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Abstract

Background: Copy number variations (CNVs) are a major type of structural genomic variants that underlie genetic
architecture and phenotypic variation of complex traits, not only in humans, but also in livestock animals. We
identified CNVs along the chicken genome and analyzed their association with performance traits. Genome-wide
CNVs were inferred from Affymetrix® high density SNP-chip data for a broiler population. CNVs were concatenated
into segments and association analyses were performed with linear mixed models considering a genomic
relationship matrix, for birth weight, body weight at 21, 35, 41 and 42 days, feed intake from 35 to 41 days, feed
conversion ratio from 35 to 41 days and, body weight gain from 35 to 41 days of age.

Results: We identified 23,214 autosomal CNVs, merged into 5042 distinct CNV regions (CNVRs), covering 12.84% of
the chicken autosomal genome. One significant CNV segment was associated with BWG on GGA3 (q-value =
0.00443); one significant CNV segment was associated with BW35 (q-value = 0.00571), BW41 (q-value = 0.00180) and
BW42 (q-value = 0.00130) on GGA3, and one significant CNV segment was associated with BW on GGA5 (q-value =
0.00432). All significant CNV segments were verified by qPCR, and a validation rate of 92.59% was observed. These
CNV segments are located nearby genes, such as KCNJ11, MyoD1 and SOX6, known to underlie growth and
development. Moreover, gene-set analyses revealed terms linked with muscle physiology, cellular processes
regulation and potassium channels.

Conclusions: Overall, this CNV-based GWAS study unravels potential candidate genes that may regulate
performance traits in chickens. Our findings provide a foundation for future functional studies on the role of specific
genes in regulating performance in chickens.
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Background
Gallus gallus is an excellent biological model organism
for genetic studies [1] and a species of considerable eco-
nomic relevance worldwide. In 2019, global poultry meat
consumption was estimated at 97,000 tons [2], being one
of the main sources of protein for humans. Understand-
ing the genetic architecture of performance-related traits
may contribute to the development of new genomic
strategies to increase production efficiency and sustain-
ability of the chicken industry.
Significant advances have been achieved on chicken

genetics [3] since the landmark publication of the first ref-
erence genome [4], which has been continuously updated
with the most recent genome assembly (GRCg6a) released
in 2018. Variations in the genome, especially single nu-
cleotide polymorphisms (SNPs), are known to be associ-
ated with phenotypic variation [5]. However, structural
variations, such as copy number variations (CNVs) have
been increasingly studied and associated with quantitative
traits of economic interest in livestock [6–9].
CNVs associated with phenotypes of economic interest

are promising targets for animal breeding programs [10].
They are defined as large DNA fragments (conventionally
> 1 kb) that, due to deletion or duplication events, display
variable copy number between individuals of a population
[11]. When compared to SNPs, CNVs encompass more
total bases and seem to have a higher mutation rate and
potentially greater effects on gene structure, gene regula-
tion and consequently gene expression [12].
Various techniques are available for CNVs detection in

humans and other animal species [13]. Most of them de-
pend on the analysis of signal intensity along the gen-
ome, such as the comparative genomic hybridization
array (aCGH) [14] and high-density SNP chips [15]. Al-
though sequencing-based CNV analyses pipelines have
been developed and seem to be a viable alternative [16],
SNP chips have been commonly used for CNV detection
[8, 17]. This technology allows CNVs identification due
to the abnormal hybridization that occurs for SNPs lo-
cated in CNV regions (CNVRs) [15]. Simultaneous
measurement of both signal intensity variations, mea-
sured for each allele of a given SNP, and changes in al-
lelic composition (i.e. B allele frequency) allow the
detection of both copy number changes and copy-
neutral loss-of-heterozygosity (LOH) events [15].
Several factors, such as detection algorithm, genotyp-

ing platform, SNP density and population genetic back-
ground may impact CNV scanning performance [18].
Indeed, different algorithms used for CNV detection
may demonstrate variable sensitivity, consistency and re-
producibility, especially for commercial SNP arrays [19],
such as Illumina and Affymetrix SNP chips. One of the
most prominent algorithms for CNV detection is the
PennCNV software [20], which has been widely applied

in several studies on livestock species, including chickens
[7], horses [21], pigs [22], cattle [6] and sheep [17].
Moreover, PennCNV has better consistency when com-
pared to other CNV calling algorithms [19]. Neverthe-
less, CNVs identified through SNP-chip platforms can
be associated with a considerable rate of false negative
and positive results [18]. Therefore, the quantitative
polymerase chain reaction (qPCR) is commonly used for
CNV validation, being a molecular method to confirm
computationally identified loci [8, 23].
In chickens, several studies have identified quantitative

trait loci (QTL) and positional candidate genes flagged
by SNPs significantly associated with traits of economic
interest such as performance, carcass and abdominal fat
[24, 25]. Unsurprisingly, the number of CNV-focused
studies is increasing in chicken populations as well [7,
26]. CNVs associated with late feathering [27], pea-comb
phenotype [28], dermal hyperpigmentation [29], dark
brown plumage color [30] and resistance/susceptibility
to Marek’s disease [31] have been reported. None CNV-
association study for performance traits in chickens has
been described yet.
Herein, we identified CNVs in the genome of a broiler

population, performed a CNV-based GWAS for per-
formance traits and validated associated CNV segments
by qPCR. In addition, we identified performance-related
genes overlapping significant CNV segments to establish
relationships between structural genomic variation and
such phenotypes.

Results
CNV identification
After applying the initial quality control filters, 223 indi-
viduals out of 1461 genotyped chickens from the TT
Reference Population presented DishQC< 0.82 and call
rate < 97%, and were excluded from further analyses.
Therefore, individual-based CNV calls were performed
on the remaining 1238 samples. Pedigree information on
father-mother-offspring trio was used to update the
CNV status for the trios, generating more accurate CNV
calls [20]. From the total of 1238 chickens, 709 trios
were determined based on complete family information
available. Then, the trio-based CNV calling using 779
animals, represented by 709 trios, consisting of 14 sires,
56 dams and 709 offspring, was performed. Several fam-
ilies with incomplete information could not be used as
PennCNV is not able to handle trios with missing sire or
dam genotypes. After quality control filtering and re-
moval of duplicated CNVs from the dataset, we identi-
fied 23,214 unique autosomal CNVs, including 2905
deletions and 20,309 duplications. Finally, a total of 614
chickens had at least one CNV call after the quality con-
trol process.
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CNVR compilation
CNVRs represent the concatenation of overlapping
CNVs into a consensus genomic region. CNVs showing
overlap of at least one base pair among samples in this
population were summarized across all individuals into
CNVRs. After filtering, 23,214 individual CNVs were
merged into 5042 distinct CNV regions, which cover
12.84% (136.75 million of base pairs - Mb) of the
chicken autosomal genome. The number of regions with
copy loss and gain were 424 and 4105, respectively. The
presence of both types was observed in 513 regions. The
CNVRs had variable sizes ranging from 0.14 kb to 760
kb with an average size of 27.12 kb. The number of
chickens with CNVs mapped onto a given CNVR ranged
from 1 (0.13%) to 348 (44.67%) from the total of 614
chickens. We identified 656 CNVRs occurring in more
than 1% of the population (i.e. ‘polymorphic CNVRs’, as
suggested by Itsara et al. [32]). The relative chromosome
coverage by CNVRs ranged from 1.55% for GGA24 to
18.38% for GGA2, while the absolute genomic length
overlapped by CNVRs varied from 0.10Mb for GGA24
to 35.98Mb for GGA1. Detailed information of all
CNVRs detected in our population is provided in
Additional file 1.

