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METHODOLOGY

Multispectral and X-ray images 
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Valter Arthur3, Jens Michael Carstensen4, Birte Boelt5 and Clíssia Barboza da Silva3* 

Abstract 

Background: The use of non-destructive methods with less human interference is of great interest in agricultural 
industry and crop breeding. Modern imaging technologies enable the automatic visualization of multi-parameter 
for characterization of biological samples, reducing subjectivity and optimizing the analysis process. Furthermore, 
the combination of two or more imaging techniques has contributed to discovering new physicochemical tools and 
interpreting datasets in real time.

Results: We present a new method for automatic characterization of seed quality based on the combination of 
multispectral and X-ray imaging technologies. We proposed an approach using X-ray images to investigate internal 
tissues because seed surface profile can be negatively affected, but without reaching important internal regions of 
seeds. An oilseed plant (Jatropha curcas) was used as a model species, which also serves as a multi-purposed crop 
of economic importance worldwide. Our studies included the application of a normalized canonical discriminant 
analyses (nCDA) algorithm as a supervised transformation building method to obtain spatial and spectral patterns 
on different seedlots. We developed classification models using reflectance data and X-ray classes based on linear 
discriminant analysis (LDA). The classification models, individually or combined, showed high accuracy (> 0.96) using 
reflectance at 940 nm and X-ray data to predict quality traits such as normal seedlings, abnormal seedlings and dead 
seeds.

Conclusions: Multispectral and X-ray imaging have a strong relationship with seed physiological performance. 
Reflectance at 940 nm and X-ray data can efficiently predict seed quality attributes. These techniques can be alter-
native methods for rapid, efficient, sustainable and non-destructive characterization of seed quality in the future, 
overcoming the intrinsic subjectivity of the conventional seed quality analysis.
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Background
A crucial step for crop success is the use of high-quality 
seeds for obtaining vigorous and uniform seedlings. 
High-quality seeds are more resistant to biotic and abi-
otic stresses [1], and they originate seedlings that provide 
rapid soil coverage, using more efficiently the available 
radiation and nutrients, reducing the potential side-
effects caused by weed-crop competition [2].
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Currently, quality monitoring operations are esti-
mated mainly by visual inspection of seeds one by one 
using germination and vigor tests, which are destructive, 
laborious and requiring trained seed analysts. New and 
refined technologies based on computerized procedures 
create the opportunity for automating laboratory evalu-
ations, providing decision-making support regarding the 
destination of seedlots. In addition, the development of 
fast, non-invasive and less subjective tools is relevant for 
seed industry.

Multispectral imaging can provide spatial and spec-
tral information related to different quality traits, such as 
surface structure, texture and chemical composition [3]. 
Briefly, this technique is based on sequential exposure of 
an object to light at different wavelengths integrated with 
computer systems to recognize physicochemical param-
eters from biological samples. In the context of seed 
quality, spectral imaging is mainly based on texture [4], 
physical and chemical attributes associated with insect 
damages [5], fungal infections [6], among others, but 
with limitation to examine internal tissues. Meanwhile, 
X-ray imaging has proved great potential to collect data 
from internal structures (e.g. damages in embryo and 
endosperm) [7, 8], because X-rays are short electromag-
netic waves (ranging from 0.01 to 10 nm), with high pen-
etrating power [9]. The correlation of these technologies 
with data obtained by traditional analytical methods can 
generate new quality markers [10]. A particular combina-
tion of spectral data with X-ray imaging can also improve 
the performance of classifiers [11], providing comple-
mentary information related to morphological and bio-
chemical parameters.

In this study, we tested multispectral and X-ray imag-
ing compared to conventional analytical methods for 
seed quality characterization. Jatropha curcas was used 
as model species, which has been a focus in the study 
of plants that can be used to produce biofuel, food, feed 
and biogas from seed cakes [12–16]. To the best of our 
knowledge, there have been no attempts in using mul-
tispectral imaging combined with radiographic images 
prior to this study.

Results
Seed vigor classification based on traditional tests
Overall, seeds from Lot 2 showed the best performance 
in the germination tests (Table  1). Lot 1 had the lowest 
germination rate, and Lot 3 showed an intermediate per-
formance (germination on paper substrate). In the vigor 
tests, Lot 2 was classified as higher vigor, with the germi-
nation rate index–GRI having greater sensibility in sepa-
rating seedlots based on vigor: low vigor = Lot 1, high 
vigor = Lot 2, and medium vigor = Lot 3 (Table 2).

