penetration resistance that character-
ize a degraded soil limit the growth of soybean roots. Under
these study conditions, subsoiling provides lower root growth
but benefits grain yield.
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