Association of CNV segments with performance traits
Genome-wide association studies were performed to in-
vestigate significant associations of CNV segments, named
as CNV-based GWAS, with eight performance-related
traits measured in our population: BW, BW21, BW35,
BW41, BW42, FI, FCR and BWG. Manhattan plots for
CNV segments across the 33 autosomal chromosomes as-
sociated with performance traits are presented in Fig. 1.
Note that the FDR method for multiple testing correction
shrunk the -log10(q-value) for non-significant CNV seg-
ments towards zero, while it magnified the -log10(q-value)
for significant associated CNV segments. The Manhattan
plots of the raw p-values for CNV segments across the 33
autosomal chromosomes associated with performance
traits and the QQplots for BW, BW35, BW41, BW42 and
BWG are in Additional files 2 and 3, respectively. There
were three distinct CNV segments classified as losses and
significantly associated (q-value< 0.05) with BWG, BW35,
BW41, BW42 and BW (Table 1). One CNV segment was
significantly associated with BWG (q-value = 0.00443);
one CNV segment was significantly associated with BW35
(q-value = 0.00571), BW41 (q-value = 0.00180) and BW42
(q-value = 0.00130), and one CNV segment was signifi-
cantly associated with BW (q-value = 0.00432). It is inter-
esting to highlight that the significant CNV segment
associated with BW35, BW41 and BW42 was the same
(GGA3:97801202–97809208). Note that none significant
CNV segments associated with BW21, FI and FCR were
detected.

In Fig. 2, each dot represents an animal in the corre-
sponding copy number state (0-3n) on the X-axis and
the observed phenotypic value on the Y-axis. For the sig-
nificant CNV segment associated with BW (GGA5:
12059966–12062666), a decrease in copy number is as-
sociated with heavier birth weight. The same trend was
observed for the significant CNV segment associated
with BW35, BW41 and BW42 (GGA3: 97801202–
97809208), i.e. higher copy number was observed in ani-
mals with lower body weight. Conversely, the significant
CNV segment associated with BWG (GGA3: 64169030–
64171297) displayed an opposite behavior.

qPCR validation
Since that CNV breakpoints depend on the segmenta-
tion algorithm used, some variation on CNV segment
detection between PennCNV and qPCR is expected. The
qPCR results (Fig. 3) revealed a validation rate of
92.59%, which confirms the existence of CNV segments
that have been associated with performance traits. In
addition, it revealed that the CNV type was concordant
between both methods for most of the samples, except
for the first sample with primers 7 and 8. Note that for
CNV segments where at least one breakpoint was within
the target segment, PennCNV results were confirmed by
qPCR. It is important to mention that the third tested
animal had a copy number status estimated by
PennCNV of 0n for the CNV segment on GGA5. Primer
information and validation rates are presented in Add-
itional files 4 and 5, respectively.

CNV segments overlapping known QTLs
The significant CNV segments associated with body
weight gain (GGA3: 64169030–64171297) overlapped
with previously mapped QTLs for body weight at 49
days of age (QTL #30854, [33]), comb weight (QTL
#127114, [34]), residual feed intake (QTL #64556, [35]),
and testis weight (QTL #213559, [36]). The significant
CNV segment associated with BW35, BW41 and BW42
(GGA3: 97801202–97809208) also overlapped with two
QTLs described above (QTL #30854 and #127114).
Moreover, both significant CNV segments overlapped
with 18 out of 27 previously published QTLs for
growth-related traits mapped in the Embrapa F2
Chicken Resource Population ([37], Table 2). None pre-
viously reported QTLs overlapped with the CNV seg-
ment significantly associated with birth weight (GGA5:
12059966–12062666).

Identification of regulatory elements
We investigated the presence of CpG islands within
the significant CNV segments. However, no CpGs
were identified on such regions (Additional file 6).
Moreover, we found that the significant CNV
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segment on chromosome 5 (GGA5:12059966–
12062666), previously associated with birth weight, is
located nearby the KCNJ11 gene, approximately 3.4
kb downstream of the gene start site. Our analysis of
ChIP-seq data for H3K27ac of chicken skeletal
muscle, an indicator of cis-regulatory elements, like
active enhancers [38], showed overlapping of a
H3K27ac enriched region with the aforementioned
CNV segment (Additional file 6).

Candidate genes and gene-set analysis
A total of 32 genes, including KCNJ11, MyoD1 and
SOX6, were annotated within a 1-Mb window in gen-
omic regions defined by significant CNV segments asso-
ciated with BWG, BW35, BW41, BW42 and BW
(Table 3). A list with detailed information about the 32
genes is provided in the Additional file 7.
Gene enrichment analysis was performed using Web-

Gestalt to search for biological processes, cellular

Fig. 1 Manhattan plots for CNV segments across the 33 autosomal chromosomes associated with a birth weight, b body weight at 35 days, c
body weight at 41 days and d body weight at 42 days and e body weight gain. The X-axis represents the somatic chromosomes, and Y-axis
shows the corresponding -log10 q-value. Red and blue lines indicate FDR-corrected p-values of 0.05 and 0.1, respectively
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components and molecular functions. WebGestalt top
10 most relevant enriched categories for Biological
Process, Cellular Component and Molecular Function,
based upon genes annotated to each category, can be ob-
served in Table 4. Noticeably, the most relevant enriched
categories for biological processes, such as regulation of
striated muscle cell differentiation, regulation of muscle
cell differentiation and regulation of muscle tissue devel-
opment, are directly implicated in muscle growth and
development.
Complementary, STRING databases were used to

search for enriched pathways and protein domains on
genes annotated within 1-Mb window of significant
CNV segments (Fig. 4 and Table 5). Interestingly, the
three networks identified are related to cell differenti-
ation and muscle functioning (Fig. 4). In addition, terms
associated with potassium channels and regulation of in-
sulin secretion were enriched for CNV candidate genes
related to performance traits (Table 5). Moreover, re-
garding to protein domains, the calcium homeostasis
modulator family, consisting of three members of the
FAM26 gene family, was enriched. Furthermore, 78 pub-
lications significantly enriched in STRING are presented
in Additional file 8.