Crude fat content greatly varied among seedlots 
(F = 15.37, df = 2, 6, P = 0.004), with Lot 2 exhibiting 
51% and 35% more fat than Lot 1 and Lot 3, respectively 
(Fig.  1). Conversely, the crude protein content, known 
to have a marked effect on the rapid imbibition of water 
by seeds, did not significantly differ among the seedlots 
(F = 2.03, df = 2, 6, P = 0.212) (Fig. 1).

Multispectral imaging integrated with X‑ray imaging
Seed orientation was not relevant to discriminate seed-
lots based on multispectral reflectance (Fig.  2). The 
wavelengths from ultraviolet (365 nm) and visible (405–
690 nm) regions showed low reflectance intensity (< 20%) 
and it was difficult to distinguish the lots. However, data 
obtained at longer wavelengths, particularly in the near 
infrared (NIR) region (from 780 to 970 nm) clearly ena-
bled discrimination among seedlots, and seeds with high 
vigor showed the lowest reflectance intensity (Lot 2).

A principal component analysis (PCA) was applied to 
the multispectral data to reduce variables and it revealed 
the first two principal components accounted for most of 
the data variability (98.66% of total data variance) among 
seedlots. The contribution histogram indicated the 

Table 1 Germination tests to  rank Jatropha curcas 
seedlots based on  germination capacity (normal 
seedlings) at 7 and 10 days, using two different substrates 
(paper and sand)

a Means (± standard error) within each column followed by the same letter are 
not significantly different according to Tukey test (P < 0.05)

Seedlot Germination [%] 5 days Germination [%] 10 days

Paper Sand Paper Sand

1 13 ± 3.00  ca 59 ± 5.25 b 18 ± 2.90 c 63 ± 5.97 b

2 87 ± 3.00 a 94 ± 1.15 a 98 ± 1.33 a 97 ± 1.00 a

3 58 ± 5.54 b 70 ± 2.58 b 60 ± 5.58 b 70 ± 2.58 b

ANOVA F2,27 = 85.70
P = 0.0000

F2,9 = 26.94
P = 0.002

F2,27 = 116.22
P = 0.0000

F2,9 = 22.31
P = 0.0003

Table 2 Vigor tests to rank Jatropha curcas seedlots based 
on  vigor: germination rate index, electrical conductivity 
and seedling emergence at 10 days

a Means (± standard error) within each column followed by the same letter are 
not significantly different according to Tukey test (P < 0.05)

Seedlot Germination rate index Electrical 
condutivity 
[µS cm−1 g−1]

Seedling 
emergence 
[%]

1 0.6 ± 0.49 c 188.8 ± 7.88 b 66 ± 4.76  ba

2 4.0 ± 0.06 a 79.1 ± 3.69 a 91 ± 3.00 a

3 2.5 ± 0.17 b 91.8 ± 5.61 a 59 ± 9.29 b

ANOVA F2,27 = 81.31
P = 0.0000

F2,9 = 100.71
P = 0.0000

F2,9 = 7.19
P = 0.0136
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most informative wavelengths based on 95% confidence 
threshold (cut-off) represented by the dashed red line, 
which revealed only five bandwidths from 780 to 970 nm 
that mostly contributed to PC1 and PC2 (Fig. 3a). Cluster 
analysis based on PC1 and PC2 distinctly separated the 
three seedlots (Fig. 3b).

In order to validate the PCA model, multispectral data 
corresponding to the five most important wavelengths 
(780, 850, 880, 940 and 970 nm), as previously assigned 
by PCA were used in a canonical discriminant analysis 
(CDA) (Fig. 4). Lots 1 and 3 had lower vigor, and those 
wavelengths positively distinguished Lots 1 and 3 from 
Lot 2 (high vigor), which suggests that these wavelengths 
are good predictors for discriminating jatropha seedlots 
with lower vigor.

Jatropha seed has a thick and dark tegument. Figure 5 
shows RGB images obtained from ventral and dorsal sur-
face of the seeds based on germination capacity and cor-
responding reflectance images captured at 940  nm and 
X-ray images. Since the CDA model showed collinearity 
between 940 and 970 nm (Fig. 4), we selected the reflec-
tance images captured at 940  nm (Fig.  5) because this 
wavelength is strongly associated with absorbance peak 
of fatty tissues, which is relevant for oilseed studies.

