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Abstract: Asian Soybean Rust (ASR), a disease caused by Phakopsora pachyrhizi, causing yield losses
up to 90%. The control is based on the fungicides which may generate resistant fungi. The activation
of the plant defense system, should help on ASR control. In this study, secondary metabolites of
Pseudomonas aeruginosa LV strain were applied on spore germination and the expression of defense
genes in infected soybean plants. The F4A fraction and the pure metabolites were used. In vitro,
10 µg mL−1 of F4A reduced spore germination by 54%, while 100 µg mL−1 completely inhibited.
Overexpression of phenylalanine ammonia lyase (PAL), O-methyltransferase (OMT) and pathogene-
sis related protein-2 (PR-2; glucanases) defense-related genes were detected 24 and 72 h after soybean
sprouts were sprayed with an organocopper antimicrobial compound (OAC). Under greenhouse
conditions, the best control was observed in plants treated with 60 µg mL−1 of PCA, which reduced
ASR severity and lesion frequency by 75% and 43%, respectively. Plants sprayed with 2 and 20 µg
mL−1 of F4A also decreased severity (41%) and lesion frequency (32%). The significant reduction in
spore germination ASR in plant suggested that the strain of these metabolites are effective against
P. pachyrhizi, and they can be used for ASR control.
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1. Introduction

Asian soybean rust (ASR), caused by Phakopsora pachyrhizi Syd and P. Syd, is the most
important disease that affects soybean crops [1] and, in severe outbreaks, it can cause
production losses of up to 90% [2]. ASR is considered a threat to global food security,
according to the American Association for the Advancement of Science [3]. P. pachyrhizi
infects 93 legume species of 42 different genera [4], and it presents great genetic variability,
hindering the development of resistant plants [5]. The control of ASR is mainly based on
the application of chemical fungicides, with an estimated cost of around 2.2 billion dollars
per year for Brazilian farmers [2]. In addition, the emergence of antifungal resistant strains
decreases fungicide efficiency [6]; thus, new strategies and molecules for ASR control are
urgently needed.
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Plants are under constant stress, using structural and chemical defense mechanisms
to survive biological, chemical and environmental agents. There are different mechanisms
involved in the activation of their defense system, such as the hypersensitive responses [7]
and pathogenesis-related (PR) proteins [8]. The PR proteins are effectively induced by harm-
ful stimuli, activating the systemic acquired resistance (SAR) [9]. They are classified into 17
families (PR-1 to PR-17), according to their biochemical and biomolecular properties [10].

The synthesis and storage of PR proteins is crucial for the plant self-defense mecha-
nism against pathogenic infections and abiotic stress [11,12]. For instance, PR2 and PR3
are generated in large quantities when plants respond to injuries or infection by fungal,
bacterial or viral pathogens [13,14].

Although it is known that most PR proteins have antifungal properties, their active
molecular mechanisms are not well understood, except for PR-2 (glucanases) and PR3
(chitinases) [15]. The PR expression is regulated by many signaling compounds, such
as abscisic acid (ABA), ethylene (ET), jasmonic acid (JA), and salicylic acid (SA) [16].
The genetic expression of different proteins can be used as a bioindicator of SAR activation.

The phenylpropanoid pathway is an important secondary metabolism route and
produces a wide variety of metabolites [17]. Phenylalanine ammonia-lyase (PAL) is in-
volved in the formation of lignin, suberin, phytoalexins, stilbenes, coumarins and other
flavonoids [18]. The biosynthesis of glyceollins occurs via the phenylpropanoid pathway in
soybean [19]. Glyceollins are soybean-derived phytoalexins that accumulate in the seeds in
response to abiotic stress conditions [20]. Glyceollins inhibit many phytopathogen species,
especially fungi [21], and their concentration increased when soybean leaves were infected
with Phakopsora pachyrhizi [22].

The biosynthesis of lignin, as well as the plant resistance and stress tolerance, are de-
pendent on O-methylation. O-methyltransferases (OMTs) are a large family of plant
enzymes that bind methyl groups to the oxygen of many secondary metabolites [23].
The caffeoyl CoA OMTs (CCoA OMTs) act on phenolic hydroxyl groups of hydroxycin-
namoyl CoA esters, while the carboxylic acid OMTs change aliphatic carboxyl groups,
and other OMTs methylate other metabolites, such as hydroxycinnamic acids, flavonoids,
and alkaloids [23]. In soybean plants, different OMTs were described [24].

