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The electrical activity of tomato plants subjected to fruit herbivory was investigated. The

study aimed to test the hypothesis that tomato fruits transmit long-distance electrical

signals to the shoot when subjected to herbivory. For such, time series classification

by machine learning techniques and analyses related to the oxidative response were

employed. Tomato plants (cv. “Micro-Tom”) were placed into a Faraday’s cage and an

electrode pair was inserted in the fruit’s peduncle. Helicoverpa armigera caterpillars

were placed on the fruit (either green and ripe) for 24 h. The time series were recorded

before and after the fruit’s exposure of the caterpillars. The plant material for chemical

analyses was collected 24 and 48 h after the end of the acquisition of electrophysiological

data. The time series were analyzed by the following techniques: Fast Fourier Transform

(FFT), Wavelet Transform, Power Spectral Density (PSD), and Approximate Entropy. The

following features from FFT, PSD, and Wavelet Transform were used for PCA (Principal

Component Analysis): average, maximum and minimum value, variance, skewness, and

kurtosis. Additionally, these features were used in Machine Learning (ML) analyses for

looking for classifiable patterns between tomato plants before and after fruit herbivory.

Also, we compared the electrome before and after herbivory in the green and ripe fruits.

To evaluate an oxidative response in different organs, hydrogen peroxide, superoxide

anion, catalase, ascorbate peroxidase, guaiacol peroxidase, and superoxide dismutase

activity were evaluated in fruit and leaves. The results show with 90% of accuracy that

the electrome registered in the fruit’s peduncle before herbivory is different from the

electrome during predation on the fruits. Interestingly, there was also a sharp difference in

the electrome of the green and ripe fruits’ peduncles before, but not during, the herbivory,

which demonstrates that the signals generated by the herbivory stand over the others.

Biochemical analysis showed that herbivory in the fruit triggered an oxidative response

in other parts of the plant. Here, we demonstrate that the fruit perceives biotic stimuli

and transmits electrical signals to the shoot of tomato plants. This study raises new
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possibilities for studies involving electrical signals in signaling and systemic response,

as well as for the applicability of ML to classify electrophysiological data and its use in

early diagnosis.

Keywords: plant electrophysiology, machine learning, Micro-Tom, Helicoverpa amigera, stress response,

antioxidant system

INTRODUCTION

Plants are sessile organisms with enormous evolutionary success
(Bar-On et al., 2018). To cope with unfavorable environmental
situations without moving around, they have evolved a body with
modular structures and limited tissue differentiation comparing
with most animals (Trewavas, 2002; Souza et al., 2018). Thus,
since each plant module is able to sense local environmental
changes, it is relevant that the many signals coming from the
modules be integrated and interpreted effectively, enabling an
efficient response in order to maintain the plant surviving as a
whole. This is possible through a complex network of short and
long-distance signal transduction by hydraulic, chemical, and
electrical signaling (Choi et al., 2016).

Electrical signals are not exclusive to organisms that possess
nervous systems. In plants, they are derived from changes in
cell membrane potentials that can occur due to external tissue
stimuli, leading to modifications in ion channels and plasma
membrane transporters, which in turn alter membrane voltage
by causing an ionic imbalance (Cuin et al., 2018). Studies related
to plant electrophysiology generally focus on individual signals
of one or few cells, often action potentials (APs) and variation
potentials (VPs). However, the analysis of specific signals can
underestimate the complexity of many overlapping electrical
signals operating simultaneously, which creates a web of systemic
information where multiple electrical signals are layered in time
and space (De Loof, 2016; Souza et al., 2017). In this sense,
it was proposed the term “plant electrome,” which is based on
the general definition of “electrome” by De Loof (2016) as the
totality of ionic currents of any living entity, from the cell up
to the whole organism level. Thus, plant electrome correspond
to the plants’ bioelectrical activity measured as micro-Voltage
changes in stimulated or non-stimulated tissues (Saraiva et al.,
2017; Toledo et al., 2019). Recently, plant electrome analysis has
been shown as an efficient tool allowing diagnose of different
plant stresses (both abiotic and biotic) since the electrome
dynamic is sensitive to a plethora of stimuli, exhibiting specific
pattern responses recognizable by standard time series analyzes
techniques and, specially, by machine learning methods for data
classification (Pereira et al., 2018; Simmi et al., 2020; Parise et al.,
2021).

The electrical signal seems to be an excellent alternative
for fruit signaling to other plant modules and organs due to
its inherent capacity for rapid propagation and independence
of vascular water mass flow (Fromm et al., 2013; Huber and
Bauerle, 2016; Vodeneev et al., 2016). Choi et al. (2017)
suggested a general and stress-specific systemic signaling model
involving a trio of messengers (ROS, Ca2+, and electrical
signals) in which the local stress stimulus triggers changes in

membrane potential, increased cytosolic calcium concentration,
and activation of RBOHDs (respiratory burst oxidase homolog
protein D) mediating the oxidative burst that leads to the
accumulation of reactive oxygen species. The association between
these signals would generate a wave that quickly spreads
throughout the plant in a self-propagating way, through the
apoplast or plasmodesmata. Long-distance signaling can result
in a systemic response, occurring between tissues of organs with
the same function or not. The systemic response of long-distance
signaling occurs when an environmental stimulus is perceived in
a part of the plant, processed, and the information generated is
exported, influencing the behavior of a distant tissue (Choi et al.,
2016).