Discussion
To investigate the effect of CNVs on production-related
traits in broilers, we analyzed a Brazilian broiler popula-
tion, selected for body weight, carcass and cuts yield,
feed conversion, fertility, chick viability and reduced ab-
dominal fat. In addition, the availability of information
about the family structure of this population allowed the
identification of family-based CNVs.
CNVs are significant sources of genetic variation [39]

and have been associated with disease, abnormal devel-
opment, physical appearance as well as many other eco-
nomic traits in livestock animals [6, 8, 31]. It is

noteworthy that CNVs are generally in low LD with
SNPs [40], and its taggability is lower than SNP taggabil-
ity [41]. Therefore, the genetic variation explained by
CNVs might not be fully captured in the traditional
SNP-based analysis. Thus, CNV-based GWAS studies
can provide valuable insights on the genetic control of
economically important traits for livestock breeding pro-
grams. CNV mapping can be based on different refer-
ence genome assemblies, populations and platforms.
Hence, variability of CNV breakpoints (i.e., genomic co-
ordinates) can happen due to different biological and
technical influences [11]. Therefore, CNV comparison
among studies is not prosaic, even in the same species,
and, as a consequence, different approaches may be
complementary to each other [26, 42].
In our population, copy number gains were more

abundant than losses. Likewise, Yi et al. [42], Gorla et al.
[7] and Sohrabi et al. [43] reported more gains than
losses and mixed regions in chicken populations. One
reason is that duplications are more likely to be con-
served than deletions because deletion regions are rela-
tively gene-poor and therefore these regions are prone
to purifying selection [44]. Nonetheless, deletion poly-
morphisms might have a significant role in the genetics
of complex traits, even though not directly observed in
several gene mapping studies [44].
In the present study, significant CNV segments associ-

ated with performance traits on chromosome 3, for body
weight at 35, 41 and 42 days and body weight gain from
35 to 41 days, and on chromosome 5 for birth weight
were identified. Given that these traits are not independ-
ent, and genetic correlations between performance traits
have been widely reported in chickens [45], it is ex-
pected that certain CNV regions may be concomitantly
associated with more than one trait, especially body
weight measured in different ages (Fig. 1).
In the qPCR validation, we systematically assessed the

overall agreement rate of the significant CNV segments
detected in silico with qPCR results. The validation re-
sults indicated that all CNV segments were confirmed in
at least one qPCR assay, consequently all CNVs may be
real. Our results indicated that there is a small discrep-
ancy (7.41%) between qPCR and PennCNV callings,
which may be due to variations on the exact genomic
coordinates of the CNVs that influenced the
hybridization of the qPCR primers and the amplification
efficiency.
We identified overlaps of significant CNV segments

associated with body weight at 35, 41, 42 days and body
weight gain with four previously mapped QTLs for
weight traits and residual feed intake (RFI). RFI is de-
fined as the difference between actual feed intake and
predicted feed intake based on energy requirements for
body weight gain and maintenance [46]. Moreover, we

Table 1 Characterization of significant CNV segments
associated with performance traits in the TT Reference
Population

Traita GGA: first–last positionb Number of genes/windowc

BWG 3: 64169030–64171297 16

BW35 3: 97801202–97809208 3

BW41 3: 97801202–97809208 3

BW42 3: 97801202–97809208 3

BW 5: 12059966–12062666 13
aBWG: body weight gain from 35 to 41 days; BW35: body weight at 35 days;
BW41: body weight at 41 days; BW42: body weight at 42 days; BW:
birth weight
bMap position based on GRCg6a chicken genome assembly
cNumber of annotated genes within a 1-Mb window of each significant CNV
segment associated with performance traits in the TT Reference Population,
based on Ensembl Genes 101
Database (https://www.ensembl.org/biomart/martview/)
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found genomic windows defined by significant CNV seg-
ments overlapping published QTLs for growth-related traits
in the Embrapa F2 Chicken Resource Population [24].
Many studies, conducted with different chicken lines, have
successfully identified QTLs and genes associated with

economically important traits [47]. Given that QTLs and
genes underlie functional regions of the genome, they may
not be prone to structural rearrangements and thus not ex-
pected to be subject to CNVs [23]. Therefore, QTLs and
genes located inside or nearby CNVs are of special interest.

Fig. 2 a Birth weight, b body weight at 35 days, c body weight at 41 days and d body weight at 42 days and e body weight gain distribution in
each CN state for the significant CNV segment. Each dot represents an animal in the corresponding copy number state (0-3n) on the X-axis and
the observed phenotypic value on the Y-axis. The legend on the right displays the color code for the CN state. See the main text for a detailed
description of each segment
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Noticeably, SNP-based studies [37, 46, 48] have identi-
fied many more QTLs associated with the traits analyzed
in our study than the CNV-based approach applied here.
Indeed, Pértille et al. [37] identified 88 QTLs associated
with feed conversion, feed intake, birth weight, and body
weight at 35 and 41 days of age in the Embrapa F2
Chicken Resource Population. Mebratie et al. [46] and
Moreira et al. [48] identified, respectively, 11 and 19
QTLs associated with body weight traits in a commercial
broiler chicken population and in the Embrapa F2
Chicken Resource Population. This difference in QTL
mapping is expected since CNVs are more frequently as-
sociated with deleterious effects than favorable ones,
which is not the case of SNPs, at least those included in
the SNP arrays [49]. In addition, since known QTLs
were (mostly) mapped using microsatellite markers and
SNPs, they will not necessarily capture the same effect
as CNVs. If associated CNVs do not overlap with QTLs
previously found in other studies, that could occur be-
cause specific CNV probes can be excluded from a SNP-
GWAS due to Hardy-Weinberg equilibrium deviation or
rigorous multiple testing corrections [23].
CNVs that comprise functional genes may induce

phenotypic variation by altering gene structure, dosage
and regulation, as a consequence of natural evolutionary
processes [50], such as genetic drift or artificial selection.
We identified 32 genes annotated within a 1-Mb window
of significant CNV segments associated with birth
weight, body weight at 35, 41 and 42 days and body
weight gain from 35 to 41 days.