The SAR activation begins with chemical signals at the induction/infection site,
which spreads throughout the plant organism, preparing their tissues for faster and more
efficient responses against pathogens [25]. Salicylic acid levels and the biosynthesis of PR
proteins are increased by SAR, immunizing the entire plant against future infections [26].
Many chemical compounds are known as SAR inducers, such as acibenzolar-S-methyl
(ASM), 2.6-dichloroisonicotinic acid (INA) and beta-aminobutyric acid (BABA), but they
are not always effective alone.

Beneficial bacteria are great producers of compounds that induce systemic resistance
in plants [27,28], especially the genus Pseudomonas [29,30]. The application of F4A, a cell
free-fraction of P. aeruginosa LV strain culture, induced resistance in tomato plants against
Pectobacterium carotovorum, increasing the biosynthesis of defense-related enzymes, such as
peroxidases and phenylalanine ammonia-lyase (PAL) [31].

The F4A fraction contains four important metabolites: phenazine-1-carboxylic acid
(PCA), phenazine-carboxamide (PCN), indol-3-one (IND) and an organocopper antimicro-
bial compound (OAC), and when applied on citrus plants, induced the expression of genes
encoding PR-2 protein, one of the markers of SAR [32] reducing the infection of Candidatus
liberibacter asiaticus [33].

Some compounds can activate soybean defense mechanisms, reducing damages caused
by ASR. The foliar application of saccharin induced SAR and reduced ASR severity [34].

Acibenzolar-S-Methyl (ASM) sprayed on soybean leaves, and the addition of calcium
silicate to the soil, stimulated defense enzymes and decreased the severity of ASR [35].
On the other hand, other studies found that ASM was not effective in the control of ASR
under field conditions [36,37].
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The objective of the present study was to evaluate the effects of secondary metabo-
lites produced by P. aeruginosa LV strain applied on the P. pachyrhizi–soybean pathosys-
tem. For this purpose, the following hypotheses were tested: (1) P. aeruginosa LV strain
metabolites upregulates the expression of resistance related genes in soybean; (2) the direct
application of these metabolites may help to control infection by P. pachyrhizi by in vitro
and in vivo experiments.

2. Results
2.1. The Evaluation of F4A Fraction on P. pachyrhizi Spore Germination

The germination rate of non-treated spores was of 88%. The dose/effect of F4A con-
centration showed high antifungal activity on spore germination of P. pachyrhizi. F4A at the
concentration of 10 µg mL−1 reduced spore germination by around 50%, while 100 µg mL−1

completely inhibited spore germination (Figures 1 and 2).
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Figure 2. Spore germination of P. pachyrhizi in water agar plus with different concentrations of the
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2.2. Gene Expression of Soybean Plant Treated with Secondary Metabolites of P. aeruginosa LV
Strain

The qRT-PCR analysis showed that only OAC induced the upregulated expression
of PR-2, PAL and OMT defense-related genes (Figure 3). The PR 2 gene expression level
increased eight times 24 h after treatment, when compared with the controls. The expression
levels of PAL and OMT genes increased at 24 and 72 h, with the highest expression observed
at 72 h (Figure 3b). There was no upregulated expression of PR-2, PAL and OMT at 168 h
(Figure 3c).
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Figure 3. Defense-related gene expression in soybean plants treated with different secondary metabo-
lites produced by P. aeruginosa LV strain. Expression of PR-1, PR-2, PR-5, phenylalanine amonia-lyase
(PAL) and O-methyltransferase (OMT) at (a) 24 h, (b) 72 h and (c) 168 h after metabolites application.
The legend corresponds to the treatments: semi-purified fraction (F4A); phenazine-carboxylic acid
(PCA); phenazine carboxamide (PCN); organocopper compound (OAC). Bars indicate the standard
deviation. * Significant differences, according to Student’s t test (p < 0.05).
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2.3. ASR Control in Soybean Plants Treated with Secondary Metabolites of P. aeruginosa LV Strain

The secondary metabolites caused different effects on decreasing ASR severity when
applied together in the F4A fraction or separated in purified compounds. The most effective
concentrations of F4A fraction were 2 and 20 µg mL−1 when compared to the controls
(Figure 4).
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Figure 4. Disease severity caused by P. pachyrhizi in soybean leaves treated with different secondary
metabolites produced by P. aeruginosa LV strain, 14 days after inoculation. The fungal spores were
inoculated 24 h after treatment. Distilled H2O (Control); DMSO + mineral oil (DMSO); semi-purified
fraction (F4A); phenazine-carboxylic acid (PCA); phenazine carboxamide (PCN); organocopper
compound (OAC). The numbers after compound legend indicate their concentration (µg mL−1).
Different letters indicate significant differences by Tukey test at p < 0.05. Bars indicate standard
deviation. CV = 61.94%.