Biotic environmental stressors, such as insect herbivory,

promote mechanical damage and facilitate the infection by
microorganisms. This type of injury triggers a systemic signaling

process, involving hydraulic, chemical, and electrical signals,

which in turn can lead, for example, to hormone and oxidative
responses (Bi and Felton, 1995; Farmer et al., 2020). The moth

Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is an

insect known for its damages to crop production. Its caterpillar
present high polyphagy, being able to feed on more than

180 species of plants from different families, including tomato

(Solanum lycopersicum L.) (Pratissoli et al., 2015). Also, this
species has high fecundity, fast generation time, good ability

to disperse in field conditions during the adult stage, and high

survivability in adverse environmental conditions (Fitt, 1989;
Arnemann et al., 2019). It is widely distributed geographically,

being present throughout the Old World and Oceania. Recently,

this highly destructive species has reached the Americas, where
it was firstly recorded in Brazil and Paraguay in 2013, and in

Argentina in 2014 (Czepak et al., 2013; Murúa et al., 2014;
Kritikos et al., 2015).

Tomato fruit is a part of the plant that can be damaged by

H. armigera caterpillar. Despite of tomato fruits present vascular
bundles connecting with the other parts of the plant and the

phloem is proposed as the main electrical signaling pathway,

information on the role of the electrical signal generated by
biotic stimuli perceived in the fruit and its signaling to other

parts of the plant is scarce. Thus, since there is a possible

route of transmission of electrical signals from the fruit to the
rest of the plant, and the injury to the fruit may be signaled

to more distant tissues via electrical signaling, it is likely that

tomato fruits transmit long-distance electrical signals to the
shoot when subjected to herbivory. Studies regarding electrical
long-distance signaling under fruit herbivory could be useful to
demonstrate that the fruit, as a living and integral part of the
plant, is also capable of sending signals when under unfavorable
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environmental situations, providing to the rest of the plant
information allowing to prepare for a possible or imminent
environmental adversity.

In this vein, we have tested such possibility analyzing likely
changes on plant electrome induced by herbivory in tissues at
distance. Moreover, in order to verify long-distance signaling
physiological effects, oxidative responses in tissues other than the
predated fruits were evaluated.

MATERIALS AND METHODS

Plant Material and Experimental
Conditions
Seeds of tomato cv. “Micro-Tom” wild type (WT) were used. The
seeds were germinated in a polystyrene honeycomb germination
box, filled with commercial organic substrate, and kept in a
germinating chamber (25◦C, photophase of 12 h) for 10 days.
After this period, the seedlings were transplanted into 0.5 L
plastic pots filled with commercial organic substrate and grown
under greenhouse conditions. The plants were irrigated on
alternate days with 50mL of tap water. Additionally, 50mL of
nutrient solution (Hoagland and Arnon, 1938) was applied three
times a week. The average temperature in the greenhouse during
the experimental period was 28.5 ± 12.9◦C and the irradiance,
from natural light, was 800 µmol photons m−2 s−1.

To carry out the experiment, tomato plants with fruits in two
different ripening stages were used: red and mature green. Five
tomato plants for each essay were transferred to the laboratory 2
days before the beginning of the experiment to acclimate at room
temperature of 25.0± 2.0◦C and irradiance of 450µmol photons
m−2 s−1 provided by LEDs with full-sunlight spectrum. The
caterpillars used in the experiment were in the third and fourth
instar. The insects were kept in the laboratory under suitable
conditions of temperature (25 ± 2◦C), relative humidity (70 ±

15%) and photophase (14 h). The rearing was carried out on an
artificial diet according to the methodology developed by Vilela
et al. (2014).

The fruits were subjected to herbivory by H. armigera
caterpillars, as follows. First the fruits were involved in low-
density polyethylene (LDPE) plastic bag, with needle-drilled
holes to allow gas exchange. After 2 h acquisition of non-
stimulated electrical signals (as described below), a cut in the
plastic bag was made for placing the caterpillars on the fruit’s
surface. Then, the cut was sealed with adhesive tape and the
electrical signal acquisition started again for 24 h to gather
bioelectrical activity under herbivory. A total of 6 assays were
carried out with fruits in the red stage and 4 essays were ran with
fruits in the mature green. Each essay was performed with five
plants simultaneously. The general experimental setup is showed
in Figure 1.

Electrophysiological and Biochemical
Measurements
Electrome Data Acquisition
Electrical signals were recorded inside a Faraday’s cage with the
electronic system for data acquisition MP36 (Biopac Systems,

Goleta, CA, EUA), composed of four channels with high input
impedance (10 G�). The signals were acquired by fixing a
sampling rate of fs = 62.5Hz with two filters, one high-pass
(0.5Hz cut-off frequency) and the other low-pass (1.5 kHz cut-off
frequency). The bioelectrical runs were analyzed asmicro-voltage
variation (µV) time series1V= {1V1,1V2, . . . ,1VN} in which
1Vi is the difference of potential between the inserted electrodes,
scored in each 1/fs time interval, and N is the total length of
the series.