In the germination test, normal seedlings were pro-
duced from seeds with lower pixel values in the reflec-
tance images and higher pixel values in the X-ray images. 
There was a different pattern from those seeds that 

generated abnormal seedlings or did not germinate (dead 
seeds) in which dead seeds exhibited the highest and 
lowest pixel values in the reflectance and X-ray images, 
respectively.

Radiographic images obtained from all seedlots were 
separated into three different classes (Fig.  6a) based on 
seed tissue integrity and seed performance in the germi-
nation test. Soft tissues are associated with deteriorated 
tissues and they absorb the X-ray beam less as it passed 
through the tissue, therefore, these areas appear dark in 
the radiographic images. Meanwhile, regions with high 
gray intensity indicate greater penetration of X-rays 
directly associated with higher tissue density (healthy 
tissues). In class 1, seeds were completely filled or with 
slight empty spaces (≤ 1.23 mm) between the endosperm 
and the seed coat, and these seeds mainly generated nor-
mal seedlings. Seeds in class 2 showed large empty spaces 
(> 1.24 mm) between the endosperm and the seed coat or 
deteriorated tissues without reaching the embryonic axis, 
and they produced mostly abnormal seedlings. Finally, 
class 3 included seeds with deteriorated tissues reaching 
the embryonic axis, malformed and empty seeds, which 
were directly associated with dead seeds.

The CDA method (Fig.  6b) showed that Lot 1 was 
positively correlated with class 2 and dead seeds. The 
abnormal seedling variable did not appear in the model 
because it was collinear with dead seeds. Seeds of Lot 2 
were positively correlated with X-ray images in class 1 

Fig. 1 Crude fat and crude protein content of three seedlots of Jatropha curcas categorized by different vigor status (low vigor: = Lot 1, high 
vigor = Lot 2, and medium vigor = Lot 3). ANOVA was performed separately for each variable, and different letters indicate significant contrasts 
between means (bars + SE, upper standard error) according to Tukey HSD test (P < 0.05)
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and normal seedlings, and it was completely opposite to 
Lots 1 and 3. Reflectance data at 940  nm distinguished 
Lot 3 from Lots 1 and 2, with higher amount of seeds in 
class 3 and dead seeds (F = 10.22, df = 2, 12, P = 0.0014).

Validation
We created models to validate the proposed approach 
using a Linear Discriminant Analysis (LDA) algorithm. 
These models were developed using reflectance data at 
940 nm and X-ray classes, individually or in combina-
tion (Fig.  7). All models showed good performance in 
the validation set, with predictive accuracy of 0.96, 0.98 
and 0.98 using reflectance, X-ray and the combination 
of reflectance + X-ray data, respectively.

Discussion
In seed industry, the development of non-destructive 
methods for quality control and screening is still a chal-
lenge. High-quality seeds are relevant for the entire 
seed business, which include breeders, producers, trad-
ers, variety registration agencies and distributers. Ger-
mination and vigor tests are the methods most widely 
employed for seed quality assessment [17], and the 
greater seed germination and vigor the better seedling 
performance in the field. Germination tests determine 
the ability to produce normal seedlings under favorable 
field condition, and vigor tests estimate the potential 
for rapid and uniform emergence of normal seedlings 
under a wide range of field conditions [17].

Fig. 2 Plot of mean spectrum within each region of interest–ROI (n = 100 seeds per lot) at 19 wavelengths for ventral (a) and dorsal (b) seed surface 
of three lots of Jatropha curcas with different vigor levels: low vigor = Lot 1, high vigor = Lot 2, and medium vigor = Lot 3. Vertical bars represent 
standard deviation (in upper directions)
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Fig. 3 a Contributions of response variables to dimensions 1 and 2 with red-dashed line indicating the cut-off for significant variables according to 
Pearson’s correlation test (P < 0.05). b Biplots of principal component analysis (PCA) for multispectral reflectance in Jatropha curcas seedlots (Lots 1, 2 
and 3). The five wavelengths from 780 to 970 nm significantly explained the differences among seedlots (F = 32.22, df = 10, 586, P < 0.0001)