Note that animals presenting deletions (0n/1n) in sig-
nificant CNV segments were less frequent in our popu-
lation, while their average body weights at birth and at
35, 41 and 42 days of age were higher compared to ani-
mals with normal copy number (2n) in the same CNV
segments (Fig. 2). Two reasons may explain the low fre-
quency of favorable genotypes for body weights at differ-
ent ages: 1) this meat-type population has been under
multiple trait selection, not exclusively focused on im-
proving body weight, and 2) the TT line that gave rise to
the TT Reference Population was selected for only 17
generations [51]. In 2010, Johansson et al. [52] con-
ducted a study with two chicken lines (high and low
body weight lines) from a single trait selection experi-
ment, where even after 50 generations of selection, the
high line is still responding to selection. Conversely, for
body weight gain, the increase in the copy number of
the respective significant CNV segment was positively
associated with the phenotype (Fig. 2). Since these CNV
segments are located in proximity of several genes
(Table 3) and, as it has been shown that the expression
of a gene may be affected by their presence [12], CNVs
may act as important modulators of gene expression.
CNVs inserted in regulatory regions like enhancers,

promoters or in 3’UTR regions, may modify availability
of binding sites to transcription factors or miRNAs, re-
spectively, resulting in the modulation of their associated
genes. In addition, a wide variety of cis-regulatory ele-
ments have been investigated for the presence of CpG
islands and methylation. Despite being frequently found

Fig. 3 Quantitative PCR was carried out for significantly associated CNV segments on a GGA3 at 64 Mb, b GGA3 at 97 Mb and c GGA5 at 12 Mb
using two groups (control (2n) and experimental) with three different animal samples per group and three distinct primer pairs per CNV. In each
panel, bars in different colors represent distinct experimental animals for each segment. The right-most bars depict the relative copy number
estimated for each animal in PennCNV. Each bar was calculated from three technical replicates. The error bars show the minimum and maximum
value encountered among the replicates
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in promoter regions and TSSs, low levels of methylation
can be found in enhancers and insulators, modulating
gene transcription [53]. However, as expected due to its
low frequency distribution in the genome, no overlap be-
tween CpG islands and the significant CNV segments
was identified.
Our analysis of ChIP-seq data suggests that the signifi-

cant CNV segment located on chromosome 5 may be af-
fecting expression of its cognate genes due to the
presence of regulatory elements (Additional file 6). Once
enhancer activity is tissue-specific, our analysis does not
reject the possibility that these elements may be present
in other tissues related to metabolism and weight gain,
like hepatic and adipose tissues [54, 55]. In addition, al-
though the other significant segments have not shown
peaks for enhancers, it does not mean that other

regulatory elements, such as insulators and silencers,
cannot be associated and affect gene expression. In this
sense, CNVs may have potential to modulate core regu-
lators located in their proximity, propagating such ef-
fects to genome-wide gene expression [12] and
accounting for differences manifested at the phenotype
level (Fig. 2). Near to the CNV segment on chromosome
5, we identified KCNJ11, MyoD1, PIK3C2A and SOX6
genes, which might have important effects on chicken
growth and development regulation.
The KCNJ11 gene, found to be 2217 base pairs up-

stream of the aforementioned significant CNV segment,
is known to regulate insulin secretion [56]. A glucose
metabolism disorder is usually linked as a cause of re-
duced development of chicken muscle tissue under
stress, especially in broilers [57]. This gene was enriched

Table 2 CNV segments associated with performance traits overlapping QTL regions previously mapped for growth-related traits

CNV segments (GGA: first-last positiona) QTL_IDs Associated trait

3: 64169030–64171297; 3: 97801202–97809208 QTL #1979 Body_weight

3: 64169030–64171297; 3: 97801202–97809208 QTL #1980 Body_weight

QTL #7184 Body_weight_(41_days)

3: 64169030–64171297; 3: 97801202–97809208 QTL #7180 Body_weight_(35_days)

3: 64169030–64171297; 3: 97801202–97809208 QTL #55904 Body_weight_(35_days)

3: 64169030–64171297; 3: 97801202–97809208 QTL #55929 Growth_(0-35_days)

QTL #24377 Body_weight_(35_days)

QTL #24378 Body_weight_(41_days)

QTL #24379 Body_weight_(42_days)

QTL #7167 Body_weight_(1_day)

QTL #7171 Body_weight_(35_days)

QTL #7174 Body_weight_(41_days)

3: 64169030–64171297 QTL #1957 Body_weight

QTL #7156 Body_weight_(35_days)

QTL #7161 Body_weight_(41_days)

3: 64169030–64171297; 3: 97801202–97809208 QTL #1961 Body_weight

3: 64169030–64171297; 3: 97801202–97809208 QTL #1962 Body_weight

3: 64169030–64171297 QTL #6611 Body_weight_(112_days)

3: 64169030–64171297 QTL #6612 Body_weight_(200_days)

3: 64169030–64171297 QTL #6610 Body_weight_(8_days)

3: 64169030–64171297 QTL #6613 Growth_(1-8_days)

3: 64169030–64171297; 3: 97801202–97809208 QTL #9420 Body_weight_(63_days)

3: 64169030–64171297 QTL #11768 Body_weight_(49_days)

3: 64169030–64171297 QTL #11772 Body_weight_(63_days)

3: 64169030–64171297 QTL #1969 Body_weight

3: 64169030–64171297 QTL #1972 Body_weight

3: 64169030–64171297 QTL #9127 Growth_(post-challenge)

CNV segments significantly associated with performance traits located within QTL regions for growth-related traits [37]. QTLs that overlap genomic intervals
covered by CNV segments associated with body weight gain (GGA3: 64169030–64171297) and/or body weight at 35, 41 and 42 days (GGA3: 97801202–97809208)
are highlighted in bold text
aMap position based on GRCg6a chicken genome assembly (NCBI)
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for the ATP-sensitive potassium channel (KATP) path-
way. KATP subunits are, among other genes, encoded
by KCNJ11. KATP channels have a high activity in rat
fast-twitch fibers, distinguished by raised muscle
strength, and a low activity in slow-twitch fibers, charac-
terized by weakness, fragility and lowered muscle
strength [58]. KCNJ11 gene knockout mice present re-
duced glycogen, slender phenotype and weakness [58]. It
has been reported that the effect of the KCNJ11 gene on
muscle may occur due to alterations in the KATP

channel activity, which, in turn, affects the potassium
flow inside the cell, settling the membrane potential
needed for muscle activity [59]. For this reason, this gene
may promote early growth and development in chickens.
In fact, it was found to be highly expressed in the muscle
tissue of one-week-old chicks [56], which supports our
findings that this gene, closely located to a significantly
associated CNV segment, can play a role in the regula-
tion of birth weight. Our analysis of regulatory elements
suggests that changes in the copy number in the KCNJ11

Table 3 List of notated genes within a 1-Mb window of significantly associated CNV segments

GGA: first-last positiona Associated trait (s)b Gene Name (Aliases) Ensembl Gene IDc Entrezgene IDd