In each essay, a pair of needle electrodes (EL452model; Biopac
Systems, Goleta, CA, EUA) was inserted in the peduncle next to
the fruit under herbivory (Figure 2) 1 day before of the signal
recording for acclimation. The bioelectrical activity was recorded
during 2 h before beginning of herbivory and for 24 h after the
caterpillars have been placed on the fruits. Additionally, measures
with open electrodes (electrodes not attached to plants) were
made for the same amount of time that the experiment was
carried out to monitoring the equipment noise. For the open
electrodes, the signals remained stable throughout the whole
period of measurements, showing that the variation in signal
complexity was not due to the equipment. Open electrode signals
show a typical Gaussian noise with a lower amplitude than the
plant signal baseline (Saraiva et al., 2017).

Biochemical Evaluations
Soon after the end of the 24 h electrophysiological measures, red
fruits and leaves were harvested from the plants that underwent
herbivory, as well as control plants not subjected to herbivory.
The samples were immediately stored at −86◦C for further
biochemical analysis. Prior to the analysis, tomato fruits were
macerated in a ball mill with liquid nitrogen and stored in 50mL
falcon tubes in an ultrafreezer (−86◦C).

Antioxidant Enzymes
Fruit and leaf samples (± 0.2 g) were homogenized with 100µM
EDTA, 10mM ascorbic acid, 50% (w:w) polyvinylpyrolidone
(PvP) 100mM, and potassium phosphate buffer pH 6.0 and 7.8
(fruit and leave, respectively). The homogenate was centrifuged
at 13,000 × g for 20min at 4◦C and the supernatant obtained
was used as a crude enzyme extract (Azevedo et al., 2006). From
the same extract, the total soluble proteins content (Bradford,
1976) was determined for expression of enzymatic activity, using
a bovine serum albumin standard curve. Mature green fruit and
48 h red fruit were not evaluated due to the difficulty of obtaining
the plant material necessary for biochemical analysis from a
single “Micro-Tom” tomato plant. The 24 h sample of the red
fruit was sufficient for the purpose of this work.

Catalase (CAT—EC 1.11.1.6) activity was determined by
incubating fruit and leaf samples with 100mM phosphate buffer
(pH 7.0) and 12.5mM H2O2 (Azevedo et al., 1998). The
enzyme activity was estimated from measurements of H2O2

degradation at 240 nm using ε equal to 36 M−1 cm−1. The results
were expressed as µmol H2O2 mg−1 protein min−1 of fresh
weight (FW).

Ascorbate peroxidase (APX—EC 1.11.1.11) activity was
analyzed using a medium comprised of 37.5mM phosphate
buffer (pH 7.0), 0.25mM ascorbic acid, and 5mMH2O2 (Nakano

Frontiers in Sustainable Food Systems | www.frontiersin.org 3 July 2021 | Volume 5 | Article 657401

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Reissig et al. Fruit-Shoot Long-Distance Electrical Signaling

FIGURE 1 | Schematic representation of tomato plant cultivation and experimental set up. Tomato plants were grown until the reproductive stage. Plants with mature

green and red fruit were used in the experiment (here we only represented the red fruit). A total of 5 plants were used by assay, 1 control and 4 plants inserted with H.

armigera in the fruit. The control was used to collect the fruit and leaves for biochemical analysis and the plants under herbivory were used to the electrophysiological

analysis.

and Asada, 1981). The activity was monitored using ascorbate
oxidation rate at 290 nm (ε = 2.80× 103M−1 cm−1). The results
were expressed in µmol AsA mg−1 protein min−1 FW.

Guaiacol peroxidase (GPOD−1.11.1.7) activity was assayed as
described by Azevedo et al. (2006), monitoring the production
rate of tetraguaiacol at 470 nm (ε = 26.6 × 103 M−1 cm−1).
The reaction medium consisted of 100mM potassium phosphate
buffer (pH 7.0), 0.1µM EDTA, 5mM guaiacol, 15mM hydrogen
peroxide, and fruit and leaf extracts. The results were expressed
as µmol H2O2 mg−1 protein min−1 FW.

Superoxide dismutase (SOD—EC 1.15.1.1) activity was
analyzed using a medium containing 50mM potassium
phosphate buffer (pH 7.8), 14mM methionine, 0.1µM EDTA,
75µM NBT, and 2µM riboflavin. The enzyme activity was
measured at 575 nm, and 1 unit of activity was defined as the
amount of enzyme required to inhibit the reduction of nitroblue
tetrazolium by 50 % (Giannopolitis and Ries, 1977).

Hydrogen Peroxide and Superoxide Anion
The determination of hydrogen peroxide was performed using a
methodology described by Velikova et al. (2000). Tomato fruit
(± 0.2 g), previously macerated and cold stored, and leaf (±
0.2 g) were homogenized in 0.1% trichloroacetic acid (TCA). The
homogenate was centrifuged at 13,000 × g at 4◦C for 20min
and the supernatant obtained was added to the reaction medium,
which was composed of 10mM potassium phosphate buffer

(pH 7.0) and 1M potassium iodide. The absorbance was read
at 390 nm. The content was determined by a standard curve
prepared with known concentrations of H2O2 and the results
expressed in µmol H2O2 g

−1 FW.
Superoxide anion content was determined using the

methodology of Elstner and Heupel (1976). Approximately
0.2 g of tomato fruit and leaves were homogenized in a 65mM
phosphate buffer (pH 7.8) and centrifuged at 5,000 × g at 4 ◦C
for 10min. The supernatant obtained was mixed with 65mM
phosphate buffer (pH 7.8) and 10mM hydroxylamine. Then
the reaction medium was immediately placed in a water bath
at 25◦C for 20min. Thereafter, 17mM sulfanilamide and 7mM
α-naphthylamine were added, and again the reaction medium
was incubated at 25 ◦C for 20min. The absorbance of the
solution was measured at 530 nm. A standard curve of sodium
nitrite (NaNO2) was used to calculate the superoxide anion
content. The results were expressed in µmol O•−

2 g −1 FW.