Fig. 4 Canonical discriminant analysis (CDA) of reflectance data obtained at 780, 850, 880, 940 and 970 nm from three seedlots of Jatropha curcas 
with different vigor levels: low vigor = L1 [black circles], high vigor = L2 [red triangles], and medium vigor = L3 [green crosses]) (n = 100 seeds per 
lot)
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In this study, we present an approach based on two 
advanced imaging techniques for assessing seed quality 
using multispectral and X-ray data. Our studies included 
the combination of these techniques because multispec-
tral imaging has a focus on seed surface profile, which 
may be negatively affected without reaching important 

internal regions of seeds. An oilseed plant was used as a 
model. Initially, seed performance of three lots was tested 
using conventional analytical methods, which showed 
that the three seedlots significantly differed in terms of 
germination capacity and vigor. Results also showed dif-
ferences in crude fat content, but not for crude protein. 

Fig. 5 Raw RGB images of ventral and dorsal surfaces of Jatropha curcas seeds based on germination capacity and corresponding reflectance 
images captured at 940 nm (grayscale and transformed images using nCDA algorithm) and X-ray images. RGB images are represented by 
three-color channels (red, green and blue) to generate a single-color value for each pixel in the image. In the grayscale and transformed images 
using nCDA each pixel is represented by a single-value that correspond to reflectance intensity. Higher pixel values in the X-ray images indicate 
higher tissue density

Fig. 6 A X-ray images of Jatropha curcas seeds separated into three different classes based on tissue integrity: Class 1–(a) tissues completely filling 
the seed [arrow indicates the embryonic axis region], (b) slight empty spaces (≤ 1.23 mm) between the endosperm and the seed coat; Class 2–(c) 
large empty spaces (> 1.24 mm) between the endosperm and the seed coat; (d–f) deteriorated tissues without reaching the embryonic axis; Class 
3–(g, h) deteriorated tissues reaching the embryonic axis, (i, j) malformed seeds, (k) empty seed. B Canonical discriminant analysis (CDA) of X-ray 
classes, quality traits (normal seedling and dead seed) and reflectance data at 940 nm for three seedlots with different vigor levels (low vigor = L1 
[black circles], high vigor = L2 [red triangles], and medium vigor = L3 [green crosses]); abnormal seedling variable did not appear in the model 
because it is collinear with dead seed (n = 4 repetitions of 25 seeds)

(See figure on next page.)
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A PCA method was applied to the multispectral data, 
which revealed the most meaningful wavelengths to dis-
tinguish the seedlots (780, 850, 880, 940 and 970  nm). 

The group identified as high-vigor seeds (Lot 2) had the 
highest crude fat content and the lowest reflectance spec-
tra for both ventral and dorsal seed surfaces. In addition, 
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this group presented more radiographic images in class 
1, i.e., with tissues completely filling the seed or slight 
empty space between the endosperm and the seed coat, 
which was positively correlated with normal seedlings in 
the germination test.

There are several reasons to explain why high-vigor 
seeds have lower reflectance values. When light strikes 
an object, its rays can be reflected, transmitted, scat-
ted, or absorbed. Reflectance properties of an object 
depend on its physical and chemical states [18]. In the 
NIR region, distinctive spectral data correspond to 
energy absorption of functional groups containing a 
hydrogen atom (combination of C-H, N-H and O-H) 
[19]. The 970  nm wavelength is associated with water 
[20], and there is evidence of absorption peak of fatty 
tissues at 890 and 940 nm [20, 21]. As a consequence of 
this, fatty tissues are less reflective as shown in seeds of 

Lot 2; however, the reflectance data also depend on the 
color in which the brightest regions are most reflective 
[22]. For example, there were lighter colored tissues for 
the ventral and dorsal seed surface in Lot 3 (medium 
vigor) (Fig.  8) that may have increased the reflectance 
intensity, i.e., although Lot 3 showed a slight tendency 
towards higher crude fat content than Lot 1 (low vigor) 
(Fig. 1), Lot 3 exhibited the highest reflectance (Fig. 2).

High fat content in seeds has been associated with 
rapid availability of energy and increased mobiliza-
tion of reserves during germination [1, 23]; therefore, 
the high percentage of crude fat in Lot 2 may explain 
the rapid emergence of its seedlings. In previous stud-
ies, fat was the main molecule mobilized during germi-
nation of Cereus jamacaru seeds [24]. Hence, seed oil 
content is an important seed quality parameter in oil-
seed species [7].