PCA at 60 µg mL−1 was the most effective treatment, when compared to the other
concentrations of PCA, all concentrations of PCN, OAC and even to the F4A fraction.
Disease severity also decreased in plants treated with 5 and 50 µg mL−1 of PCN and
0.5 and 5 µg mL−1 of OAC, but their efficiency was lower than F4A at 2 and 20 µg mL−1

(Figure 4).
The pattern found in lesion frequency was similar to that observed in disease severity

(Figure 5).
DMSO + mineral oil (DMSO); semi-purified fraction (F4A); phenazine-carboxylic acid

(PCA); phenazine carboxamide (PCN); organocopper compound (OAC). The numbers
after compound legend indicate their concentration (µg mL−1). Different letters indicate
significant differences by Tukey test at p < 0.05. Bars indicate standard error. CV = 41.5%.

Plants treated with 2 and 20 µg mL−1 of F4A had around 32% less lesions when
compared to the control. The application of 60 µg mL−1 of PCA reduced lesion frequency
by 42% and the OAC at 0.5 and 5 µg mL−1 decreased the frequency by 30 and 29%,
respectively. The most effective concentrations of each compound are represented in
Figure 6.
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lites produced by Pseudomonas aeruginosa LV strain, 14 days after inoculation. The fungal spores were
inoculated 24 h after treatment. (A) Distilled H2O; (B) DMSO + mineral oil; (C) F4A 20 µg mL−1;
(D) phenazine-carboxylic acid (PCA) 60 µg mL−1; (E) phenazine carboxamide (PCN) 5 µg mL−1;
(F) organocopper compound (OAC) 0.5 µg mL−1.
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secondary metabolites produced by P. aeruginosa LV strain, 14 days after inoculation. The fungal
spores were inoculated 24 h after treatment. Distilled H2O (Control). Different letters indicate
significant differences by Tukey test at p < 0.05. Bars indicate standard deviation. CV = 61.94%.

3. Discussion

The F4A fraction was applied in C. sinensis cv. Valencia at a concentration of 100 µg mL−1,
being proved a valuable tool for the control of Huanglongbing disease [33]. In the present
study, the maximum concentration used was of 20 µg mL−1, once phytotoxic effects were
observed in soybean leaves at concentrations above 20 µg mL−1 (data not shown).

To our best knowledge, this is the first time that PCA was tested in soybean against
P. pachyrhizi. The PCA solution at 60 µg mL−1 did not eliminate ASR, but greatly re-
duced disease severity and lesion frequency when compared to the controls. PCA treat-
ments at concentrations above 500 µg mL−1 were able to control P. capsici in pepper
and Colletotrichum orbiculare in cucumber [38]. The same authors observed that the mini-



Plants 2021, 10, 1495 7 of 12

mum inhibitory concentration of PCA for many phytopathogenic fungi was greater than
100 µg mL−1. However, in the present study, the PCA concentration that generated the
best results against P. pachyrhizi was much lower. Therefore, it may be possible that higher
concentrations of PCA result in better ASR control, eventually reaching the complete
pathogen elimination.

Some experiments evaluated the expression of many defense genes during P. pachyrhizi
infection in susceptible and resistant soybeans genotypes, and PAL and OMT genes were
the most important among them [39,40]. In experiments with genetic manipulation of ASR-
resistant plants, it was demonstrated that PAL, OMT and PR-1 genes were involved in the
resistance mechanism, as the plants became susceptible when such genes were silenced [41,42].

In the presented experiment, the OAC upregulated the expression of the defense-
related genes PR-2, PAL and OMT. Phenylpropanoid pathway constitutes one of the most
important plant defense pathways against pathogens, especially in soybean resistance
to P. pachyrhizi [22,42,43]. PAL is the first enzyme of the phenylpropanoid pathway, pro-
viding precursors for OMT to produce phytoalexins, such as glyceolin and lignin [22,44].
Both PAL and OMT are expressed in ASR resistant soybean genotypes [45]. OAC induced
higher expression of the main defense genes against P. pachyrhizi, and reduced disease
severity and lesion frequency. However, PCA at 60 µg mL−1 had better performance
against the pathogen, regarding the reduction in disease severity and lesion frequency.
Possibly, other defense mechanisms not measured in the present study were involved.

ASR resistance is directly related to the intensity and timing of defense-related gene
expression [45]. The ASR susceptible genotypes have a peak of defense-related genes
expression 12 h after spore inoculation, followed by a second increase at 96 h, while resistant
genotypes expressed these peaks at 12 and 72 h, which corresponds to the time of fungal
penetration and haustoria formation [41,42].