Data Analysis
Statistical Analysis of Biochemical Measurements
Five replicates (n = 5) of red fruit (control and 24 h under
herbivory) and leaves (control and 24 and 48 h under herbivory)
were analyzed by one-way analysis of variance (ANOVA). When
F was significant, the treatment means were compared with
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FIGURE 2 | “Micro-Tom” tomato fruit under herbivory. An electrode pair was

placed in the peduncle, near the tomato fruit with Helicoverpa armigera

caterpillar. Five tomato plants (1 control + 4 herbivory) were kept in Faraday’s

cage for 24 h, until the end of electrical signal acquisition.

Student’s t-test (p ≤ 0.05). Statistical analyses and graphics were
performed using Sigmaplot 12.0 (Systat Software Inc., USA).

Machine Learning Classification Methods on

Electrome Time Series
The characterization of the electrophysiological time series
collected before and after herbivory was carried out. We obtained
the following time series: 16 series of 2 h for green fruit plants
before herbivory; 16 series of 24 h for green fruit plants after
herbivory; 22 series of 2 h for red fruit plants before herbivory;
22 series of 24 h for red fruit plants after herbivory. These series
were filtered and divided in order to increase sample space, which
resulted in 150 samples for green fruits before herbivory (GB),
150 samples for green fruits after herbivory (GA), 220 samples
for red fruits before herbivory (RB) and 220 samples for red fruits
after herbivory (RA). The samples are subdivisions of the series,
in shorter time series, in order to increase the sampling space.
All the time series were divided into 10 interchangeable parts
between them with a lag of 30%, meaning that each part overlaps
the other. In the end, each sample had∼45,000 (2 h) and 540.000
points (24 h). The time series were filtered through notch filter
(notch= 60) and band pass_filter (low= 32 and high= 0.5) with
the function applies filtfilt from the scipy.signal library.

For the generation of the features to feed machine learning
(ML) algorithms, the Fast Fourier Transform (FFT), Spectral
Power Density (PSD), Wavelets, and Approximate Entropy
(ApEn) were calculated for each of the samples (Saraiva et al.,
2017; Parise et al., 2021). For FFT, PSD, andWavelets we calculate
the average, the maximum value, the minimum value, the

variance, skewness, and kurtosis. Moreover, in order to decrease
the computational cost speeding the analysis, we decided to
reduce these features by calculating a Principal Component
Analysis (PCA) in the descriptive analysis calculated for FFT,
PSD, and Wavelets (Parise et al., 2021). Thus, we obtained the
first three PCA components (PCA1, PCA2, and PCA3). Finally,
we obtained four features: ApEn, PCA1, PCA2, and PCA3.

ML Training and Testing
Considering the inherent complexity of electrome data, different
methods of ML classification have been used to ensure more
reliability to the results of classification (Pereira et al., 2018).
Herein, ML training was performed in a supervised manner.
All data were calculated using numpy.random.seed with seed =

42. The values for the hyperparameters were obtained from the
literature and from a previous evaluation on the data sets. The
hyperparameters that obtained the best levels of accuracy were
maintained for all the underlying analyzes. When the default
hyperparameters reached the best results, they were kept. The
different classification processes used are detailed hereafter.

- Nearest Neighbors: (n_neighbors = 2) this method uses the
inputs closest to each other to group and classify each group
(Cover and Hart, 1967);

- Linear Support Vector Machine (Linear SVM): (max_iter =
100.000 and tol = 1e-1) the Linear SVM method predicts
through the linear regression the position of each entry and
consequently which group the entry belongs to Fan et al.
(2008);

- Radial Basis Function SVM (RBF SVM): (gama=1e-2) it is
similar to the Linear SVM method, however, the RBF uses
another strategy to plot the hyperplane decision boundary
between classes, such as curves in addition to lines (Chang
et al., 2010);

- Gaussian Process: (max_iter_predict = 150 and multi_class
= one_vs_one) this method uses input interpolation and
Gaussian probabilistic statistics to predict results (Rasmussen
and Williams, 2006);

- AdaBoost (Adaptive Boosting): (n_estimators = 100) this
method uses a meta-heuristic algorithm to adapt the
classification of each entry (Freund and Schapire, 1997);

- Naïve Bayes: (var_smoothing = 1e-7) uses Bayes’ theorem to
classify each entry (Russell and Norvig, 2003);

- Quadratic discriminant analysis (QDA): (default) assumes that
the inputs are normally distributed, however, there is no need
to assume that the covariance of each group is identical (Kim
et al., 2011);

- Decision Tree Classifier: (max_depth = 10 and
min_samples_leaf = 64) creates a decision tree based on
the relevance of each feature so it classifies the entries using
the paths previously created (Breiman et al., 1984);

- Neural Net: (default) This method uses a network of nodes
specialized in classifying specific features giving weights that at
the end are added up and return a classificatory result for each
group. The model used in this work was the MLPClassifier,
which optimizes the log-loss function using LBFGS (Windeatt,
2006).
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Additionally, the DummyClassifier method was used as a control,
since it classifies each group without an intelligent strategy, being
guided by chance. Intelligent methods that have their accuracy
values (considering their respective deviations) close to that
found by the Dummy were considered not capable of classifying
the inputs.