Fig. 7 Quality prediction of Jatropha curcas seeds based on reflectance at 940 nm and X-ray classes using a Linear Discriminant Analysis (LDA). a 
Plots partitioning two variables and apparent error rates; colored regions delineate each classification area and the observations (spots) within a 
region is predicted to be from a specific class. b Metrics used to validate the models based on accuracy, kappa, sensitivity and specificity
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It has been demonstrated that unhealthy tissues or 
non-viable seeds are not good absorbers of NIR energy 
[25–28]. This was also verified in Lots 1 and 3, which 
showed a higher proportion of deteriorated tissues 
in the radiographic images (seeds in classes 2 and 3), 
higher reflectance values in the NIR region and more 
dead seeds in the germination test. A reflectance trend 
toward higher values in the NIR spectra was also found 
in non-viable seeds of Brassica oleracea [29] and Rici-
nus cummunis [26]. Healthier tissues are metabolically 
more active; therefore, they absorb more light energy 
and reflect less.

There was a direct relationship between jatropha 
seeds with deteriorated tissues in radiographic images 
and abnormal seedlings or dead seeds in the germina-
tion test. But, dead seeds occurred mainly when deteri-
orated tissues were reaching the embryonic axis (X-ray 
images in class 3). Lower grayscale in the X-ray images 
are strongly related to lower physical integrity and less 
stored reserves, including protein, carbohydrates and 
fats [30].

All lots used in this study showed a mixture of normal 
seedlings, abnormal seedlings and dead seeds, there-
fore, although Lots 1 and 2 had the most extreme qual-
ity difference, these lots showed some seeds with similar 
spectral signature that overlapped in Can 1 (Fig.  4). A 
similar behavior was also found in the separation of early 

germinated seeds from medium germination and dead 
seeds in cowpea using an LDA model [31].

Results obtained in this study would not be achieved 
using RGB images because they are limited to the vis-
ible light spectrum. Moreover, other traditional reflec-
tance techniques such as NIR spectroscopy measure only 
a relatively small area of a specimen (spot measurement 
where the sensor is located), so they do not provide spa-
tial information that is important for many seed inspec-
tion applications. NIR spectroscopy can be successful 
used when the attribute measured related to seed quality 
(e.g. disease, damage and phenolic compound) is located 
in specific regions of seeds [11, 32], but this method 
requires spectral pre-processing methods to remove 
irrelevant information and improve the performance of 
calibration models [11, 28, 33, 34]. On the other hand, 
NIR spectral imaging has provided spatial and spectral 
information of samples using different wavelengths to 
obtain rapid and accurate measurements of uniform and 
non-homogeneous samples. It has been used to predict 
seed health status [35], discrimination of seeds at differ-
ent maturation stages [36] or with mechanical damage 
[37].

Different from multispectral imaging that generates 
reflectance images, X-ray technique produces transmit-
tance images resulting from short wavelengths that can 
penetrate seed tissues [9, 38]. X-ray tests are well known 

Fig. 8 Overview of ventral (a) and dorsal (b) surface of three seedlots (Lots 1, 2 and 3) of Jatropha curcas 
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in detecting internal seed defects, which contributes 
to predict problems in the future such as physiological 
abnormalities during imbibition, germination and seed-
ling development [8, 9, 39, 40]. It has been successfully 
used to identify insect damages in Triticum aestivum [39, 
41] and Glycine max seeds [42], desiccation sensitivity 
of Quercus rubra seeds [43], and mechanical damage in 
Archontophoenix cunninghamii seeds [44].

Our findings indicate that multispectral and X-ray 
imaging techniques have the potential to objectively 
predict seed quality, with high accuracy (0.96–0.98). 
Jatropha seed is known for its short-term storage [45], 
therefore, rapid, simple and accurate methods can help 
producers and distributors to ensure seed quality. How-
ever, in-depth studies with a larger number of seedlots 
from different regions and crop-year are still needed to 
strengthen the methodologies for applying multispectral 
and X-ray imaging in the quality inspection of jatropha 
seeds or other important oilseeds.