Despite the strong correlation between gene expression and metabolite production,
enzymatic activity and translational regulation may change dynamically, with an even-
tual decrease in the level of some key metabolites [46]. From 570 expressed genes and
507 proteins evaluated in an ASR-resistant-soybean genotype, only nine gene/protein
correlations were found during pathogenic infection, suggesting that the production and
accumulation of proteins and metabolites in P. pachyrhizi–soybean interaction is influenced
by other biological processes, beyond gene transcription [41].

In the present study, high expressions of PAL, OMT and PR-2 genes were observed
at 24 and 72 h after OAC application. The upregulated defense-related genes stimulated
by OAC, without the complete disease control, lead to two assumptions: (1) the increased
expression of the measured genes did not occur during the critical moment of fungal
establishment in leaf tissue thus it was unable to block the infection of the host plant;
(2) the genetic expression did not result in the production of protective phytoalexins or
antimicrobial proteins by the plant. However, it is possible that spraying the plants with
OAC after pathogen inoculation could promote better results for the control of ASR, by the
alignment of fungal infection with the activation of plant defenses.

Only the OAC compound was able to induce the upregulation of the defense-related
genes evaluated in these experiments. However, the semi-purified extract F4A and PCA
presented higher efficiency in controlling the experimental P. pachyrhizi infection in soy-
bean. The results found in spore germination, genetic expression, disease severity and
lesion control show that P. aeruginosa metabolites have great potential against this utterly
important fungal disease. Further studies will be carried out for optimizing formulation
and concentration of each compound, as well as the application timing of the treatment,
with the objective of developing the most efficient combination for ASR control under
field conditions.
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4. Materials and Methods
4.1. Metabolites Production

P. aeruginosa LV strain (GenBank: QBLE00000000.1) was isolated from a citrus canker
lesion of Citrus sinensis cv. Valencia fruit in Astorga, Brazil [47]. The strain was cultivated
in nutrient broth (NB) plus 0.01% CuCl2 2H2O for 28 ◦C/10 days. A semi-purified fraction,
named F4A, was extracted by liquid vacuum chromatography (LVC) from a cell-free super-
natant [31]. The compounds PCA, PCN and OAC were purified by flash chromatography
(FC) using a 10 cm column containing silica 0.04–0.063 mm. The PCA and OAC were ex-
tracted with 200 mL of dichloromethane plus ethyl acetate [95:5]. PCN was extracted with
200 mL of dichloromethane plus ethyl acetate [50:50]. The purity level of these compounds
was checked by HPLC [33], and after that, the compounds were dissolved in dimethyl
sulfoxide (DMSO) and purified water before sprayed on plants. The concentration of each
compound in F4A total volume was PCA 30%, PCN 25% and OAC 25% [33].

4.2. The Evaluation of F4A Fraction on P. pachyrhizi Spore Germination

Aliquots of 1 mL containing 4 × 104 mL−1 spores of P. pachyrhizi were distributed in
Petri dishes containing 1.5% water agar and 0.5% of DMSO plus 1, 10 or 100 µg mL−1 of F4A
in each plate, being incubated for 12 h at 25 ◦C. Three replicates were performed for each
F4A concentration. Water agar plus DMSO was used as control. The spore germination (%)
was evaluated by optical microscopy (100X).

4.3. Gene Expression of Soybean Plants Treated with Secondary Metabolites of P. aeruginosa
LV Strain

Before this experiment, many other preliminary experiments were carried out to
verify and standardize the experimental conditions, such as the concentrations of applied
compounds, the higher yields of expressed genes, and other variables for better qRT-PCR
analysis. According to these preliminary results (data not shown), three genes (PR-2,
PAL and OMT) were chosen as bioindicators of SAR, after the plants were treated with
P. aeruginosa LV strain secondary metabolites, as described below. The endogenous gene
encoding β-actin of soybean was used as internal control.

Seeds of Glycine max cv. BRS 184, a highly ASR-susceptible cultivar, were pre-
germinated for 72 h at 25 ◦C and transferred to two-liter pots filled with unsterilized
soil. Plants were kept in a growth chamber (14 h/10 h photoperiod day/night, 28 ºC and
50% RH) and watered daily. The experimental design was entirely randomized, with three
replicates and three sampling times per treatment. Four treatments were tested: the semi-
purified fraction F4A (20 µg mL−1), and the pure compounds PCA (6 µg mL−1), PCN
(5 µg mL−1), OAC (5 µg mL−1). Plants were sprayed with 5 mL per plant of each treatment
in the 21st day after sowing. Plants sprayed with distilled water plus DMSO (0.5%) and
mineral oil (0.25%) were used as controls.