The Stratified KFold (n_splits = 4 and shuffle = True) and
Cross Validate methods (Forman and Scholz, 2010; Adagbasa
et al., 2019) were used to minimize the effect of chance on the
distribution of data used for training and testing.

The code libraries used were: Numpy and Pandas for
data manipulation; Scipy, Obspy and Math for mathematical
calculations; Matplotlib for creating graphics; Sklearn and
Statsmodels for machine learning. To test our hypothesis, the
groups GB × GA, RB × RA, RB × GB, and RA × GA were
classified using the methods described above. The methodology
used here has been previously described by Parise et al. (2021).
All the algorithms were running in Python.

RESULTS

Electrome Classification by ML Before and
After Fruit Herbivory
Figure 3 shows the decision making of each method to classify
the GB and GA groups. The method that obtained the best
accuracy value was the Gaussian Process with 98.21% ± 4.64
of accuracy (Figure 3). The Dummy method found a value of
66.67% ± 0.88. We see clearly that ML was able to classify the
electrome among the groups. Several models have achieved high
accuracy values (Figure 3), demonstrating that the GB and GA
groups are easily classified. These data indicate that the herbivore
in the mature green fruit considerably modifies the electrome
registered in the peduncle, demonstrating that the electrical
signal generated in the fruit was transmitted to the rest of the
aerial part of the plant.

The decision-making used by the methods to classify between
the RB and RA groups is shown in Figure 4. The best method
was AdaBoost with 99.72% accuracy (± 1.73). All other methods
reached values above 98% accuracy (Figure 4), not including
the Dummy, which obtained an accuracy of 66% ± 0.01. This
high value demonstrates how easily the RB and RA groups
were differentiated, indicating that the red fruit also changes the
electrome, emitting electrical signals to the plant when subjected
to herbivore on the fruit.

The decision making for the classification of the RB and GB
groups can be seen in Figure 5. The method that obtained the
best accuracy for classifying the groups was the Gaussian Process
with 90.55% ± 4.39 of accuracy. The Dummy obtained 59.46%
accuracy ± 0.01. These values indicate that the ML was able to
classify the groups with great accuracy and reliability (Figure 5).
The other methods obtained lower accuracy values than the
Gaussian Process (Figure 5). This result indicates that there is
a difference between the electrome of the mature green and the
red fruit, even before subjecting the plant to an external stimulus,
and that this difference is reflected in measurements made on the
fruit’s peduncle. This finding corroborates Reissig’s et al. (under

review) study, where the electrome of ripening tomato fruits
was analyzed.

The strategies used to classify the RA and GA groups are
shown in Figure 6. In a visual analysis of the scatter plot, one can
observe how difficult is separate it in two groups. The samples
have little variation from each other, this indicates a similarity
between both groups, which made the ML learning difficult. The
method that obtained the highest accuracy for classifying the
RA and GA groups was AdaBoost with 70.65%. However, its
deviation was 20.74%, which is remarkably high, indicating a
significant dependence on data separations and, therefore, low
learning reliability. The second-best method was Neural Net
(66.38% ± 9.37). Nevertheless, the Dummy method obtained
61.65% accuracy with 5.12% of standard deviation (Figure 6).
Considering the standard deviation, it can be said that none of
the methods learned how to differentiate the RA and GA groups.
This result shows that the electrome after the herbivore is similar
for both the red and mature green fruits, standing out from the
differentiated signal observed between the mature green and red
fruits before herbivory.

Herbivory-Induced Systemic Response
To evaluate whether the fruit herbivory generated a systemic
oxidative response and signaling in tomato plant, ROS and
antioxidant enzymes analyses were carried out (Figures 7, 8).
Hydrogen peroxide (H2O2) content was significantly (p ≤ 0.05)
higher in the fruit close to the one that was subjected to herbivory
(Figure 7). The same was observed in the leaf 24 h. Comparing
the leaves 24 and 48 h of the herbivory treatment, it is possible
to notice a decrease in the H2O2 concentration in the latter.
Regarding superoxide anion content, there was no significant
difference (p ≥ 0.05) between control and herbivory in the
fruit, nor in the leaf 24 h (Figure 7). Nevertheless, there was a
decrease in the superoxide anion content in the leaf 48 h under
herbivory, differing significantly (p ≤ 0.05) from the control,
which maintained the same level as in the 24 h.