3: 64169030–64171297 BWG RFX6 ENSGALG00000014918 421737

GPRC6A ENSGALG00000014925 428620

FAM162B ENSGALG00000019941 100857953

KPNA5 ENSGALG00000014937 421738

ZUFSP (ZUP1) ENSGALG00000014940 421739

SOT3A1L ENSGALG00000014950 421740

RWDD1 ENSGALG00000014953 421741

FAM26D (CALHM4) ENSGALG00000014955 421742

TRAPPC3L ENSGALG00000028539 421743

FAM26E (CALHM5) ENSGALG00000038162 769904

FAM26F (CALHM6) ENSGALG00000014962 421744

DSE ENSGALG00000014963 421745

NT5DC1 ENSGALG00000014964 421746

COL10A1 ENSGALG00000014965 100858979

FRK ENSGALG00000014979 421747

HS3ST5 ENSGALG00000026594 428621

3: 97801202–97809208 BW35, BW41, BW42 GREB1 ENSGALG00000016455 421944

LPIN1 ENSGALG00000016456 421945

TRIB2 ENSGALG00000016457 378919

5: 12059966–12062666 BW SOX6 ENSGALG00000006074 423068

C5H11orf58 ENSGALG00000006077 395520

PLEKHA7 ENSGALG00000029679 423069

RPS13 ENSGALG00000006096 414782

PIK3C2A ENSGALG00000006121 423070

NUCB2 ENSGALG00000006147 423071

KCNJ11 ENSGALG00000020505 428846

ABCC8 ENSGALG00000006172 423072

USH1C ENSGALG00000006192 423073

FTL ENSGALG00000028696 378899

MYOD1 ENSGALG00000006216 374048

KCNC1 ENSGALG00000006220 423076

SERGEF ENSGALG00000006231 423077
aMap position based on GRCg6a chicken genome assembly (NCBI)
bBWG: body weight gain from 35 to 41 days, BW35: body weight at 35 days, BW41: body weight at 41 days, BW42: body weight at 42 days, BW: birth weight
cEnsembl gene ID based on GRCg6a genome assembly (Ensembl Genes 101 Database)
dNCBI gene ID based on GRCg6a genome assembly (http://www.ncbi.nlm.nih.gov/gene)
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gene might be affecting gene transcription and could ex-
plain the effect on birth weight associated with these
changes. This hypothesis, however, needs to be ad-
dressed by RNA data on different tissues. Interestingly, a
novel 163-bp indel in the downstream region of this
gene was significantly associated with growth traits in
chickens [56]. In the same study, synteny analyses found
that KCNJ11 maintains a close connection with its

neighboring genes. It is interesting to note that one of
these genes is the Myogenic differentiation 1 (MyoD1).
The myogenic regulatory factors are a family of verte-

brate proteins (MyoD, Myf5, Mrf4 and Myog) that are
robust transcription factors for muscle genes [60]. The
MyoD1 gene can promote myoblast differentiation and
have relevant effects on muscle development [61]. Previ-
ous study in quail lines revealed that a delay in MyoD1

Table 4 WebGestalt to 10 most relevant enriched categories for Biological Process, Cellular Component and Molecular Function

GO ID Description p-value Significant Associated Gene(s)

Biological Process GO Terms

GO:0051153 regulation of striated muscle cell differentiation 0.0015 SOX6;MYOD1

GO:0051147 regulation of muscle cell differentiation 0.0030 SOX6;MYOD1

GO:0016202 regulation of striated muscle tissue development 0.0031 SOX6;MYOD1

GO:0048634 regulation of muscle organ development 0.0034 SOX6;MYOD1

GO:1901861 regulation of muscle tissue development 0.0034 SOX6;MYOD1

GO:1901700 response to oxygen-containing compound 0.0048 GPRC6A;RWDD1;KCNJ11;MYOD1

GO:0014070 response to organic cyclic compound 0.0071 RWDD1;KCNJ11;MYOD1

GO:0055026 negative regulation of cardiac muscle tissue development 0.0085 SOX6

GO:0048743 positive regulation of skeletal muscle fiber development 0.0085 MYOD1

GO:1905208 negative regulation of cardiocyte differentiation 0.0085 SOX6

Cellular Component GO Terms

GO:0005887 integral component of plasma membrane 7.9726e-4 GPRC6A;CALHM4;CALHM5;
CALHM6;KCNJ11

GO0031226 intrinsic component of plasma membrane 9.6402e-4 GPRC6A;CALHM4;CALHM5;
CALHM6;KCNJ11

GO:0044459 plasma membrane part 0.0017 GPRC6A;CALHM4;CALHM5;
CALHM6;FRK;KCNJ11

GO:0071944 cell periphery 0.0073 GPRC6A;CALHM4;CALHM5;
CALHM6;COL10A1;FRK;KCNJ11

GO:0030008 TRAPP complex 0.0116 TRAPPC3L

GO:0030315 T-tubule 0.0132 KCNJ11

GO:0005886 plasma membrane 0.0276 GPRC6A;CALHM4;CALHM5;
CALHM6;FRK;KCNJ11

GO:0005801 cis-Golgi network 0.0376 TRAPPC3L

GO:0022627 cytosolic small ribosomal subunit 0.0440 RPS13

GO:0005844 polysome 0.0488 RWDD1

Molecular Function GO Terms

GO:0008146 sulfotransferase activity 0.0012 SOT3A1L;HS3ST5

GO:0016782 transferase activity, transferring sulfur-containing groups 0.0019 SOT3A1L;HS3ST5

GO:0008199 ferric iron binding 0.0091 FTL

GO:0034483 heparan sulfate sulfotransferase activity 0.0109 HS3ST5

GO:0070181 small ribosomal subunit rRNA binding 0.0127 RPS13

GO:0016722 oxidoreductase activity, oxidizing metal ions 0.0182 FTL

GO:0008198 ferrous iron binding 0.0182 FTL

GO:0030506 ankyrin binding 0.0182 KCNJ11

GO:0008253 5′-nucleotidase activity 0.0182 NT5DC1

GO:0005242 inward rectifier potassium channel activity 0.0182 KCNJ11
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expression is associated with increased body weight and
muscle mass [62]. A very high degree of synteny is main-
tained between MyoD1 containing regions of human
chromosome 11 and chicken chromosome 5, comprising
ABCC8, KCNJ11, PIK3C2A, RPS13, SERGEF, NUCB2
and PLEKHA7 genes [63]. Mutations in PIK3C2A gene
were discovered to cause a growth-related genetic syn-
drome in humans, consisting of dysmorphic features,
short stature and skeletal abnormalities [64]. This gene
has been attributed to biological functions such as

glucose transport, Akt pathway activation, endosomal
trafficking, phagosome maturation, mitotic spindle
organization, exocytosis and autophagy [65].
MyoD1 was enriched in biological processes associated

with the SOX6, a gene related with muscle physiology,
such as regulation of striated muscle cell differentiation
and development, regulation of muscle cell differenti-
ation and regulation of muscle organ development. The
expression level of the SOX6 gene was positively associ-
ated with CNV and increased during skeletal muscle cell