Conclusion
Seed quality is mainly monitored by destructive, labori-
ous and time-consuming methods that require special-
ized analysts. In this research, we demonstrated two 
non-destructive techniques for seed quality characteriza-
tion based on multispectral and X-ray images. Three dif-
ferent classes of jatropha seeds were tested. We proposed 
an approach using X-ray images to investigate inter-
nal aspects of seeds, such as deteriorated tissues in the 
embryonic axis and endosperm, considering the fact that 
seed surface can be negatively affected without reaching 
important internal regions of seeds. We compared mul-
tispectral and X-ray data with analytical methods tradi-
tionally used to evaluate seed performance, including 
germination tests, electrical conductivity and seedling 
emergence. Our results demonstrated that multispectral 
and X-ray images have a strong relationship with seed 
physiological potential. Reflectance data at 940  nm and 
X-ray data, individually or combined, showed above 0.96 
accuracy to predict quality traits such as normal seed-
lings, abnormal seedlings and dead seeds. Multispectral 
and X-ray imaging could be used for rapid, sustainable 
and non-destructive evaluation of seed quality in the 
future, overcoming intrinsic subjectivities of seed testing.

Methods
Seed material
Jatropha plants have a great variation in the fruit ripen-
ing time, with the same plant showing fruits at different 
stages of ripeness [46]. In this study, changes of pericarp 
color were used as indicators of ripening, and all fruits 
were collected in the ‘brown dry’ maturity stage [47]. 

Three different seedlots (Lots 1, 2 and 3) were investi-
gated. After the harvest, fruits were kept at room temper-
ature for one week. Then, seeds were extracted manually 
from the fruits and each seedlot was homogenized and 
evaluated for moisture content (fresh weight basis) which 
ranged from 11.3 to 11.8%. All seedlots were packed in 
Kraft paper bags and stored at 20 ºC and 40% RU during 
the experimental period. In this condition, the seed water 
content was reduced, varying between 6.5 and 6.6%. Tra-
ditional tests were performed to rank the lots based on 
germination and vigor.

Traditional tests to rank lots based on germination 
and vigor
Germination tests
Seeds were sown on paper towel and sand substrates and 
kept at 30 ºC and a photoperiod of 12 h: ten repetitions of 
10 seeds per lot were distributed on paper towels mois-
tened with distilled water (1: 2.5, g: ml), and four replica-
tions of 25 seeds per lot were sown in sand (moistened 
to 60% of its water holding capacity) in plastic trays. The 
percentage of normal seedlings per lot were recorded at 
5 and 10 days after sowing. To calculate the germination 
rate index–GRI [48], the number of emerged seedlings 
on paper substrate was monitored daily during 10 days.

Electrical conductivity
Four replications of 15 seeds per lot were weighed and 
maintained for 6  h in containers with 75  mL of dis-
tilled water at 25 °C [49]. The electrical conductivity (μS 
 cm−1 g−1) was measured using a DIGIMED DM-32 con-
ductivity meter.

Seedling emergence
Four subsamples of 25 seeds per lot were sown in plas-
tic trays containing sand moistened to 60% of its water 
holding capacity. Boxes were maintained at room tem-
perature. The percentage of emerged seedlings was deter-
mined at 10 days after sowing.

Data from germination tests, electrical conductiv-
ity and seedling emergence were analyzed separately by 
analysis of variance in a completely randomized design 
and the means compared by the Tukey’s test (P < 0.05).

Fat and protein content
Proximate chemical composition analysis of the seeds 
was performed according to the methods of the Asso-
ciation of Official Analytical Chemists [50] for crude fat 
(AOAC  No.4.5.01) and crude protein content (AOAC 
 No.4.2.11). Percent data of crude fat and crude protein 
content were separately fitted to a linear model with nor-
mal distribution for errors, including seedlot as the fixed 
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effect in the linear predictor. Post-hoc contrasts between 
seedlots were further determined by Tukey test (P < 0.05).

Multispectral imaging
Multispectral images were obtained using a Videom-
eterLab4 (Videometer A/S, Herlev, Denmark) and its 
software VideometerLab version 3.14.9. This instrument 
is integrated with a sphere providing homogeneous and 
diffuse illumination using strobe light-emitting diode 
(LED) technology. Reflectance images were captured at 
19 different wavelengths (365, 405, 430, 450, 470, 490, 
515, 540, 570, 590, 630, 645, 660, 690, 780, 850, 880, 940 
and 970 nm), combining them into high-resolution mul-
tispectral images (40 μm/pixel). Every pixel in the image 
contains reflectance data, which varies depending on 
color, texture and chemical composition of the sample.