There was no significant difference (p≥ 0.05) between control
and herbivory treatment for fruit and leaves. A significant
increase (p ≤ 0.05) in CAT activity was only observed when
the leaf 24 h was compared to the leaf 48 h, both under fruit
herbivory conditions. Regarding APX activity, there was no
significant difference (p ≥ 0.05) in the fruit 24 h between control
and herbivory. However, both for 24 and 48 h, APX activity was
higher in the leaves belonging to the fruit herbivory treatment.
GPOD was the only enzyme that showed higher activity in
the fruit 24 h, compared to the control. The leaves of the
control treatment maintained practically the sameGPOD activity
between 24 and 48 h. Leaves belonging to the fruit herbivory
treatment presented higher activity in the 24 h. In the 48 h of
herbivory, the activity decreased, being significantly lower than
the control (p ≤ 0.05).

SOD activity was practically the same between 24 and 48 h in
the leaf control treatment. In the 24 h, the control leaf showed
an activity significantly (p ≤ 0.05) higher than the leaf of
the herbivory treatment. When the analysis was performed on
the leaf 48 h, it was observed that the activity increased and
there was no difference compared to the control. There was
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FIGURE 3 | Accuracy (%) and standard deviation (A) of the Machine Learning models used to classify GB and GA groups. Scatter plots (B) showing a sample space

plan used in ML training for the GB × GA distribution. Red dots: GB; Light yellow spots: GA. The regions are the demarcations made by ML to indicate levels of

certainty of classification. The darker it is, the more certain it belongs to the GB group. The clearer the more certainty of belonging to the GA group. The subtitle of

each graph indicates the method used and in the lower right quadrant is the accuracy found.

no significant difference (p ≥ 0.05) in SOD activity between
fruits. In all analyses performed, there is a stability between
the control leaves 24 and 48 h, with no significant difference (p
≥ 0.05) in any of the cases. Regarding herbivory treatments,
there is a fluctuation in concentration and activity, effectively
demonstrating the influence of herbivory on the fruit in the
oxidative response of different organs.

DISCUSSION

Plant herbivory caused by insects is responsible for large
production losses worldwide (Arnemann et al., 2019). It is of
the utmost importance to know all aspects involving plant-insect

interactions, from the ecological to the physiological perspective,
in order to develop efficient strategies to deal with damages
caused by them (Burkepile and Parker, 2017). Several studies
have been carried out to understand the mechanisms behind
signaling and systemic responses of plants under herbivory. Due
to its inherent sessility, plants possess a plethora of mechanisms
and molecules to deal with herbivory, such as RNA silencing,
peptides, and specialized metabolites. The complexity of plant
herbivory signaling arises from the huge number of plant-insect
interactions, resulting in a panoply of defense compounds and
systemic signaling elicitors. Exogenous ATP, glutamate, cell wall
oligogalacturonides are examples of herbivory systemic response
elicitor (Arimura, 2020; Farmer et al., 2020). In addition to the
elicitors, a recent study demonstrates that ethylene response
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FIGURE 4 | Accuracy (%) and standard deviation (A) of the Machine Learning models used to classify RB and RA groups. Scatter plots (B) showing a sample space

plan used in ML training for the RB × RA distribution. Red dots: RB; Light yellow spots: RA. The regions are the demarcations made by ML to indicate levels of

certainty of classification. The darker it is, the more certain it belongs to the RB group. The clearer the more certainty of belonging to the RA group. The subtitle of

each graph indicates the method used and in the lower right quadrant is the accuracy found.

factors 15 and 16 trigger jasmonate biosynthesis in tomato during
herbivore resistance (Hu et al., 2021). These receptors, as well as
ATP, glutamate, and cell wall oligogalacturonides, are also present
in fruits and involved in ripening and defense responses (Gao
et al., 2020).

In the last decade, many studies have focused on the
involvement of the electrical signals in the systemic signaling of
plants under herbivory, especially due to its rapid propagation.
Also, due to the involvement of calcium and the depolarization
of the plasma membrane caused by this sort of injury. The
calcium ion (Ca2+) is a universal signaling element in plant
cells, as well as in all eukaryotic cells, and is intricately linked
to the electrical signal. Recent studies are suggesting the ion

channels of GLR (Glutamate Receptor–Like) family and CNGCS
(Cyclic Nucleotide Gated Channels) are involved in systemic
signaling (Toyota et al., 2018; Breeze, 2019). The H+-ATPase
is a proton pump ATPase that couples ATP hydrolysis with
the transport of protons out of the cell, generating a proton
motive force. It supports the uptake of ions and influences on
the cytoplasmatic and apoplastic pH (Morsomme and Boutry,
2000). The electrogenic pumps are assumed to participate in
action potentials (APs) generation. H+-ATPases are reversibly
inactivated by calcium (Ca2+) influx at the beginning of
AP generation, being activated in the repolarization phase
(Vodeneev et al., 2016). The AHA1 proton pump is involved
in the herbivory-induced electrical signals, especially the slow
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FIGURE 5 | Accuracy (%) and standard deviation (A) of the Machine Learning models used to classify RB and GB groups. Scatter plots (B) showing a sample space

plan used in ML training for the RB × GB distribution. Red dots: RB; Light yellow spots: GB. The regions are the demarcations made by ML to indicate levels of

certainty of classification. The darker it is, the more certain it belongs to the RB group. The clearer the more certainty of belonging to the GB group. The subtitle of

each graph indicates the method used and in the lower right quadrant is the accuracy found.

wave potential (SWP). This proton pump is necessary for
SWP repolarization in Arabidopsis (Kumari et al., 2019; Farmer
et al., 2020). All the components previously mentioned, which
are involved in the electrical signal and systemic response
to herbivory, and which are generally studied in Arabidopsis
thaliana plants, are also present in fruits (Ewing and Bennett,
1994; Aouini et al., 2012; Zhou et al., 2020), supporting the
possibility of fruit-shoot long-distance electrical signaling.