Fig. 4 Confidence view of the network created by the STRING software. Nodes represent proteins produced by a single protein-coding gene
locus. Edges represent protein-protein associations. Line colors indicate types of interaction evidence: known interactions from curated databases
(cyan) or experimentally determined (pink); predicted interactions from gene neighborhood (green); and other sorts of interactions such as co-
expression (black). The large network, in the middle, and smaller networks, on the right and left extremes, both relate to cell differentiation and
muscle functioning

Table 5 STRING enriched pathways and protein domains for CNV candidate genes related to performance traits

#term ID Term Description FDRa Matching proteins IDsb Matching proteins labelsc

Reactome Pathways

GGA-1296025 ATP sensitive Potassium channels 0.0043 ENSGALP00000009950,
ENSGALP00000032081

ABCC8, KCNJ11

GGA-1296071 Potassium Channels 0.0145 ENSGALP00000009950,
ENSGALP00000010023,
ENSGALP00000032081

ABCC8, KCNC1, KCNJ11

GGA-1296065 Inwardly rectifying K+ channels 0.0214 ENSGALP00000009950,
ENSGALP00000032081

ABCC8, KCNJ11

GGA-422356 Regulation of insulin secretion 0.0384 ENSGALP00000009950,
ENSGALP00000032081

ABCC8, KCNJ11

PFAM Protein Domains

PF14798 Calcium homeostasis modulator 3.35e-05 ENSGALP00000024076,
ENSGALP00000024082,
ENSGALP00000024083

FAM26D, FAM26E, FAM26F

INTERPRO Protein Domains and Features

IPR029569 Calcium homeostasis modulator family 6.17e-05 ENSGALP00000024076,
ENSGALP00000024082,
ENSGALP00000024083

FAM26D, FAM26E, FAM26F

aFalse Discovery Rate
bmatching proteins IDs in the network
cmatching proteins labels in the network
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differentiation, by upregulating expression levels of
muscle-growth-related genes in chickens as well as in
other animal species [66].
We found genes nearby significant CNV segments asso-

ciated with body weight at 35, 41 and 42 days (LPIN1 and
TRIB2) and body weight gain (GPRC6A and NT5DC1)
that may be of special importance and have potential ef-
fects on chicken growth. A significant association was
found between a variant in the 3′ UTR of chicken LPIN1
gene and breast muscle fiber diameter [67], suggesting
that this gene has a potential effect on muscle fiber devel-
opment. The TRIB2 gene, a novel regulator of thymocyte
cellular proliferation, was found to be involved in
reproduction and growth in White Leghorn chickens, and
consequently might represent footprints of the selection
process [68]. The GPRC6A gene was found to have func-
tions related to testis growth and development in broilers
[69]. In addition, another interesting gene is the NT5DC1,
previously related to muscle tissue, angiogenesis and
amino acid metabolism [70]. We found an enriched clus-
ter for calcium homeostasis modulator (CALHM) gene
family, which included three members: FAM26D,
FAM26E and FAM26F. Even though CALHMs have been
classified as pore-forming subunits of plasma membrane
ion channels, questions about their function remain un-
answered, hence their role needs to be ascertained on fur-
ther investigations [71].
In summary, from SNP-chip data of a broiler popula-

tion, we identified novel structural variation regions in the
genome that, based on gene enrichment and literature in-
formation, harbor potential candidate genes, with import-
ant roles in a wide range of biological, cellular, and
molecular processes, linked with muscle differentiation,
growth, and development. Our findings reveal that alter-
ations in copy number within or nearby these genes could
result in phenotypic variation, thus contributing to a bet-
ter understanding of performance regulation in chickens.

Conclusions
This study identified structural variations associated with
five complex traits of interest in a broiler population
using a probe-level based CNV association approach.
Our results provide substantial information about the
potential CNV impacts on animal production, growth,
development, and performance-related traits, laying a
foundation for incorporating CNVs into the future
poultry breeding programs and contributing to expand
scientific research on genetics, particularly on structural
variations involved in animal biology and physiology.

Methods
Population description
A paternal broiler line (TT) belonging to the Chicken
Breeding Program of Embrapa Swine and Poultry

National Research Center, in Concórdia, Santa Catarina
State, South of Brazil, was developed in 1992. This line
originated from White Plymouth Rock and White Corn-
ish breeds and has been under multiple trait selection to
improve body weight, feed conversion, carcass and
breast yields, viability, fertility, reduction of abdominal
fat and metabolic syndromes [51]. The experimental
broiler population evaluated in this study, called TT Ref-
erence Population, was generated by an expansion of the
paternal broiler line TT and consisted of approximately
1500 chickens, which were all slaughtered in 2008, gen-
erated in five hatches from 20 males and 92 females (1:
5). More details can be found in Marchesi et al. [51].

Phenotype measurement
Body weight was recorded at 1 (birth weight), 21, 35, 41
and 42 (after fasting) days of age. Over the period be-
tween 35 and 41 days of age, chickens were transferred
to individual cages for measuring feed intake and body
weight gain, to evaluate feed conversion. At 42 days of
age, all chickens (~ 1500 individuals) were weighted and
euthanized by cervical dislocation followed by exsan-
guination. By then, a blood sample from each animal
was collected for subsequent DNA extraction. In this
study, we analyzed eight performance traits: (i) birth
weight (BW), (ii) body weight at 21 days of age (BW21),
(iii) body weight at 35 days of age (BW35), (iv) body
weight at 41 days of age (BW41), (v) body weight at 42
days of age (BW42), (vi) feed intake measured from 35
to 41 days of age (FI), (vii) feed conversion ratio mea-
sured from 35 to 41 days of age (FCR) and, (viii) body
weight gain measured from 35 to 41 days of age (BWG).
More detailed descriptions on this population, rearing
conditions and phenotype measurements are available in
Marchesi et al. [51]. The descriptive statistics for the an-
alyzed phenotypes are shown in Table 6.

DNA extraction, genotyping and quality control
Genomic DNA from 1461 blood samples was extracted
using the PureLink® Genomic DNA (Invitrogen, Carls-
bad, CA, USA) kit and then quantified using Qubit® 2.0
Fluorometer (Thermo Fisher Scientific, Waltham, MA,
USA). After extraction, DNA integrity was evaluated on
agarose gel (1%) and diluted to 10 ng/μL. Diluted gen-
omic DNA was prepared following recommended Affy-
metrix protocols in order to perform the genotyping
analysis using the 600 K Affymetrix Axiom Genotyping
Array (Affymetrix®, Inc. Santa Clara, CA, USA, [49]),
that contains segregating SNPs for different populations,
including commercial broiler lines.
Initially, Axiom™ Analysis Power Tools (Affymetrix®)

software v.2.10.2.2 was used to filter genotypes based on
DishQC and call rate parameters. A minimum default
quality control of 0.82 and a minimum sample call rate
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of 97% were used. Therefore, only samples with DishQC
≥0.82 and call rate ≥ 97% were kept for following ana-
lyses. SNPs in sex chromosomes, and those not mapped
in the chicken genome assembly (GRCg6a) were ex-
cluded. Only SNPs annotated to autosomal chromo-
somes from GGA1 to GGA33 were included in the
analysis.
From a total of 1461 genotyped chickens, 223 samples

were removed from the analysis after applying the
DishQC criteria, and a filter on sample call rate ≥ 97%
loci. From the total of 580,961 SNPs available on the
SNP array, 476,254 informative polymorphic SNPs on
the autosomal chromosomes (GGA1–33) were kept after
filtering.