Ten replications of 10 seeds per lot were placed in 9-cm 
Petri dishes. Before image acquisition, the individual and 
automated adjustment of light intensity in each wave-
length band was performed to optimize the illumination 
for the specific type of sample, resulting in an improved 
signal-to-noise ratio in such a way that the multispec-
tral images captured from different seed classes could 
be directly comparable. Light setup was adjusted using a 
representative sample area, then the strobe time of each 
illumination type was optimized with respect to this area. 
The auto light assures an optical dynamic range of each 
band without saturation within the auto light ROI. Sub-
sequently, the instrument was calibrated using three cali-
bration targets: (i) uniform bright disc, (ii) uniform dark 
disc, and (iii) geometric disc which is black with dots in a 
rectangular grid.

Multispectral images were captured from both ven-
tral and dorsal seed surface of 10 samples with 10 seeds 
per lot. The overview of the ventral and dorsal surfaces 
of the three seedlots is shown in Fig. 8. After successive 
lighting using 19 LEDs (sequential strobes), multispec-
tral images of a sample (plate with 10 seeds) were cap-
tured in a few seconds, requiring no sample preparation. 
The ROI of each seed was extracted into a Binary Large 
Object (BLOB) toolbox, a built-in function in Videom-
eterLab software; each BLOB was a representation of one 
seed. Mean spectra were plotted to show the difference 
among the three seedlots based on their multispectral 
signatures. A normalized canonical discriminant analysis 
(nCDA) algorithm was used as a supervised model based 
on multispectral image transformation, which allows to 
minimize the distance to observations within seedlot 
and to maximize the distance to observations among 
seedlots.

We applied a PCA method to process the multispec-
tral data using the “FactoMiner” package [51]. A biplot 
using the first two principal components (PC1 and PC2) 

was built to select the most meaningful wavelengths to 
discriminate the seedlots, according to Pearson’ correla-
tion test (P < 0.05). Multispectral data corresponding to 
only meaningful wavelengths, as previously assigned by 
PCA were used in a CDA model implemented with a 
“candisc” package [52]. We tested the effect of low, high 
and medium vigor (i.e., three classes of seed physiological 
potential) on the multispectral data using a multivariate 
analysis of variance (MANOVA). The statistical analyses 
were performed using VideometerLab software and the 
“free software environment for statistical computing and 
graphics” R [53].

X‑ray imaging
In total, 100 seeds per lot were radiographed. Seeds were 
numbered and fixed on an adhesive paper in groups of 
10 seeds. Radiographic images were generated using a 
MultiFocus digital radiography system (Faxitron Bioptics 
LLC, USA). This system is equipped with a complemen-
tary metal–oxide–semiconductor (CMOS) X-ray sen-
sor coupled with an 11 μm focal spot tube and up to 8X 
geometric magnification and provides as high as 6  μm 
resolution for seed imaging with a choice of a 48 μm or 
24 μm. The built-in advanced Automatic Exposure Con-
trol selects the appropriate exposure time and kV settings 
for each sample.

After X-ray imaging, four repetitions of 25 seeds were 
sown in sand (moistened to 60% of its water holding 
capacity) placed in plastic boxes (32.0 × 28.0 × 10.0 cm), 
kept at 30  ºC and photoperiod of 12 h. At 10 days after 
sowing, the individual seeds were evaluated for different 
quality traits: normal seedlings, abnormal seedlings and 
dead seeds. Next, they were separated into three differ-
ent classes based on seed performance in the germina-
tion test and tissue integrity in the radiographic images. 
A CDA analysis was implemented by “candisc” package 
in R [52] to provide the best discrimination among seed-
lots categories using a dataset derived from X-ray classes, 
reflectance data at 940  nm and quality traits (normal 
seedling, abnormal seedling and dead seed).

Validation
Three models were developed using LDA algorithm. 
The first model was created using multispectral data 
at 940  nm. Data obtained from X-ray classes were used 
to develop the second model. Finally, multispectral and 
X-ray data were combined to create the third classifica-
tion model. In total, 300 seeds were used to develop the 
models. Training was run with 210 seeds (70%), and the 
remaining 90 seeds (30%) were used for independent 
validation set. Additionally, fivefold cross-validation was 
performed using training data. The metrics of accuracy, 
Cohen’s Kappa coefficient, sensitivity and specificity were 
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calculated using a confusion matrix to evaluate the mod-
els. Data analysis was performed by R software using the 
“caret” package [54].
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