In terms of individual electrical signals, the system potential
(SP) (Zimmermann et al., 2016) and the slow wave potential
(SWP) (Farmer et al., 2020) are the most reported signals
involved in biotic stress. Although studies have already shown
the existence of these signals during herbivory, much still need
to be done to understand the information that these signals

carry and how these signals are transduced. It is not possible
to identify specifically which individual electrical signal is pre-
dominant in the present study. Nonetheless, our finding showed
the transmission of the signal generated in the fruit to the
peduncle, and probably to rest of the plant. The ML was efficient
to differentiate the signal before and after herbivory (Figures 3,
4), both for mature green and red fruit. This finding opens new
opportunities for studies regarding fruit-to-shoot signaling.

Farmer et al. (2020) proposed a model for slow wave potential
(SWP) propagation in Arabidopsis under herbivory. In this
model, in a nutshell, the wounding caused by caterpillar will
promote loss of phloem pressure and a loss of tension in the
xylem. Then, due to the pressure changes in the vessels, the
elicitors would be carried into and along the xylem, interacting
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FIGURE 6 | Accuracy (%) and standard deviation (A) of the Machine Learning models used to classify RA and GA groups. Scatter plots (B) showing a sample space

plan used in ML training for the RA × GA distribution. Red dots: RA; Light yellow spots: GA. The regions are the demarcations made by ML to indicate levels of

certainty of classification. The darker it is, the more certain it belongs to the RA group. The clearer the more certainty of belonging to the GA group. The subtitle of

each graph indicates the method used and in the lower right quadrant is the accuracy found.

with cells and promoting more depolarization. This first stage
would be predominantly non-electrical. After these events,
the electrical part of the SWP propagation would begin. The
subsequent stage is characterized by an increase in cytosolic
calcium and synthesis of jasmonate from precursors produced
by LOX6. The jasmonates produced would then be exported to
activate defense responses. The authors argue that both xylem
and phloem are important to SWP propagation. It was not
mentioned in the study the possibility of this model in fruits
under herbivory. However, it seems quite reasonable to extend
this model to this part of the plant, since this structure is
connected via peduncle (pedicel) with the rest of the plant.

Fruits such as tomato are connected to the shoot of the
plant through vascular bundles. The xylem and phloem are

the structures through which the fruits will receive water,
carbohydrates, calcium, among other compounds (Rancic and
Pecinar, 2010). In addition, phloem is proposed as the main
route of transmission of electrical signals, due to the properties
of its cells. In relation to the other cells, the sieve tube elements
have great length and sieve plates with large pores, which
decrease the electrical and hydraulic resistance between one
cell and another. They are also devoid of vacuole, nucleus,
and plastids (Hedrich et al., 2016). Although fruits, especially
the fleshy ones, are modules of the plant with the purpose of
being consumed to disperse the seeds—when already ripe—, they
are still capable of perceiving environmental disturbances and
generating a signaling and systemic responses in the plant. It is
known that even in the post-harvest the fruits are responsive to
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FIGURE 7 | Hydrogen peroxide and superoxide anion content of “Micro-Tom” tomato fruit and leaves during 24/48 h of herbivory treatment (H. armigera). Values

represent the mean ± SD (n = 5). Black * represents statistical difference between control and herbivory 24 h or control and herbivory 48 h. Red * represents statistical

difference between control 24 and 48 h or herbivory 24 and 48 h. C, control treatment; H, herbivory treatment.

FIGURE 8 | Antioxidant enzymes activity of “Micro-Tom” tomato fruit and leaves during 24/48 h of herbivory treatment (H. armigera). Values represent the mean ± SD

(n = 5). Black * represents statistical difference between control and herbivory 24 h or control and herbivory 48 h. Red * represents statistical difference between

control 24 and 48 h or herbivory 24 and 48 h. C, control treatment; H, herbivory treatment.

different stimuli and able to adjust their metabolism (Pedreschi
and Lurie, 2015; Reissig et al., 2018).

The oxidative response has already been reported in plants
under herbivory and wounding. In a study with unripe wounded

avocado fruit, decreased activity of CAT and SOD was observed
after 24 h of injury (Castro-Mercado et al., 2009). In our study,
there was no significant difference (p≥ 0.05) between the control
and the herbivory treatment for these same enzymes in the fruit
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and leaf (Figure 8), except in the leaf 24 h, where the SOD activity
for herbivory treatment was lower than the control, similar to the
observed by Castro-Mercado et al. (2009). It should be noted that
the fruits analyzed in our study were not the same as those that
suffered herbivory. Interestingly, as in the study with avocado, we
observed a considerable increase in fruit GPOD activity, being
the only antioxidant enzyme that increased its activity in the
fruit belonging to the plant that underwent herbivory. Regarding
leaf enzyme activity, APX was the one that stood out, having its
activity greater than the control during 24 and 48 h of herbivory
(Figure 8). In a study on leaf oxidative stress in soybean plants,
induced by Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)
herbivory, an increase in APX enzyme activity was also observed
after 3 days of treatment (Bi and Felton, 1995). Duffey and Stout
(1996), wrote that as a direct defense to herbivory in tomatoes,
antioxidant enzymes have a reduced effect. However, together
with alkaloids, proteinase inhibitors and phenolic compounds
there is a synergistic effect, affecting the insect during its digestive
process and metabolism.