Input construction and CNV calling
CNV calling was performed using PennCNV v.1.0.5 [20],
an integrated hidden Markov model (HMM) that merges
various sources of information, including relative signal
intensities (log R Ratio, LRR) and relative allele frequen-
cies (B allele frequency, BAF) at each SNP, the distance
between adjacent SNPs, and the population frequency of
the B allele (PFB).
The files denominated ‘summary’, ‘calls’ and ‘confi-

dences’ that are built during SNP genotyping and initial
data filtering, and are required for signal intensities esti-
mation, were used to extract the LRR and BAF values.
First, these files were used to generate canonical clusters
[72] by the PennCNV-Affy ‘generate_affy_ geno_clus-
ter.pl’ function, which allows the estimation of the LRR
and BAF values by the PennCNV-Affy ‘normalize_affy_
geno_cluster.pl’ function. Then, the PFB file was esti-
mated from marker’s individual BAF values, using the
PennCNV ‘compile_pfb.pl’ function. Next, the
individual-based CNV calling was performed using the

-test option with default parameters for the HMM
model. Given that the GC ratio content around each
SNP marker is known to influence signal strength, creat-
ing the so-called genomic waves [73], the LRR of each
sample was corrected using the chicken GC content file
(i.e., GC content of 1-Mb genomic regions surrounding
each SNP) by the -gcmodel option. As long as family
structure can be used for generating more accurate CNV
calls [20], and pedigree information for a father-mother-
offspring trio was available, a family-based CNV detec-
tion algorithm was used to jointly update CNV status
previously obtained in the individual-based calling step.
For CNV filtering, the default PennCNV standard de-

viation (SD) criteria for LRR ≤ 0.35, BAF drift< 0.01, and
waviness factor ≤ 0.05 were used. Note that the waviness
factor represents the dispersion in signal intensity over
the genome. Following, CNVs with minor allele frequen-
cies (MAF) less than 0.05 were removed to avoid calling
artefacts. Moreover, CNVs smaller than 1 kb were also
excluded and only CNVs consisting of at least three con-
secutive SNPs were retained in the analysis [7]. Lastly,
all duplicated CNVs (i.e., same event in the same paren-
tal) were removed. Duplicated CNV entries occurred
due to half sib families, as some sires and dams were in-
cluded more than once in PennCNV analysis. The CNV
calling was focused only on autosomal chromosomes
GGA1 to GGA33 as PennCNV results for sex chromo-
somes are unreliable and difficult to interpret [20].

CNVR compilation
Individual CNV calls filtered by PennCNV overlapping
at least one base pair were concatenated into CNV re-
gions (CNVRs) using the populationRanges (grl, dens-
ity = 0.1) function from the CNVRanger R/Bioconductor
package [74]. Genomic areas with density < 10% were de-
leted to avoid false positive predictions. The CNVRs
were classified as gain or loss. The overlapping CNVRs
of ‘gain’ and ‘loss’ were merged into single regions to ac-
count for genomic regions in which both events can
occur (i.e., ‘both’ CNVRs). The frequency of each CNVR
was estimated based on the number of samples mapped
at the genomic interval covered by the CNVR.

Genome-wide association analyses
Genome-wide association analyses between performance
traits and CNV segments were carried out using the
CNVRanger R/Bioconductor package [74]. This proced-
ure was originally proposed by da Silva et al. [23] . First,
the CNV segments to be used in the association analyses
were established. For that, a state was assigned for each
of the SNP probes overlapping a CNV call. Then, we es-
timated the CNV frequency in each probe and selected
only those with frequency above 5% [74]. Finally, se-
lected probes were used to construct the CNV segments

Table 6 Descriptive statistics from phenotypic values for
performance traits analyzed in the TT Reference Population

Traitsa Nb Mean SDc Minimum Maximum

BW 1448 47.66 3.70 37.40 61.80

BW21 1426 648.43 133.86 256 1034

BW35 1450 1730.96 202.52 776 2444

BW41 1443 2219.20 251.82 1026 2922

BW42 1452 2223.86 260.15 988 2971

FI 1443 1091.45 152.43 508 1590

FCR 1439 2.31 0.47 1.42 5.25

BWG 1439 488.77 106.53 128 802
aBW: birth weight in grams; BW21: body weight at 21 days in grams; BW35:
body weight at 35 days in grams; BW41: body weight at 41 days in grams;
BW42: body weight at 42 days in grams; FI: feed intake from 35 to 41 days in
grams; FCR: feed conversion ratio from 35 to 41 days; BWG: body weight gain
from 35 to 41 days in grams
bNumber of animals
cStandard deviation of the mean
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based on a CNV-genotype similarity, in which subse-
quent probes with identical genotype in ≥95% of our
population were concatenated to CNV segments. A raw
p-value was independently generated for each probe.
Following, the raw p-values were corrected using gen-
omic inflation and, the probe with the lowest p-value
was selected to represent the CNV segment. Multiple
testing correction was carried out using the FDR method
[75] generating the q-values for each CNV segment. The
following statistical models were used for association
analyses:

a) yijkl = μ + Si +Hj + CNVk + al + eijkl
b) yijklm ¼ μþ Si þ H j þ CNVk þ bðBW35l−BW35Þ

þam þ eijklm

where yijkl and yijklm are the phenotypic record on the lth

or mth animal, respectively, μ is the overall intercept, Si
is the fixed effect of the ith sex (i = 1, 2), Hj is the fixed
effect of the jth hatch (j = 1, 2, 3, 4, 5), CNVk is the num-
ber of copies of a given allele in the genotype of the kth

CNV segment (k = 1, …, 191, represented as gain, loss
and normal (2n), and coded as 1, − 1 and 0, respectively),
b is the linear regression coefficient related to the BW35
effect considered as deviation from the mean (BW35), al
and am are the random direct additive genetic effect for
the lth or mth animal, respectively, and eijkl and eijklm are
the random residual effect for the lth or mth animal, re-
spectively. Note that sex and hatch were included in the
models as class effects for all phenotypes, and BW35
was fit as continuous effect only for FI, FCR and BWG
(model b). The random components of the models were
distributed as a � Nð0;Gσ2aÞ and e � Nð0; Iσ2eÞ , where
σ2a and σ2e are the genetic and residual variances, respect-
ively, G is the CNV-based genomic relationship matrix,
and I is an identity matrix.
Lastly, we established two different thresholds. The

first corresponded to a suggestive association (FDR-cor-
rected p-value< 0.1) and should be used to identify
CNVs for consideration in future studies. The second
one corresponded to a significant association (FDR-cor-
rected p-value< 0.05), consequently, highlighting regions
more likely to be truly associated with the investigated
phenotypes [76].