The second trifoliate leaf of each plant was collected at 24, 72 and 168 h after treatment.
They were quickly transferred to liquid nitrogen and stored at −80 ◦C. These leaves were
macerated in liquid nitrogen, using materials previously treated with RNase AWAY ®

(Merck). The RNA extraction was performed using Trizol (Invitrogen, Waltham, MA, USA)
method, following manufacturer recommendations. The extracted RNA was resuspended
in RNase-free water. RNA concentration of each sample was measured using a NanoDrop™
spectrophotometer (Thermo Fischer Scientific, Waltham, MA, USA) and the samples were
stored at −80 ◦C. Samples were adjusted to the final concentration of 3 µg µL−1 and treated
with DNase Turbo™ (Invitrogen), according to the manufacturer indications. The cDNA
synthesis was performed with Superscript™ III (Invitrogen), according to the manufacturer
protocol. The qRT-PCR was executed in a 7500 Real Time PCR System (Applied biosystem®)
with 96-well capacity. The oligonucleotides used are presented in Table 1.
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Table 1. Oligonucleotides used in qPCR analyses.

Oligonucleotide Sequence 5 ‘–3 ‘

β-actin F GAGCTATGAATTGCCTGATGG
β-actin R CGTTTCATGAATTCCAGTAGC

PR-1 F AGAGGCAGAGGTGGGTTCT
PR-1 R TCACCAACAAAGTTGCCAG
PR-2 F TGAAATAAGGGCCACGAGTCCAAATG
PR-2 R ATGGTACATGCAGACTTCGAATGCAGAT
PR-5 F CTCATGCACCAGTATTCCC
PR-5 R AAGCTTTGTAGTTGGTCC
PAL F CAAACATCGGCAGATTACTCC
PAL R CTGGAATGTCTTGGAGATTGG
OMT F TGGCTAGTCACTCCATGCTATC
OMT R AACGAGACACCATCAGCATC

Note: F4A—purified fraction; PCA—phenazine-carboxylic acid; PCN—phenazine carboxamide; OAC—
organocopper compound.

4.4. ASR Control in Soybean Plants Treated with Secondary Metabolites of P. aeruginosa LV Strain

Preliminary experiments were carried out, testing different conditions for better evalu-
ating the activity of secondary metabolites of P. aeruginosa LV strain against ASR. The final
experiment was carried out at a greenhouse in Embrapa Soja-Londrina. The experiment
was a split plot design with three concentrations of F4A, PCA, PCN and OAC (Table 2),
with four replicates. Distilled water plus DMSO (0.25%) and mineral oil (0.25%) were used
to dilute the compounds, and they were applied pure on the control plants.

Table 2. Description of treatments used in the severity experiment, the products used and the
respective concentrations.

Treatment Product Concentration (µg mL−1)

1 H2O
2 H2O + DMSO + mineral oil
3 F4A 0.2
4 F4A 2
5 F4A 20
6 PCA 0.6
7 PCA 6
8 PCA 60
9 PCN 0.5
10 PCN 5
11 PCN 50
12 OAC 0.5
13 OAC 5
14 OAC 10

Note: F4A—purified fraction; PCA—phenazine-carboxylic acid; PCN—phenazine carboxamide; OAC—
organocopper compound.

Soybean seeds cv. BRS 184 were sowed in three-liter pots containing the same non-
sterilized soil as described above. Pots were fertilized with the equivalent of 250 Kg ha−1

of N-P-K 10-10-10. The temperature was adjusted to 28 ºC and plants were watered when
needed. After 20 days of sowing, plants were uniformly sprayed with each compound
solution (5 mL per plant). P. pachyrhizi inoculation was performed by spraying a spore
suspension (104 spores mL−1) at the abaxial side of leaflets, 24 h after treatment.

Two leaflets were collected from the second trifoliate leaf of each plant for phenotypic
evaluation, 14 days after inoculation. The lesion frequency was determined according to
the number of lesions observed in 1 cm2, on each side of the leaflet. The disease severity
was evaluated as the percentage of the leaf area covered by lesions caused by the fungus,
analyzed by the software programs Photoshop CS6 and Quant [48].
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4.5. Statistical Analysis

Spore germination, severity and lesion frequency that attended normality and homo-
geneity according to the Shapiro–Wilk and Bartlett tests were evaluated using Tukey’s test
(p < 0.05), in order to verify the difference of each treatment compared to control using
RStudio software. For gene expression data analysis, Student’s t-tests were performed to
compare changes in gene expression levels, using the software program 7000 System SDS
(Applied biosystems®).
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