The H2O2 was the ROS that showed the highest accumulation
during herbivory, especially in the first 24 h, both the fruit and
the leaf (Figure 7). Superoxide anion decreased after 48 h of
herbivory in tomato plant leaf and there was no significant
difference (p ≥ 0.05) between fruit control and herbivory
treatment (Figure 7). Due to its high stability and free diffusion,
H2O2 plays an important role in plant defense responses.
One of the main producers of H2O2 in plant cells under the
most different stresses is the NADPH oxidase (also known
as respiratory burst oxidase homolog—RBOH) present in the
plasma membrane. It generates superoxide anion, which in
turn is converted in H2O2 by SOD activity (War et al.,
2012; Liu and He, 2016). We did not evaluate ROS right at
the beginning of the herbivory on the fruit. Probably, the
concentration of superoxide anion was higher in the beginning,
before being converted to H2O2. Perhaps this is the reason why
the concentration of superoxide anion was equal or lower than
the control. In addition to stress response, ROS are also involved
in systemic signaling, acting together with phytohormones and
other signaling molecules (Fichman and Mittler, 2020).

In the present study, we analyzed components involved in the
oxidative response as a marker, to demonstrate that the stimulus
provoked in the fruit by theH. armigera caterpillar was sufficient
to generate a response in more distant organs. Here we cannot
make a direct link of the electrical signal generated in the fruit
with the observed response, but it is likely that it is coupled
with other forms of herbivory signaling already established (e.g.,
jasmonates, salicylates, Ca2+). The fact that herbivory on the fruit
has led to a response in different organs shows the importance of
studying and understanding the signaling that can be generated
from the fruit. Valoy et al. (2019) observed in their studies that
leaf herbivory affects the correlation between fruit traits (such
as weight, number of seeds, and sucrose), and the magnitude
and variation of the damage that influences it. It is reasonable
to assume that something similar can occur when another fruit
is being preyed, instead of the leaf. Although the fruits do not
depend directly on each other as they depend on the leaves
to receive photoassimilates, it is possible, as shown here, that

biochemical changes involved in systemic responses between
them do occur.

Machine learning techniques have emerged as a powerful
tool for several studies in the field of plant physiology, both
for technical application and as a tool to help test scientific
hypotheses (Pereira et al., 2018; Tran et al., 2019; de Medeiros
et al., 2020; Simmi et al., 2020). In addition to the central
hypothesis of this research, the use of ML allowed us to observe
differences in the electrome of tomato plants when the fruits
were in different ripening stages. TheML was able to differentiate
tomato plants with green fruits from ripe ones before herbivory,
presenting a high accuracy (Figure 5). However, in the presence
of H. armigera, it was not possible to differentiate between them.
The signals generated by herbivory were predominant, making it
possible for them to be easily classified by ML. This finding may
bring new insights into how electrical signals are involved not
only in external disturbances but also in signaling physiological
processes. Our research group also carried out experiments
focusing on the ripening of climacteric fruits, where a difference
was observed in the electrome between the ripening stages of
harvested tomato fruit (Reissig et al., under review).

Arimura (2020) highlights the myriad of agricultural
applications provided by new insights regarding studies into
the cellular pathways by which plants sense elicitors and elicit
defense responses against herbivore. Here, we also envision
potential applications of electrical signal analysis, especially
associated with machine learning techniques. Regarding other
sources of biotic stress, a recent study with a pathogenic fungus
showed that the infection by Oidium neolycopersici altered
the electrophysiological dynamics of the tomato plant. These
changes were detected far from the infection site and before
any visual symptom, raising the possibility of using electrome
analyses for early diagnosis of plant diseases (Simmi et al.,
2020). Tran et al. (2019) demonstrated this possibility by
studying abiotic environmental stimuli. They proposed the
electrophysiological evaluation of tomato plants status using
supervised machine learning. It would be achieved through an
electrophysiological sensor that allowed the measurement of
real-time electrical signals related to the plant water status in the
field, without a Faraday cage. This possibility can be extended to
biotic stress factors, enabling the development of sensors andML
techniques that detect and manage to differentiate, in the case of
herbivory, the insect that is causing injury in a crop production
early in the infestation, allowing less aggressive measures and
more accurate insect management.

Concluding, the tomato fruit is a plant organ capable of
sensing biotic stimuli and transmitting electrical signals to the
shoot of tomato plants. Besides, the signaling between fruit and
shoot triggered biochemical processes related to biotic stress
responses in different leaves and fruits. Finally, we observed that
the electrome in the peduncle was different betweenmature green
and red fruits, indicating that electrical signals might be involved
in the ripening process. This study raises new possibilities for
studies involving electrical signals in signaling and systemic
responses, as well as for the applicability of ML to classify
electrophysiological data and its use in early diagnosis. It could
contribute to a more sustainable crop and food production.
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