Validation by qPCR
Quantitative PCR (qPCR) was carried out to validate the
significant CNV segments associated with performance
traits. Copy number was determined in the 3 significant
CNV segments using primer pairs designed to target
each segment. It is noteworthy that 3 different primer
pairs were designed for each CNV segment to account
for possible breakpoints variations. A total of 18

samples, consisting of 3 reference animals (2n) and 3 dif-
ferent testing animals per CNV segment, were selected
for the validation process based on the amount of
double-stranded DNA (dsDNA) measured with Qubit®
2.0 Fluorometer. Primers designed using Primer3plus
[77] were quality tested through NetPrimer (http://www.
premierbiosoft.com/netprimer). Additionally, we used
the SNPdb [78] against the Ensembl-Biomart tool
(http://www.ensembl.org/biomart/martview, [79]) to
check the presence of SNPs in the genomic region tar-
geted by the primers.
All primers were previously PCR-tested to verify non-

specific amplicons and to optimize qPCR conditions. A
qPCR solution of a final 10 μl was used consisting of
5.0 μl PowerUp™ SYBR™ Green Master Mix 2x (Applied
Biosystems®, catalog number: A25742), 0.5 μl forward
primer (10 mM), 0.5 μl reverse primer (10 mM) and
4.0 μl of genomic DNA (2.5 ng/μl). The reference and
testing samples were amplified with the designed
primers sets in technical triplicates carried out in Quant-
Studio™ 12 k Flex machine coupled to QuantStudio 12 K
Flex Software v.1.2.2 (Applied Biosystems®). The qPCR
thermocycling steps were as follows: 50 °C for 2 min,
95 °C for 2 min and 40 cycles of amplification (95 °C for
15 s, 55–60 °C (primer-dependent) for 15 s and 72 °C for
1 min). The reference samples were randomly chosen
from a set predicted by PennCNV to have normal copy
number status on all the tested regions.
Cycle thresholds (Ct) were corrected by primer mean

efficiency calculated by LinReg [80] and copy number
was estimated from normalized ratio method (NR): 2 ×
2-(ΔΔCt) [81]. The primers for the propionylcoenzyme A
carboxylase gene (PCCA, GGA1) were used as refer-
ences [82]. Moreover, the control value was estimated
based on the average value of ΔCt from reference diploid
animals, and copy number states were categorized based
on the geometric mean between copy number 1, 2 and 3
[83], where lack of amplification was considered as 0n
(complete deletion).

CNV segments overlapping known QTLs
Overlaps of the significant associated CNV segments
with previously mapped QTLs for performance traits
were determined using information from the Chicken
QTLdb - release 43 (https://www.animalgenome.org/cgi-
bin/QTLdb/GG/index, [5]. We used the available .bed
files with the QTL coordinates based on the GRCg6a
genome assembly to check for overlaps using the subset-
ByOverlaps function from the GenomicRanges R/Bio-
conductor package [84]. All previously mapped QTLs
were reported by QTL ID numbers, available at the
Chicken QTLdb [5].
Additionally, we checked the overlapping between the

genomic windows covered by the significant CNV
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segments and the QTLs for growth-related traits re-
ported for the Embrapa F2 Chicken Resource Popula-
tion, which was originated by crossing sires of the
paternal broiler line TT (same line used to obtain the
TT Reference Population) and dams of a maternal layer
line [37]. The genomic coordinates of the reported QTLs
were converted from Gallus_gallus-5.0 to GRCg6a using
the LiftOver tool (https://genome.ucsc.edu/cgi-bin/
hgLiftOver).

CNV segments overlapping regulatory elements
The overlaps of the significant associated CNV segments
with CpG islands were determined using information
from the GRCg6a genome assembly, available on UCSC
Genome Browser (http://hgdownload.soe.ucsc.edu/
goldenPath/galGal6/bigZips/). In addition, NCBI Refseq
data, equally obtained from the UCSC Genome Browser
(http://hgdownload.soe.ucsc.edu/goldenPath/galGal6/
bigZips/genes/galGal6.ncbiRefSeq.gtf.gz), were used to
locate TSSs (Transcription Start Sites) in the significant
CNV segments and infer promoter regions based on
their genomic location (2 kb upstream of a TSS).
Moreover, to check for overlaps of the significant seg-

ments with enhancers, we used publicly available
H3K27ac ChIP-seq (Chromatin Immunoprecipitation
and sequencing) data from two replicates of chicken
skeletal muscle, obtained from the Functional Annota-
tion of Animal Genomes Consortium (FAANG, https://
www.ncbi.nlm.nih.gov/geo, GSM4799754 and
GSM4799755). First, reads were trimmed with Trim
Galore! 0.6.5 (https://github.com/FelixKrueger/
TrimGalore) using the default arguments, and then
aligned with BWA mem 0.7.17 [85] to the GRCg6a gen-
ome. The alignments were sorted and indexed with
Samtools 1.11 [86] using the arguments -F 1804 and -q
30. We marked the duplicates with Picard toolkit 2.25.1
(http://broadinstitute.github.io/picard/) and removed
them with Samtools. Then, aligned reads in .bam files
were converted to .bedgraph. The .bed files with signifi-
cant peaks (−q 0.01) were obtained from GEO (https://
www.ncbi.nlm.nih.gov/geo, GSE158430) and then, the
final data (.bedgraph and .bed files) were uploaded in
IGV (Integrative Genome Viewer) [87] for visualization.

Identification of candidate genes and gene-set analysis
The gene content of significant CNV segments was
assessed using Ensembl Release 101 BioMart tool
(https://www.ensembl.org/biomart/martview, [79]),
based on the GRCg6a genome assembly. We investigated
genes flanking genomic intervals for the significant asso-
ciated CNV segments, corresponding to 1Mb windows
(500 kb up and downstream).
Enrichment analyses were performed with WebGestalt

(http://www.webgestalt.org/), a “WEB-based GEne SeT

AnaLysis Toolkit” designed for functional genomics,
proteomics and large-scale genetic studies [88]. GO-
terms for biological process (BP), cellular component
(CC) and molecular function (MF) were investigated.
Multiple testing correction was carried out using the de-
fault option (i.e., Benjamini-Hochberg method [75]). In
addition, STRING v.11 (http://string-db.org/, [89]) was
used as a complementary approach to search for
enriched pathways and protein domains. Conversely to
WebGestalt, the STRING database intends to integrate
all publicly available sources of protein–protein direct
and indirect interaction information to obtain a compre-
hensive global network.
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